| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > oppf1st2nd | Structured version Visualization version GIF version | ||
| Description: Rewrite the opposite functor into its components (eqopi 8007). (Contributed by Zhi Wang, 14-Nov-2025.) |
| Ref | Expression |
|---|---|
| oppfrcl.1 | ⊢ (𝜑 → 𝐺 ∈ 𝑅) |
| oppfrcl.2 | ⊢ Rel 𝑅 |
| oppfrcl.3 | ⊢ 𝐺 = ( oppFunc ‘𝐹) |
| oppfrcl2.4 | ⊢ (𝜑 → 𝐹 = 〈𝐴, 𝐵〉) |
| Ref | Expression |
|---|---|
| oppf1st2nd | ⊢ (𝜑 → (𝐺 ∈ (V × V) ∧ ((1st ‘𝐺) = 𝐴 ∧ (2nd ‘𝐺) = tpos 𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oppfrcl2.4 | . . . . . . 7 ⊢ (𝜑 → 𝐹 = 〈𝐴, 𝐵〉) | |
| 2 | 1 | fveq2d 6865 | . . . . . 6 ⊢ (𝜑 → ( oppFunc ‘𝐹) = ( oppFunc ‘〈𝐴, 𝐵〉)) |
| 3 | oppfrcl.3 | . . . . . 6 ⊢ 𝐺 = ( oppFunc ‘𝐹) | |
| 4 | df-ov 7393 | . . . . . 6 ⊢ (𝐴 oppFunc 𝐵) = ( oppFunc ‘〈𝐴, 𝐵〉) | |
| 5 | 2, 3, 4 | 3eqtr4g 2790 | . . . . 5 ⊢ (𝜑 → 𝐺 = (𝐴 oppFunc 𝐵)) |
| 6 | oppfrcl.1 | . . . . . . 7 ⊢ (𝜑 → 𝐺 ∈ 𝑅) | |
| 7 | oppfrcl.2 | . . . . . . 7 ⊢ Rel 𝑅 | |
| 8 | 6, 7, 3, 1 | oppfrcl2 49122 | . . . . . 6 ⊢ (𝜑 → (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
| 9 | oppfvalg 49119 | . . . . . 6 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴 oppFunc 𝐵) = if((Rel 𝐵 ∧ Rel dom 𝐵), 〈𝐴, tpos 𝐵〉, ∅)) | |
| 10 | 8, 9 | syl 17 | . . . . 5 ⊢ (𝜑 → (𝐴 oppFunc 𝐵) = if((Rel 𝐵 ∧ Rel dom 𝐵), 〈𝐴, tpos 𝐵〉, ∅)) |
| 11 | 5, 10 | eqtrd 2765 | . . . 4 ⊢ (𝜑 → 𝐺 = if((Rel 𝐵 ∧ Rel dom 𝐵), 〈𝐴, tpos 𝐵〉, ∅)) |
| 12 | 6, 7, 3, 1 | oppfrcl3 49123 | . . . . 5 ⊢ (𝜑 → (Rel 𝐵 ∧ Rel dom 𝐵)) |
| 13 | 12 | iftrued 4499 | . . . 4 ⊢ (𝜑 → if((Rel 𝐵 ∧ Rel dom 𝐵), 〈𝐴, tpos 𝐵〉, ∅) = 〈𝐴, tpos 𝐵〉) |
| 14 | 11, 13 | eqtrd 2765 | . . 3 ⊢ (𝜑 → 𝐺 = 〈𝐴, tpos 𝐵〉) |
| 15 | 8 | simpld 494 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ V) |
| 16 | tposexg 8222 | . . . . 5 ⊢ (𝐵 ∈ V → tpos 𝐵 ∈ V) | |
| 17 | 8, 16 | simpl2im 503 | . . . 4 ⊢ (𝜑 → tpos 𝐵 ∈ V) |
| 18 | 15, 17 | opelxpd 5680 | . . 3 ⊢ (𝜑 → 〈𝐴, tpos 𝐵〉 ∈ (V × V)) |
| 19 | 14, 18 | eqeltrd 2829 | . 2 ⊢ (𝜑 → 𝐺 ∈ (V × V)) |
| 20 | 14 | fveq2d 6865 | . . 3 ⊢ (𝜑 → (1st ‘𝐺) = (1st ‘〈𝐴, tpos 𝐵〉)) |
| 21 | op1stg 7983 | . . . 4 ⊢ ((𝐴 ∈ V ∧ tpos 𝐵 ∈ V) → (1st ‘〈𝐴, tpos 𝐵〉) = 𝐴) | |
| 22 | 15, 17, 21 | syl2anc 584 | . . 3 ⊢ (𝜑 → (1st ‘〈𝐴, tpos 𝐵〉) = 𝐴) |
| 23 | 20, 22 | eqtrd 2765 | . 2 ⊢ (𝜑 → (1st ‘𝐺) = 𝐴) |
| 24 | 14 | fveq2d 6865 | . . 3 ⊢ (𝜑 → (2nd ‘𝐺) = (2nd ‘〈𝐴, tpos 𝐵〉)) |
| 25 | op2ndg 7984 | . . . 4 ⊢ ((𝐴 ∈ V ∧ tpos 𝐵 ∈ V) → (2nd ‘〈𝐴, tpos 𝐵〉) = tpos 𝐵) | |
| 26 | 15, 17, 25 | syl2anc 584 | . . 3 ⊢ (𝜑 → (2nd ‘〈𝐴, tpos 𝐵〉) = tpos 𝐵) |
| 27 | 24, 26 | eqtrd 2765 | . 2 ⊢ (𝜑 → (2nd ‘𝐺) = tpos 𝐵) |
| 28 | 19, 23, 27 | jca32 515 | 1 ⊢ (𝜑 → (𝐺 ∈ (V × V) ∧ ((1st ‘𝐺) = 𝐴 ∧ (2nd ‘𝐺) = tpos 𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3450 ∅c0 4299 ifcif 4491 〈cop 4598 × cxp 5639 dom cdm 5641 Rel wrel 5646 ‘cfv 6514 (class class class)co 7390 1st c1st 7969 2nd c2nd 7970 tpos ctpos 8207 oppFunc coppf 49115 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 df-1st 7971 df-2nd 7972 df-tpos 8208 df-oppf 49116 |
| This theorem is referenced by: 2oppf 49125 funcoppc4 49137 |
| Copyright terms: Public domain | W3C validator |