| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > oppf1st2nd | Structured version Visualization version GIF version | ||
| Description: Rewrite the opposite functor into its components (eqopi 7960). (Contributed by Zhi Wang, 14-Nov-2025.) |
| Ref | Expression |
|---|---|
| oppfrcl.1 | ⊢ (𝜑 → 𝐺 ∈ 𝑅) |
| oppfrcl.2 | ⊢ Rel 𝑅 |
| oppfrcl.3 | ⊢ 𝐺 = ( oppFunc ‘𝐹) |
| oppfrcl2.4 | ⊢ (𝜑 → 𝐹 = 〈𝐴, 𝐵〉) |
| Ref | Expression |
|---|---|
| oppf1st2nd | ⊢ (𝜑 → (𝐺 ∈ (V × V) ∧ ((1st ‘𝐺) = 𝐴 ∧ (2nd ‘𝐺) = tpos 𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oppfrcl2.4 | . . . . . . 7 ⊢ (𝜑 → 𝐹 = 〈𝐴, 𝐵〉) | |
| 2 | 1 | fveq2d 6826 | . . . . . 6 ⊢ (𝜑 → ( oppFunc ‘𝐹) = ( oppFunc ‘〈𝐴, 𝐵〉)) |
| 3 | oppfrcl.3 | . . . . . 6 ⊢ 𝐺 = ( oppFunc ‘𝐹) | |
| 4 | df-ov 7352 | . . . . . 6 ⊢ (𝐴 oppFunc 𝐵) = ( oppFunc ‘〈𝐴, 𝐵〉) | |
| 5 | 2, 3, 4 | 3eqtr4g 2789 | . . . . 5 ⊢ (𝜑 → 𝐺 = (𝐴 oppFunc 𝐵)) |
| 6 | oppfrcl.1 | . . . . . . 7 ⊢ (𝜑 → 𝐺 ∈ 𝑅) | |
| 7 | oppfrcl.2 | . . . . . . 7 ⊢ Rel 𝑅 | |
| 8 | 6, 7, 3, 1 | oppfrcl2 49124 | . . . . . 6 ⊢ (𝜑 → (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
| 9 | oppfvalg 49121 | . . . . . 6 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴 oppFunc 𝐵) = if((Rel 𝐵 ∧ Rel dom 𝐵), 〈𝐴, tpos 𝐵〉, ∅)) | |
| 10 | 8, 9 | syl 17 | . . . . 5 ⊢ (𝜑 → (𝐴 oppFunc 𝐵) = if((Rel 𝐵 ∧ Rel dom 𝐵), 〈𝐴, tpos 𝐵〉, ∅)) |
| 11 | 5, 10 | eqtrd 2764 | . . . 4 ⊢ (𝜑 → 𝐺 = if((Rel 𝐵 ∧ Rel dom 𝐵), 〈𝐴, tpos 𝐵〉, ∅)) |
| 12 | 6, 7, 3, 1 | oppfrcl3 49125 | . . . . 5 ⊢ (𝜑 → (Rel 𝐵 ∧ Rel dom 𝐵)) |
| 13 | 12 | iftrued 4484 | . . . 4 ⊢ (𝜑 → if((Rel 𝐵 ∧ Rel dom 𝐵), 〈𝐴, tpos 𝐵〉, ∅) = 〈𝐴, tpos 𝐵〉) |
| 14 | 11, 13 | eqtrd 2764 | . . 3 ⊢ (𝜑 → 𝐺 = 〈𝐴, tpos 𝐵〉) |
| 15 | 8 | simpld 494 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ V) |
| 16 | tposexg 8173 | . . . . 5 ⊢ (𝐵 ∈ V → tpos 𝐵 ∈ V) | |
| 17 | 8, 16 | simpl2im 503 | . . . 4 ⊢ (𝜑 → tpos 𝐵 ∈ V) |
| 18 | 15, 17 | opelxpd 5658 | . . 3 ⊢ (𝜑 → 〈𝐴, tpos 𝐵〉 ∈ (V × V)) |
| 19 | 14, 18 | eqeltrd 2828 | . 2 ⊢ (𝜑 → 𝐺 ∈ (V × V)) |
| 20 | 14 | fveq2d 6826 | . . 3 ⊢ (𝜑 → (1st ‘𝐺) = (1st ‘〈𝐴, tpos 𝐵〉)) |
| 21 | op1stg 7936 | . . . 4 ⊢ ((𝐴 ∈ V ∧ tpos 𝐵 ∈ V) → (1st ‘〈𝐴, tpos 𝐵〉) = 𝐴) | |
| 22 | 15, 17, 21 | syl2anc 584 | . . 3 ⊢ (𝜑 → (1st ‘〈𝐴, tpos 𝐵〉) = 𝐴) |
| 23 | 20, 22 | eqtrd 2764 | . 2 ⊢ (𝜑 → (1st ‘𝐺) = 𝐴) |
| 24 | 14 | fveq2d 6826 | . . 3 ⊢ (𝜑 → (2nd ‘𝐺) = (2nd ‘〈𝐴, tpos 𝐵〉)) |
| 25 | op2ndg 7937 | . . . 4 ⊢ ((𝐴 ∈ V ∧ tpos 𝐵 ∈ V) → (2nd ‘〈𝐴, tpos 𝐵〉) = tpos 𝐵) | |
| 26 | 15, 17, 25 | syl2anc 584 | . . 3 ⊢ (𝜑 → (2nd ‘〈𝐴, tpos 𝐵〉) = tpos 𝐵) |
| 27 | 24, 26 | eqtrd 2764 | . 2 ⊢ (𝜑 → (2nd ‘𝐺) = tpos 𝐵) |
| 28 | 19, 23, 27 | jca32 515 | 1 ⊢ (𝜑 → (𝐺 ∈ (V × V) ∧ ((1st ‘𝐺) = 𝐴 ∧ (2nd ‘𝐺) = tpos 𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3436 ∅c0 4284 ifcif 4476 〈cop 4583 × cxp 5617 dom cdm 5619 Rel wrel 5624 ‘cfv 6482 (class class class)co 7349 1st c1st 7922 2nd c2nd 7923 tpos ctpos 8158 oppFunc coppf 49117 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-fv 6490 df-ov 7352 df-oprab 7353 df-mpo 7354 df-1st 7924 df-2nd 7925 df-tpos 8159 df-oppf 49118 |
| This theorem is referenced by: 2oppf 49127 funcoppc4 49139 |
| Copyright terms: Public domain | W3C validator |