| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > 2polpmapN | Structured version Visualization version GIF version | ||
| Description: Double polarity of a projective map. (Contributed by NM, 24-Jan-2012.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| 2polpmap.b | ⊢ 𝐵 = (Base‘𝐾) |
| 2polpmap.m | ⊢ 𝑀 = (pmap‘𝐾) |
| 2polpmap.p | ⊢ ⊥ = (⊥𝑃‘𝐾) |
| Ref | Expression |
|---|---|
| 2polpmapN | ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) → ( ⊥ ‘( ⊥ ‘(𝑀‘𝑋))) = (𝑀‘𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2polpmap.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
| 2 | eqid 2731 | . . . 4 ⊢ (oc‘𝐾) = (oc‘𝐾) | |
| 3 | 2polpmap.m | . . . 4 ⊢ 𝑀 = (pmap‘𝐾) | |
| 4 | 2polpmap.p | . . . 4 ⊢ ⊥ = (⊥𝑃‘𝐾) | |
| 5 | 1, 2, 3, 4 | polpmapN 40010 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) → ( ⊥ ‘(𝑀‘𝑋)) = (𝑀‘((oc‘𝐾)‘𝑋))) |
| 6 | 5 | fveq2d 6826 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) → ( ⊥ ‘( ⊥ ‘(𝑀‘𝑋))) = ( ⊥ ‘(𝑀‘((oc‘𝐾)‘𝑋)))) |
| 7 | hlop 39460 | . . . 4 ⊢ (𝐾 ∈ HL → 𝐾 ∈ OP) | |
| 8 | 1, 2 | opoccl 39292 | . . . 4 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) → ((oc‘𝐾)‘𝑋) ∈ 𝐵) |
| 9 | 7, 8 | sylan 580 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) → ((oc‘𝐾)‘𝑋) ∈ 𝐵) |
| 10 | 1, 2, 3, 4 | polpmapN 40010 | . . 3 ⊢ ((𝐾 ∈ HL ∧ ((oc‘𝐾)‘𝑋) ∈ 𝐵) → ( ⊥ ‘(𝑀‘((oc‘𝐾)‘𝑋))) = (𝑀‘((oc‘𝐾)‘((oc‘𝐾)‘𝑋)))) |
| 11 | 9, 10 | syldan 591 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) → ( ⊥ ‘(𝑀‘((oc‘𝐾)‘𝑋))) = (𝑀‘((oc‘𝐾)‘((oc‘𝐾)‘𝑋)))) |
| 12 | 1, 2 | opococ 39293 | . . . 4 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) → ((oc‘𝐾)‘((oc‘𝐾)‘𝑋)) = 𝑋) |
| 13 | 7, 12 | sylan 580 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) → ((oc‘𝐾)‘((oc‘𝐾)‘𝑋)) = 𝑋) |
| 14 | 13 | fveq2d 6826 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) → (𝑀‘((oc‘𝐾)‘((oc‘𝐾)‘𝑋))) = (𝑀‘𝑋)) |
| 15 | 6, 11, 14 | 3eqtrd 2770 | 1 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) → ( ⊥ ‘( ⊥ ‘(𝑀‘𝑋))) = (𝑀‘𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ‘cfv 6481 Basecbs 17120 occoc 17169 OPcops 39270 HLchlt 39448 pmapcpmap 39595 ⊥𝑃cpolN 40000 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-iin 4942 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-proset 18200 df-poset 18219 df-plt 18234 df-lub 18250 df-glb 18251 df-join 18252 df-meet 18253 df-p0 18329 df-p1 18330 df-lat 18338 df-clat 18405 df-oposet 39274 df-ol 39276 df-oml 39277 df-covers 39364 df-ats 39365 df-atl 39396 df-cvlat 39420 df-hlat 39449 df-pmap 39602 df-polarityN 40001 |
| This theorem is referenced by: pmapsubclN 40044 ispsubcl2N 40045 |
| Copyright terms: Public domain | W3C validator |