Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2oppf Structured version   Visualization version   GIF version

Theorem 2oppf 49105
Description: The double opposite functor is the original functor. Remark 3.42 of [Adamek] p. 39. (Contributed by Zhi Wang, 14-Nov-2025.)
Hypotheses
Ref Expression
oppfrcl.1 (𝜑𝐺𝑅)
oppfrcl.2 Rel 𝑅
oppfrcl.3 𝐺 = ( oppFunc ‘𝐹)
Assertion
Ref Expression
2oppf (𝜑 → ( oppFunc ‘𝐺) = 𝐹)

Proof of Theorem 2oppf
StepHypRef Expression
1 fvex 6839 . . 3 (1st𝐹) ∈ V
2 fvex 6839 . . . 4 (2nd𝐹) ∈ V
32tposex 8200 . . 3 tpos (2nd𝐹) ∈ V
4 oppfvalg 49099 . . 3 (((1st𝐹) ∈ V ∧ tpos (2nd𝐹) ∈ V) → ((1st𝐹) oppFunc tpos (2nd𝐹)) = if((Rel tpos (2nd𝐹) ∧ Rel dom tpos (2nd𝐹)), ⟨(1st𝐹), tpos tpos (2nd𝐹)⟩, ∅))
51, 3, 4mp2an 692 . 2 ((1st𝐹) oppFunc tpos (2nd𝐹)) = if((Rel tpos (2nd𝐹) ∧ Rel dom tpos (2nd𝐹)), ⟨(1st𝐹), tpos tpos (2nd𝐹)⟩, ∅)
6 df-ov 7356 . . 3 ((1st𝐹) oppFunc tpos (2nd𝐹)) = ( oppFunc ‘⟨(1st𝐹), tpos (2nd𝐹)⟩)
7 oppfrcl.1 . . . . . 6 (𝜑𝐺𝑅)
8 oppfrcl.2 . . . . . 6 Rel 𝑅
9 oppfrcl.3 . . . . . 6 𝐺 = ( oppFunc ‘𝐹)
107, 8, 9oppfrcl 49101 . . . . . . 7 (𝜑𝐹 ∈ (V × V))
11 1st2nd2 7970 . . . . . . 7 (𝐹 ∈ (V × V) → 𝐹 = ⟨(1st𝐹), (2nd𝐹)⟩)
1210, 11syl 17 . . . . . 6 (𝜑𝐹 = ⟨(1st𝐹), (2nd𝐹)⟩)
137, 8, 9, 12oppf1st2nd 49104 . . . . 5 (𝜑 → (𝐺 ∈ (V × V) ∧ ((1st𝐺) = (1st𝐹) ∧ (2nd𝐺) = tpos (2nd𝐹))))
14 eqopi 7967 . . . . 5 ((𝐺 ∈ (V × V) ∧ ((1st𝐺) = (1st𝐹) ∧ (2nd𝐺) = tpos (2nd𝐹))) → 𝐺 = ⟨(1st𝐹), tpos (2nd𝐹)⟩)
1513, 14syl 17 . . . 4 (𝜑𝐺 = ⟨(1st𝐹), tpos (2nd𝐹)⟩)
1615fveq2d 6830 . . 3 (𝜑 → ( oppFunc ‘𝐺) = ( oppFunc ‘⟨(1st𝐹), tpos (2nd𝐹)⟩))
176, 16eqtr4id 2783 . 2 (𝜑 → ((1st𝐹) oppFunc tpos (2nd𝐹)) = ( oppFunc ‘𝐺))
187, 8, 9, 12oppfrcl3 49103 . . . . 5 (𝜑 → (Rel (2nd𝐹) ∧ Rel dom (2nd𝐹)))
19 tpostpos2 8187 . . . . 5 ((Rel (2nd𝐹) ∧ Rel dom (2nd𝐹)) → tpos tpos (2nd𝐹) = (2nd𝐹))
2018, 19syl 17 . . . 4 (𝜑 → tpos tpos (2nd𝐹) = (2nd𝐹))
2120opeq2d 4834 . . 3 (𝜑 → ⟨(1st𝐹), tpos tpos (2nd𝐹)⟩ = ⟨(1st𝐹), (2nd𝐹)⟩)
22 0nelrel0 5683 . . . . . . 7 (Rel dom (2nd𝐹) → ¬ ∅ ∈ dom (2nd𝐹))
2318, 22simpl2im 503 . . . . . 6 (𝜑 → ¬ ∅ ∈ dom (2nd𝐹))
24 reldmtpos 8174 . . . . . 6 (Rel dom tpos (2nd𝐹) ↔ ¬ ∅ ∈ dom (2nd𝐹))
2523, 24sylibr 234 . . . . 5 (𝜑 → Rel dom tpos (2nd𝐹))
26 reltpos 8171 . . . . 5 Rel tpos (2nd𝐹)
2725, 26jctil 519 . . . 4 (𝜑 → (Rel tpos (2nd𝐹) ∧ Rel dom tpos (2nd𝐹)))
2827iftrued 4486 . . 3 (𝜑 → if((Rel tpos (2nd𝐹) ∧ Rel dom tpos (2nd𝐹)), ⟨(1st𝐹), tpos tpos (2nd𝐹)⟩, ∅) = ⟨(1st𝐹), tpos tpos (2nd𝐹)⟩)
2921, 28, 123eqtr4d 2774 . 2 (𝜑 → if((Rel tpos (2nd𝐹) ∧ Rel dom tpos (2nd𝐹)), ⟨(1st𝐹), tpos tpos (2nd𝐹)⟩, ∅) = 𝐹)
305, 17, 293eqtr3a 2788 1 (𝜑 → ( oppFunc ‘𝐺) = 𝐹)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3438  c0 4286  ifcif 4478  cop 4585   × cxp 5621  dom cdm 5623  Rel wrel 5628  cfv 6486  (class class class)co 7353  1st c1st 7929  2nd c2nd 7930  tpos ctpos 8165   oppFunc coppf 49095
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-fv 6494  df-ov 7356  df-oprab 7357  df-mpo 7358  df-1st 7931  df-2nd 7932  df-tpos 8166  df-oppf 49096
This theorem is referenced by:  oppff1  49121  oppff1o  49122  natoppfb  49204  cmddu  49641
  Copyright terms: Public domain W3C validator