Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2oppf Structured version   Visualization version   GIF version

Theorem 2oppf 49163
Description: The double opposite functor is the original functor. Remark 3.42 of [Adamek] p. 39. (Contributed by Zhi Wang, 14-Nov-2025.)
Hypotheses
Ref Expression
oppfrcl.1 (𝜑𝐺𝑅)
oppfrcl.2 Rel 𝑅
oppfrcl.3 𝐺 = ( oppFunc ‘𝐹)
Assertion
Ref Expression
2oppf (𝜑 → ( oppFunc ‘𝐺) = 𝐹)

Proof of Theorem 2oppf
StepHypRef Expression
1 fvex 6835 . . 3 (1st𝐹) ∈ V
2 fvex 6835 . . . 4 (2nd𝐹) ∈ V
32tposex 8190 . . 3 tpos (2nd𝐹) ∈ V
4 oppfvalg 49157 . . 3 (((1st𝐹) ∈ V ∧ tpos (2nd𝐹) ∈ V) → ((1st𝐹) oppFunc tpos (2nd𝐹)) = if((Rel tpos (2nd𝐹) ∧ Rel dom tpos (2nd𝐹)), ⟨(1st𝐹), tpos tpos (2nd𝐹)⟩, ∅))
51, 3, 4mp2an 692 . 2 ((1st𝐹) oppFunc tpos (2nd𝐹)) = if((Rel tpos (2nd𝐹) ∧ Rel dom tpos (2nd𝐹)), ⟨(1st𝐹), tpos tpos (2nd𝐹)⟩, ∅)
6 df-ov 7349 . . 3 ((1st𝐹) oppFunc tpos (2nd𝐹)) = ( oppFunc ‘⟨(1st𝐹), tpos (2nd𝐹)⟩)
7 oppfrcl.1 . . . . . 6 (𝜑𝐺𝑅)
8 oppfrcl.2 . . . . . 6 Rel 𝑅
9 oppfrcl.3 . . . . . 6 𝐺 = ( oppFunc ‘𝐹)
107, 8, 9oppfrcl 49159 . . . . . . 7 (𝜑𝐹 ∈ (V × V))
11 1st2nd2 7960 . . . . . . 7 (𝐹 ∈ (V × V) → 𝐹 = ⟨(1st𝐹), (2nd𝐹)⟩)
1210, 11syl 17 . . . . . 6 (𝜑𝐹 = ⟨(1st𝐹), (2nd𝐹)⟩)
137, 8, 9, 12oppf1st2nd 49162 . . . . 5 (𝜑 → (𝐺 ∈ (V × V) ∧ ((1st𝐺) = (1st𝐹) ∧ (2nd𝐺) = tpos (2nd𝐹))))
14 eqopi 7957 . . . . 5 ((𝐺 ∈ (V × V) ∧ ((1st𝐺) = (1st𝐹) ∧ (2nd𝐺) = tpos (2nd𝐹))) → 𝐺 = ⟨(1st𝐹), tpos (2nd𝐹)⟩)
1513, 14syl 17 . . . 4 (𝜑𝐺 = ⟨(1st𝐹), tpos (2nd𝐹)⟩)
1615fveq2d 6826 . . 3 (𝜑 → ( oppFunc ‘𝐺) = ( oppFunc ‘⟨(1st𝐹), tpos (2nd𝐹)⟩))
176, 16eqtr4id 2785 . 2 (𝜑 → ((1st𝐹) oppFunc tpos (2nd𝐹)) = ( oppFunc ‘𝐺))
187, 8, 9, 12oppfrcl3 49161 . . . . 5 (𝜑 → (Rel (2nd𝐹) ∧ Rel dom (2nd𝐹)))
19 tpostpos2 8177 . . . . 5 ((Rel (2nd𝐹) ∧ Rel dom (2nd𝐹)) → tpos tpos (2nd𝐹) = (2nd𝐹))
2018, 19syl 17 . . . 4 (𝜑 → tpos tpos (2nd𝐹) = (2nd𝐹))
2120opeq2d 4832 . . 3 (𝜑 → ⟨(1st𝐹), tpos tpos (2nd𝐹)⟩ = ⟨(1st𝐹), (2nd𝐹)⟩)
22 0nelrel0 5676 . . . . . . 7 (Rel dom (2nd𝐹) → ¬ ∅ ∈ dom (2nd𝐹))
2318, 22simpl2im 503 . . . . . 6 (𝜑 → ¬ ∅ ∈ dom (2nd𝐹))
24 reldmtpos 8164 . . . . . 6 (Rel dom tpos (2nd𝐹) ↔ ¬ ∅ ∈ dom (2nd𝐹))
2523, 24sylibr 234 . . . . 5 (𝜑 → Rel dom tpos (2nd𝐹))
26 reltpos 8161 . . . . 5 Rel tpos (2nd𝐹)
2725, 26jctil 519 . . . 4 (𝜑 → (Rel tpos (2nd𝐹) ∧ Rel dom tpos (2nd𝐹)))
2827iftrued 4483 . . 3 (𝜑 → if((Rel tpos (2nd𝐹) ∧ Rel dom tpos (2nd𝐹)), ⟨(1st𝐹), tpos tpos (2nd𝐹)⟩, ∅) = ⟨(1st𝐹), tpos tpos (2nd𝐹)⟩)
2921, 28, 123eqtr4d 2776 . 2 (𝜑 → if((Rel tpos (2nd𝐹) ∧ Rel dom tpos (2nd𝐹)), ⟨(1st𝐹), tpos tpos (2nd𝐹)⟩, ∅) = 𝐹)
305, 17, 293eqtr3a 2790 1 (𝜑 → ( oppFunc ‘𝐺) = 𝐹)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1541  wcel 2111  Vcvv 3436  c0 4283  ifcif 4475  cop 4582   × cxp 5614  dom cdm 5616  Rel wrel 5621  cfv 6481  (class class class)co 7346  1st c1st 7919  2nd c2nd 7920  tpos ctpos 8155   oppFunc coppf 49153
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-1st 7921  df-2nd 7922  df-tpos 8156  df-oppf 49154
This theorem is referenced by:  oppff1  49179  oppff1o  49180  natoppfb  49262  cmddu  49699
  Copyright terms: Public domain W3C validator