| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > oppf1st2nd | Structured version Visualization version GIF version | ||
| Description: Rewrite the opposite functor into its components (eqopi 8022). (Contributed by Zhi Wang, 14-Nov-2025.) |
| Ref | Expression |
|---|---|
| oppfrcl.1 | ⊢ (𝜑 → 𝐺 ∈ 𝑅) |
| oppfrcl.2 | ⊢ Rel 𝑅 |
| oppfrcl.3 | ⊢ 𝐺 = (oppFunc‘𝐹) |
| oppfrcl2.4 | ⊢ (𝜑 → 𝐹 = 〈𝐴, 𝐵〉) |
| Ref | Expression |
|---|---|
| oppf1st2nd | ⊢ (𝜑 → (𝐺 ∈ (V × V) ∧ ((1st ‘𝐺) = 𝐴 ∧ (2nd ‘𝐺) = tpos 𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oppfrcl2.4 | . . . . . . 7 ⊢ (𝜑 → 𝐹 = 〈𝐴, 𝐵〉) | |
| 2 | 1 | fveq2d 6879 | . . . . . 6 ⊢ (𝜑 → (oppFunc‘𝐹) = (oppFunc‘〈𝐴, 𝐵〉)) |
| 3 | oppfrcl.3 | . . . . . 6 ⊢ 𝐺 = (oppFunc‘𝐹) | |
| 4 | df-ov 7406 | . . . . . 6 ⊢ (𝐴oppFunc𝐵) = (oppFunc‘〈𝐴, 𝐵〉) | |
| 5 | 2, 3, 4 | 3eqtr4g 2795 | . . . . 5 ⊢ (𝜑 → 𝐺 = (𝐴oppFunc𝐵)) |
| 6 | oppfrcl.1 | . . . . . . 7 ⊢ (𝜑 → 𝐺 ∈ 𝑅) | |
| 7 | oppfrcl.2 | . . . . . . 7 ⊢ Rel 𝑅 | |
| 8 | 6, 7, 3, 1 | oppfrcl2 49025 | . . . . . 6 ⊢ (𝜑 → (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
| 9 | oppfvalg 49022 | . . . . . 6 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴oppFunc𝐵) = if((Rel 𝐵 ∧ Rel dom 𝐵), 〈𝐴, tpos 𝐵〉, ∅)) | |
| 10 | 8, 9 | syl 17 | . . . . 5 ⊢ (𝜑 → (𝐴oppFunc𝐵) = if((Rel 𝐵 ∧ Rel dom 𝐵), 〈𝐴, tpos 𝐵〉, ∅)) |
| 11 | 5, 10 | eqtrd 2770 | . . . 4 ⊢ (𝜑 → 𝐺 = if((Rel 𝐵 ∧ Rel dom 𝐵), 〈𝐴, tpos 𝐵〉, ∅)) |
| 12 | 6, 7, 3, 1 | oppfrcl3 49026 | . . . . 5 ⊢ (𝜑 → (Rel 𝐵 ∧ Rel dom 𝐵)) |
| 13 | 12 | iftrued 4508 | . . . 4 ⊢ (𝜑 → if((Rel 𝐵 ∧ Rel dom 𝐵), 〈𝐴, tpos 𝐵〉, ∅) = 〈𝐴, tpos 𝐵〉) |
| 14 | 11, 13 | eqtrd 2770 | . . 3 ⊢ (𝜑 → 𝐺 = 〈𝐴, tpos 𝐵〉) |
| 15 | 8 | simpld 494 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ V) |
| 16 | tposexg 8237 | . . . . 5 ⊢ (𝐵 ∈ V → tpos 𝐵 ∈ V) | |
| 17 | 8, 16 | simpl2im 503 | . . . 4 ⊢ (𝜑 → tpos 𝐵 ∈ V) |
| 18 | 15, 17 | opelxpd 5693 | . . 3 ⊢ (𝜑 → 〈𝐴, tpos 𝐵〉 ∈ (V × V)) |
| 19 | 14, 18 | eqeltrd 2834 | . 2 ⊢ (𝜑 → 𝐺 ∈ (V × V)) |
| 20 | 14 | fveq2d 6879 | . . 3 ⊢ (𝜑 → (1st ‘𝐺) = (1st ‘〈𝐴, tpos 𝐵〉)) |
| 21 | op1stg 7998 | . . . 4 ⊢ ((𝐴 ∈ V ∧ tpos 𝐵 ∈ V) → (1st ‘〈𝐴, tpos 𝐵〉) = 𝐴) | |
| 22 | 15, 17, 21 | syl2anc 584 | . . 3 ⊢ (𝜑 → (1st ‘〈𝐴, tpos 𝐵〉) = 𝐴) |
| 23 | 20, 22 | eqtrd 2770 | . 2 ⊢ (𝜑 → (1st ‘𝐺) = 𝐴) |
| 24 | 14 | fveq2d 6879 | . . 3 ⊢ (𝜑 → (2nd ‘𝐺) = (2nd ‘〈𝐴, tpos 𝐵〉)) |
| 25 | op2ndg 7999 | . . . 4 ⊢ ((𝐴 ∈ V ∧ tpos 𝐵 ∈ V) → (2nd ‘〈𝐴, tpos 𝐵〉) = tpos 𝐵) | |
| 26 | 15, 17, 25 | syl2anc 584 | . . 3 ⊢ (𝜑 → (2nd ‘〈𝐴, tpos 𝐵〉) = tpos 𝐵) |
| 27 | 24, 26 | eqtrd 2770 | . 2 ⊢ (𝜑 → (2nd ‘𝐺) = tpos 𝐵) |
| 28 | 19, 23, 27 | jca32 515 | 1 ⊢ (𝜑 → (𝐺 ∈ (V × V) ∧ ((1st ‘𝐺) = 𝐴 ∧ (2nd ‘𝐺) = tpos 𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 Vcvv 3459 ∅c0 4308 ifcif 4500 〈cop 4607 × cxp 5652 dom cdm 5654 Rel wrel 5659 ‘cfv 6530 (class class class)co 7403 1st c1st 7984 2nd c2nd 7985 tpos ctpos 8222 oppFunccoppf 49019 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-fv 6538 df-ov 7406 df-oprab 7407 df-mpo 7408 df-1st 7986 df-2nd 7987 df-tpos 8223 df-oppf 49020 |
| This theorem is referenced by: 2oppf 49028 funcoppc4 49035 |
| Copyright terms: Public domain | W3C validator |