Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2polpmapN Structured version   Visualization version   GIF version

Theorem 2polpmapN 40011
Description: Double polarity of a projective map. (Contributed by NM, 24-Jan-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
2polpmap.b 𝐵 = (Base‘𝐾)
2polpmap.m 𝑀 = (pmap‘𝐾)
2polpmap.p = (⊥𝑃𝐾)
Assertion
Ref Expression
2polpmapN ((𝐾 ∈ HL ∧ 𝑋𝐵) → ( ‘( ‘(𝑀𝑋))) = (𝑀𝑋))

Proof of Theorem 2polpmapN
StepHypRef Expression
1 2polpmap.b . . . 4 𝐵 = (Base‘𝐾)
2 eqid 2731 . . . 4 (oc‘𝐾) = (oc‘𝐾)
3 2polpmap.m . . . 4 𝑀 = (pmap‘𝐾)
4 2polpmap.p . . . 4 = (⊥𝑃𝐾)
51, 2, 3, 4polpmapN 40010 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐵) → ( ‘(𝑀𝑋)) = (𝑀‘((oc‘𝐾)‘𝑋)))
65fveq2d 6826 . 2 ((𝐾 ∈ HL ∧ 𝑋𝐵) → ( ‘( ‘(𝑀𝑋))) = ( ‘(𝑀‘((oc‘𝐾)‘𝑋))))
7 hlop 39460 . . . 4 (𝐾 ∈ HL → 𝐾 ∈ OP)
81, 2opoccl 39292 . . . 4 ((𝐾 ∈ OP ∧ 𝑋𝐵) → ((oc‘𝐾)‘𝑋) ∈ 𝐵)
97, 8sylan 580 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐵) → ((oc‘𝐾)‘𝑋) ∈ 𝐵)
101, 2, 3, 4polpmapN 40010 . . 3 ((𝐾 ∈ HL ∧ ((oc‘𝐾)‘𝑋) ∈ 𝐵) → ( ‘(𝑀‘((oc‘𝐾)‘𝑋))) = (𝑀‘((oc‘𝐾)‘((oc‘𝐾)‘𝑋))))
119, 10syldan 591 . 2 ((𝐾 ∈ HL ∧ 𝑋𝐵) → ( ‘(𝑀‘((oc‘𝐾)‘𝑋))) = (𝑀‘((oc‘𝐾)‘((oc‘𝐾)‘𝑋))))
121, 2opococ 39293 . . . 4 ((𝐾 ∈ OP ∧ 𝑋𝐵) → ((oc‘𝐾)‘((oc‘𝐾)‘𝑋)) = 𝑋)
137, 12sylan 580 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐵) → ((oc‘𝐾)‘((oc‘𝐾)‘𝑋)) = 𝑋)
1413fveq2d 6826 . 2 ((𝐾 ∈ HL ∧ 𝑋𝐵) → (𝑀‘((oc‘𝐾)‘((oc‘𝐾)‘𝑋))) = (𝑀𝑋))
156, 11, 143eqtrd 2770 1 ((𝐾 ∈ HL ∧ 𝑋𝐵) → ( ‘( ‘(𝑀𝑋))) = (𝑀𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  cfv 6481  Basecbs 17120  occoc 17169  OPcops 39270  HLchlt 39448  pmapcpmap 39595  𝑃cpolN 40000
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-iin 4942  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-proset 18200  df-poset 18219  df-plt 18234  df-lub 18250  df-glb 18251  df-join 18252  df-meet 18253  df-p0 18329  df-p1 18330  df-lat 18338  df-clat 18405  df-oposet 39274  df-ol 39276  df-oml 39277  df-covers 39364  df-ats 39365  df-atl 39396  df-cvlat 39420  df-hlat 39449  df-pmap 39602  df-polarityN 40001
This theorem is referenced by:  pmapsubclN  40044  ispsubcl2N  40045
  Copyright terms: Public domain W3C validator