Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2polpmapN Structured version   Visualization version   GIF version

Theorem 2polpmapN 38784
Description: Double polarity of a projective map. (Contributed by NM, 24-Jan-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
2polpmap.b 𝐵 = (Base‘𝐾)
2polpmap.m 𝑀 = (pmap‘𝐾)
2polpmap.p = (⊥𝑃𝐾)
Assertion
Ref Expression
2polpmapN ((𝐾 ∈ HL ∧ 𝑋𝐵) → ( ‘( ‘(𝑀𝑋))) = (𝑀𝑋))

Proof of Theorem 2polpmapN
StepHypRef Expression
1 2polpmap.b . . . 4 𝐵 = (Base‘𝐾)
2 eqid 2733 . . . 4 (oc‘𝐾) = (oc‘𝐾)
3 2polpmap.m . . . 4 𝑀 = (pmap‘𝐾)
4 2polpmap.p . . . 4 = (⊥𝑃𝐾)
51, 2, 3, 4polpmapN 38783 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐵) → ( ‘(𝑀𝑋)) = (𝑀‘((oc‘𝐾)‘𝑋)))
65fveq2d 6896 . 2 ((𝐾 ∈ HL ∧ 𝑋𝐵) → ( ‘( ‘(𝑀𝑋))) = ( ‘(𝑀‘((oc‘𝐾)‘𝑋))))
7 hlop 38232 . . . 4 (𝐾 ∈ HL → 𝐾 ∈ OP)
81, 2opoccl 38064 . . . 4 ((𝐾 ∈ OP ∧ 𝑋𝐵) → ((oc‘𝐾)‘𝑋) ∈ 𝐵)
97, 8sylan 581 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐵) → ((oc‘𝐾)‘𝑋) ∈ 𝐵)
101, 2, 3, 4polpmapN 38783 . . 3 ((𝐾 ∈ HL ∧ ((oc‘𝐾)‘𝑋) ∈ 𝐵) → ( ‘(𝑀‘((oc‘𝐾)‘𝑋))) = (𝑀‘((oc‘𝐾)‘((oc‘𝐾)‘𝑋))))
119, 10syldan 592 . 2 ((𝐾 ∈ HL ∧ 𝑋𝐵) → ( ‘(𝑀‘((oc‘𝐾)‘𝑋))) = (𝑀‘((oc‘𝐾)‘((oc‘𝐾)‘𝑋))))
121, 2opococ 38065 . . . 4 ((𝐾 ∈ OP ∧ 𝑋𝐵) → ((oc‘𝐾)‘((oc‘𝐾)‘𝑋)) = 𝑋)
137, 12sylan 581 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐵) → ((oc‘𝐾)‘((oc‘𝐾)‘𝑋)) = 𝑋)
1413fveq2d 6896 . 2 ((𝐾 ∈ HL ∧ 𝑋𝐵) → (𝑀‘((oc‘𝐾)‘((oc‘𝐾)‘𝑋))) = (𝑀𝑋))
156, 11, 143eqtrd 2777 1 ((𝐾 ∈ HL ∧ 𝑋𝐵) → ( ‘( ‘(𝑀𝑋))) = (𝑀𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397   = wceq 1542  wcel 2107  cfv 6544  Basecbs 17144  occoc 17205  OPcops 38042  HLchlt 38220  pmapcpmap 38368  𝑃cpolN 38773
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-iin 5001  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-riota 7365  df-ov 7412  df-oprab 7413  df-proset 18248  df-poset 18266  df-plt 18283  df-lub 18299  df-glb 18300  df-join 18301  df-meet 18302  df-p0 18378  df-p1 18379  df-lat 18385  df-clat 18452  df-oposet 38046  df-ol 38048  df-oml 38049  df-covers 38136  df-ats 38137  df-atl 38168  df-cvlat 38192  df-hlat 38221  df-pmap 38375  df-polarityN 38774
This theorem is referenced by:  pmapsubclN  38817  ispsubcl2N  38818
  Copyright terms: Public domain W3C validator