Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2oppf Structured version   Visualization version   GIF version

Theorem 2oppf 49257
Description: The double opposite functor is the original functor. Remark 3.42 of [Adamek] p. 39. (Contributed by Zhi Wang, 14-Nov-2025.)
Hypotheses
Ref Expression
oppfrcl.1 (𝜑𝐺𝑅)
oppfrcl.2 Rel 𝑅
oppfrcl.3 𝐺 = ( oppFunc ‘𝐹)
Assertion
Ref Expression
2oppf (𝜑 → ( oppFunc ‘𝐺) = 𝐹)

Proof of Theorem 2oppf
StepHypRef Expression
1 fvex 6841 . . 3 (1st𝐹) ∈ V
2 fvex 6841 . . . 4 (2nd𝐹) ∈ V
32tposex 8196 . . 3 tpos (2nd𝐹) ∈ V
4 oppfvalg 49251 . . 3 (((1st𝐹) ∈ V ∧ tpos (2nd𝐹) ∈ V) → ((1st𝐹) oppFunc tpos (2nd𝐹)) = if((Rel tpos (2nd𝐹) ∧ Rel dom tpos (2nd𝐹)), ⟨(1st𝐹), tpos tpos (2nd𝐹)⟩, ∅))
51, 3, 4mp2an 692 . 2 ((1st𝐹) oppFunc tpos (2nd𝐹)) = if((Rel tpos (2nd𝐹) ∧ Rel dom tpos (2nd𝐹)), ⟨(1st𝐹), tpos tpos (2nd𝐹)⟩, ∅)
6 df-ov 7355 . . 3 ((1st𝐹) oppFunc tpos (2nd𝐹)) = ( oppFunc ‘⟨(1st𝐹), tpos (2nd𝐹)⟩)
7 oppfrcl.1 . . . . . 6 (𝜑𝐺𝑅)
8 oppfrcl.2 . . . . . 6 Rel 𝑅
9 oppfrcl.3 . . . . . 6 𝐺 = ( oppFunc ‘𝐹)
107, 8, 9oppfrcl 49253 . . . . . . 7 (𝜑𝐹 ∈ (V × V))
11 1st2nd2 7966 . . . . . . 7 (𝐹 ∈ (V × V) → 𝐹 = ⟨(1st𝐹), (2nd𝐹)⟩)
1210, 11syl 17 . . . . . 6 (𝜑𝐹 = ⟨(1st𝐹), (2nd𝐹)⟩)
137, 8, 9, 12oppf1st2nd 49256 . . . . 5 (𝜑 → (𝐺 ∈ (V × V) ∧ ((1st𝐺) = (1st𝐹) ∧ (2nd𝐺) = tpos (2nd𝐹))))
14 eqopi 7963 . . . . 5 ((𝐺 ∈ (V × V) ∧ ((1st𝐺) = (1st𝐹) ∧ (2nd𝐺) = tpos (2nd𝐹))) → 𝐺 = ⟨(1st𝐹), tpos (2nd𝐹)⟩)
1513, 14syl 17 . . . 4 (𝜑𝐺 = ⟨(1st𝐹), tpos (2nd𝐹)⟩)
1615fveq2d 6832 . . 3 (𝜑 → ( oppFunc ‘𝐺) = ( oppFunc ‘⟨(1st𝐹), tpos (2nd𝐹)⟩))
176, 16eqtr4id 2787 . 2 (𝜑 → ((1st𝐹) oppFunc tpos (2nd𝐹)) = ( oppFunc ‘𝐺))
187, 8, 9, 12oppfrcl3 49255 . . . . 5 (𝜑 → (Rel (2nd𝐹) ∧ Rel dom (2nd𝐹)))
19 tpostpos2 8183 . . . . 5 ((Rel (2nd𝐹) ∧ Rel dom (2nd𝐹)) → tpos tpos (2nd𝐹) = (2nd𝐹))
2018, 19syl 17 . . . 4 (𝜑 → tpos tpos (2nd𝐹) = (2nd𝐹))
2120opeq2d 4831 . . 3 (𝜑 → ⟨(1st𝐹), tpos tpos (2nd𝐹)⟩ = ⟨(1st𝐹), (2nd𝐹)⟩)
22 0nelrel0 5679 . . . . . . 7 (Rel dom (2nd𝐹) → ¬ ∅ ∈ dom (2nd𝐹))
2318, 22simpl2im 503 . . . . . 6 (𝜑 → ¬ ∅ ∈ dom (2nd𝐹))
24 reldmtpos 8170 . . . . . 6 (Rel dom tpos (2nd𝐹) ↔ ¬ ∅ ∈ dom (2nd𝐹))
2523, 24sylibr 234 . . . . 5 (𝜑 → Rel dom tpos (2nd𝐹))
26 reltpos 8167 . . . . 5 Rel tpos (2nd𝐹)
2725, 26jctil 519 . . . 4 (𝜑 → (Rel tpos (2nd𝐹) ∧ Rel dom tpos (2nd𝐹)))
2827iftrued 4482 . . 3 (𝜑 → if((Rel tpos (2nd𝐹) ∧ Rel dom tpos (2nd𝐹)), ⟨(1st𝐹), tpos tpos (2nd𝐹)⟩, ∅) = ⟨(1st𝐹), tpos tpos (2nd𝐹)⟩)
2921, 28, 123eqtr4d 2778 . 2 (𝜑 → if((Rel tpos (2nd𝐹) ∧ Rel dom tpos (2nd𝐹)), ⟨(1st𝐹), tpos tpos (2nd𝐹)⟩, ∅) = 𝐹)
305, 17, 293eqtr3a 2792 1 (𝜑 → ( oppFunc ‘𝐺) = 𝐹)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1541  wcel 2113  Vcvv 3437  c0 4282  ifcif 4474  cop 4581   × cxp 5617  dom cdm 5619  Rel wrel 5624  cfv 6486  (class class class)co 7352  1st c1st 7925  2nd c2nd 7926  tpos ctpos 8161   oppFunc coppf 49247
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-fv 6494  df-ov 7355  df-oprab 7356  df-mpo 7357  df-1st 7927  df-2nd 7928  df-tpos 8162  df-oppf 49248
This theorem is referenced by:  oppff1  49273  oppff1o  49274  natoppfb  49356  cmddu  49793
  Copyright terms: Public domain W3C validator