Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2oppf Structured version   Visualization version   GIF version

Theorem 2oppf 49028
Description: The double opposite functor is the original functor. (Contributed by Zhi Wang, 14-Nov-2025.)
Hypotheses
Ref Expression
oppfrcl.1 (𝜑𝐺𝑅)
oppfrcl.2 Rel 𝑅
oppfrcl.3 𝐺 = (oppFunc‘𝐹)
Assertion
Ref Expression
2oppf (𝜑 → (oppFunc‘𝐺) = 𝐹)

Proof of Theorem 2oppf
StepHypRef Expression
1 fvex 6888 . . 3 (1st𝐹) ∈ V
2 fvex 6888 . . . 4 (2nd𝐹) ∈ V
32tposex 8257 . . 3 tpos (2nd𝐹) ∈ V
4 oppfvalg 49022 . . 3 (((1st𝐹) ∈ V ∧ tpos (2nd𝐹) ∈ V) → ((1st𝐹)oppFunctpos (2nd𝐹)) = if((Rel tpos (2nd𝐹) ∧ Rel dom tpos (2nd𝐹)), ⟨(1st𝐹), tpos tpos (2nd𝐹)⟩, ∅))
51, 3, 4mp2an 692 . 2 ((1st𝐹)oppFunctpos (2nd𝐹)) = if((Rel tpos (2nd𝐹) ∧ Rel dom tpos (2nd𝐹)), ⟨(1st𝐹), tpos tpos (2nd𝐹)⟩, ∅)
6 df-ov 7406 . . 3 ((1st𝐹)oppFunctpos (2nd𝐹)) = (oppFunc‘⟨(1st𝐹), tpos (2nd𝐹)⟩)
7 oppfrcl.1 . . . . . 6 (𝜑𝐺𝑅)
8 oppfrcl.2 . . . . . 6 Rel 𝑅
9 oppfrcl.3 . . . . . 6 𝐺 = (oppFunc‘𝐹)
107, 8, 9oppfrcl 49024 . . . . . . 7 (𝜑𝐹 ∈ (V × V))
11 1st2nd2 8025 . . . . . . 7 (𝐹 ∈ (V × V) → 𝐹 = ⟨(1st𝐹), (2nd𝐹)⟩)
1210, 11syl 17 . . . . . 6 (𝜑𝐹 = ⟨(1st𝐹), (2nd𝐹)⟩)
137, 8, 9, 12oppf1st2nd 49027 . . . . 5 (𝜑 → (𝐺 ∈ (V × V) ∧ ((1st𝐺) = (1st𝐹) ∧ (2nd𝐺) = tpos (2nd𝐹))))
14 eqopi 8022 . . . . 5 ((𝐺 ∈ (V × V) ∧ ((1st𝐺) = (1st𝐹) ∧ (2nd𝐺) = tpos (2nd𝐹))) → 𝐺 = ⟨(1st𝐹), tpos (2nd𝐹)⟩)
1513, 14syl 17 . . . 4 (𝜑𝐺 = ⟨(1st𝐹), tpos (2nd𝐹)⟩)
1615fveq2d 6879 . . 3 (𝜑 → (oppFunc‘𝐺) = (oppFunc‘⟨(1st𝐹), tpos (2nd𝐹)⟩))
176, 16eqtr4id 2789 . 2 (𝜑 → ((1st𝐹)oppFunctpos (2nd𝐹)) = (oppFunc‘𝐺))
187, 8, 9, 12oppfrcl3 49026 . . . . 5 (𝜑 → (Rel (2nd𝐹) ∧ Rel dom (2nd𝐹)))
19 tpostpos2 8244 . . . . 5 ((Rel (2nd𝐹) ∧ Rel dom (2nd𝐹)) → tpos tpos (2nd𝐹) = (2nd𝐹))
2018, 19syl 17 . . . 4 (𝜑 → tpos tpos (2nd𝐹) = (2nd𝐹))
2120opeq2d 4856 . . 3 (𝜑 → ⟨(1st𝐹), tpos tpos (2nd𝐹)⟩ = ⟨(1st𝐹), (2nd𝐹)⟩)
22 0nelrel0 5714 . . . . . . 7 (Rel dom (2nd𝐹) → ¬ ∅ ∈ dom (2nd𝐹))
2318, 22simpl2im 503 . . . . . 6 (𝜑 → ¬ ∅ ∈ dom (2nd𝐹))
24 reldmtpos 8231 . . . . . 6 (Rel dom tpos (2nd𝐹) ↔ ¬ ∅ ∈ dom (2nd𝐹))
2523, 24sylibr 234 . . . . 5 (𝜑 → Rel dom tpos (2nd𝐹))
26 reltpos 8228 . . . . 5 Rel tpos (2nd𝐹)
2725, 26jctil 519 . . . 4 (𝜑 → (Rel tpos (2nd𝐹) ∧ Rel dom tpos (2nd𝐹)))
2827iftrued 4508 . . 3 (𝜑 → if((Rel tpos (2nd𝐹) ∧ Rel dom tpos (2nd𝐹)), ⟨(1st𝐹), tpos tpos (2nd𝐹)⟩, ∅) = ⟨(1st𝐹), tpos tpos (2nd𝐹)⟩)
2921, 28, 123eqtr4d 2780 . 2 (𝜑 → if((Rel tpos (2nd𝐹) ∧ Rel dom tpos (2nd𝐹)), ⟨(1st𝐹), tpos tpos (2nd𝐹)⟩, ∅) = 𝐹)
305, 17, 293eqtr3a 2794 1 (𝜑 → (oppFunc‘𝐺) = 𝐹)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2108  Vcvv 3459  c0 4308  ifcif 4500  cop 4607   × cxp 5652  dom cdm 5654  Rel wrel 5659  cfv 6530  (class class class)co 7403  1st c1st 7984  2nd c2nd 7985  tpos ctpos 8222  oppFunccoppf 49019
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-fv 6538  df-ov 7406  df-oprab 7407  df-mpo 7408  df-1st 7986  df-2nd 7987  df-tpos 8223  df-oppf 49020
This theorem is referenced by:  2oppffunc  49037
  Copyright terms: Public domain W3C validator