Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2oppf Structured version   Visualization version   GIF version

Theorem 2oppf 49125
Description: The double opposite functor is the original functor. Remark 3.42 of [Adamek] p. 39. (Contributed by Zhi Wang, 14-Nov-2025.)
Hypotheses
Ref Expression
oppfrcl.1 (𝜑𝐺𝑅)
oppfrcl.2 Rel 𝑅
oppfrcl.3 𝐺 = ( oppFunc ‘𝐹)
Assertion
Ref Expression
2oppf (𝜑 → ( oppFunc ‘𝐺) = 𝐹)

Proof of Theorem 2oppf
StepHypRef Expression
1 fvex 6874 . . 3 (1st𝐹) ∈ V
2 fvex 6874 . . . 4 (2nd𝐹) ∈ V
32tposex 8242 . . 3 tpos (2nd𝐹) ∈ V
4 oppfvalg 49119 . . 3 (((1st𝐹) ∈ V ∧ tpos (2nd𝐹) ∈ V) → ((1st𝐹) oppFunc tpos (2nd𝐹)) = if((Rel tpos (2nd𝐹) ∧ Rel dom tpos (2nd𝐹)), ⟨(1st𝐹), tpos tpos (2nd𝐹)⟩, ∅))
51, 3, 4mp2an 692 . 2 ((1st𝐹) oppFunc tpos (2nd𝐹)) = if((Rel tpos (2nd𝐹) ∧ Rel dom tpos (2nd𝐹)), ⟨(1st𝐹), tpos tpos (2nd𝐹)⟩, ∅)
6 df-ov 7393 . . 3 ((1st𝐹) oppFunc tpos (2nd𝐹)) = ( oppFunc ‘⟨(1st𝐹), tpos (2nd𝐹)⟩)
7 oppfrcl.1 . . . . . 6 (𝜑𝐺𝑅)
8 oppfrcl.2 . . . . . 6 Rel 𝑅
9 oppfrcl.3 . . . . . 6 𝐺 = ( oppFunc ‘𝐹)
107, 8, 9oppfrcl 49121 . . . . . . 7 (𝜑𝐹 ∈ (V × V))
11 1st2nd2 8010 . . . . . . 7 (𝐹 ∈ (V × V) → 𝐹 = ⟨(1st𝐹), (2nd𝐹)⟩)
1210, 11syl 17 . . . . . 6 (𝜑𝐹 = ⟨(1st𝐹), (2nd𝐹)⟩)
137, 8, 9, 12oppf1st2nd 49124 . . . . 5 (𝜑 → (𝐺 ∈ (V × V) ∧ ((1st𝐺) = (1st𝐹) ∧ (2nd𝐺) = tpos (2nd𝐹))))
14 eqopi 8007 . . . . 5 ((𝐺 ∈ (V × V) ∧ ((1st𝐺) = (1st𝐹) ∧ (2nd𝐺) = tpos (2nd𝐹))) → 𝐺 = ⟨(1st𝐹), tpos (2nd𝐹)⟩)
1513, 14syl 17 . . . 4 (𝜑𝐺 = ⟨(1st𝐹), tpos (2nd𝐹)⟩)
1615fveq2d 6865 . . 3 (𝜑 → ( oppFunc ‘𝐺) = ( oppFunc ‘⟨(1st𝐹), tpos (2nd𝐹)⟩))
176, 16eqtr4id 2784 . 2 (𝜑 → ((1st𝐹) oppFunc tpos (2nd𝐹)) = ( oppFunc ‘𝐺))
187, 8, 9, 12oppfrcl3 49123 . . . . 5 (𝜑 → (Rel (2nd𝐹) ∧ Rel dom (2nd𝐹)))
19 tpostpos2 8229 . . . . 5 ((Rel (2nd𝐹) ∧ Rel dom (2nd𝐹)) → tpos tpos (2nd𝐹) = (2nd𝐹))
2018, 19syl 17 . . . 4 (𝜑 → tpos tpos (2nd𝐹) = (2nd𝐹))
2120opeq2d 4847 . . 3 (𝜑 → ⟨(1st𝐹), tpos tpos (2nd𝐹)⟩ = ⟨(1st𝐹), (2nd𝐹)⟩)
22 0nelrel0 5701 . . . . . . 7 (Rel dom (2nd𝐹) → ¬ ∅ ∈ dom (2nd𝐹))
2318, 22simpl2im 503 . . . . . 6 (𝜑 → ¬ ∅ ∈ dom (2nd𝐹))
24 reldmtpos 8216 . . . . . 6 (Rel dom tpos (2nd𝐹) ↔ ¬ ∅ ∈ dom (2nd𝐹))
2523, 24sylibr 234 . . . . 5 (𝜑 → Rel dom tpos (2nd𝐹))
26 reltpos 8213 . . . . 5 Rel tpos (2nd𝐹)
2725, 26jctil 519 . . . 4 (𝜑 → (Rel tpos (2nd𝐹) ∧ Rel dom tpos (2nd𝐹)))
2827iftrued 4499 . . 3 (𝜑 → if((Rel tpos (2nd𝐹) ∧ Rel dom tpos (2nd𝐹)), ⟨(1st𝐹), tpos tpos (2nd𝐹)⟩, ∅) = ⟨(1st𝐹), tpos tpos (2nd𝐹)⟩)
2921, 28, 123eqtr4d 2775 . 2 (𝜑 → if((Rel tpos (2nd𝐹) ∧ Rel dom tpos (2nd𝐹)), ⟨(1st𝐹), tpos tpos (2nd𝐹)⟩, ∅) = 𝐹)
305, 17, 293eqtr3a 2789 1 (𝜑 → ( oppFunc ‘𝐺) = 𝐹)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3450  c0 4299  ifcif 4491  cop 4598   × cxp 5639  dom cdm 5641  Rel wrel 5646  cfv 6514  (class class class)co 7390  1st c1st 7969  2nd c2nd 7970  tpos ctpos 8207   oppFunc coppf 49115
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-1st 7971  df-2nd 7972  df-tpos 8208  df-oppf 49116
This theorem is referenced by:  oppff1  49141  oppff1o  49142  natoppfb  49224  cmddu  49661
  Copyright terms: Public domain W3C validator