Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  oppf1st2nd Structured version   Visualization version   GIF version

Theorem oppf1st2nd 49113
Description: Rewrite the opposite functor into its components (eqopi 7983). (Contributed by Zhi Wang, 14-Nov-2025.)
Hypotheses
Ref Expression
oppfrcl.1 (𝜑𝐺𝑅)
oppfrcl.2 Rel 𝑅
oppfrcl.3 𝐺 = ( oppFunc ‘𝐹)
oppfrcl2.4 (𝜑𝐹 = ⟨𝐴, 𝐵⟩)
Assertion
Ref Expression
oppf1st2nd (𝜑 → (𝐺 ∈ (V × V) ∧ ((1st𝐺) = 𝐴 ∧ (2nd𝐺) = tpos 𝐵)))

Proof of Theorem oppf1st2nd
StepHypRef Expression
1 oppfrcl2.4 . . . . . . 7 (𝜑𝐹 = ⟨𝐴, 𝐵⟩)
21fveq2d 6844 . . . . . 6 (𝜑 → ( oppFunc ‘𝐹) = ( oppFunc ‘⟨𝐴, 𝐵⟩))
3 oppfrcl.3 . . . . . 6 𝐺 = ( oppFunc ‘𝐹)
4 df-ov 7372 . . . . . 6 (𝐴 oppFunc 𝐵) = ( oppFunc ‘⟨𝐴, 𝐵⟩)
52, 3, 43eqtr4g 2789 . . . . 5 (𝜑𝐺 = (𝐴 oppFunc 𝐵))
6 oppfrcl.1 . . . . . . 7 (𝜑𝐺𝑅)
7 oppfrcl.2 . . . . . . 7 Rel 𝑅
86, 7, 3, 1oppfrcl2 49111 . . . . . 6 (𝜑 → (𝐴 ∈ V ∧ 𝐵 ∈ V))
9 oppfvalg 49108 . . . . . 6 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴 oppFunc 𝐵) = if((Rel 𝐵 ∧ Rel dom 𝐵), ⟨𝐴, tpos 𝐵⟩, ∅))
108, 9syl 17 . . . . 5 (𝜑 → (𝐴 oppFunc 𝐵) = if((Rel 𝐵 ∧ Rel dom 𝐵), ⟨𝐴, tpos 𝐵⟩, ∅))
115, 10eqtrd 2764 . . . 4 (𝜑𝐺 = if((Rel 𝐵 ∧ Rel dom 𝐵), ⟨𝐴, tpos 𝐵⟩, ∅))
126, 7, 3, 1oppfrcl3 49112 . . . . 5 (𝜑 → (Rel 𝐵 ∧ Rel dom 𝐵))
1312iftrued 4492 . . . 4 (𝜑 → if((Rel 𝐵 ∧ Rel dom 𝐵), ⟨𝐴, tpos 𝐵⟩, ∅) = ⟨𝐴, tpos 𝐵⟩)
1411, 13eqtrd 2764 . . 3 (𝜑𝐺 = ⟨𝐴, tpos 𝐵⟩)
158simpld 494 . . . 4 (𝜑𝐴 ∈ V)
16 tposexg 8196 . . . . 5 (𝐵 ∈ V → tpos 𝐵 ∈ V)
178, 16simpl2im 503 . . . 4 (𝜑 → tpos 𝐵 ∈ V)
1815, 17opelxpd 5670 . . 3 (𝜑 → ⟨𝐴, tpos 𝐵⟩ ∈ (V × V))
1914, 18eqeltrd 2828 . 2 (𝜑𝐺 ∈ (V × V))
2014fveq2d 6844 . . 3 (𝜑 → (1st𝐺) = (1st ‘⟨𝐴, tpos 𝐵⟩))
21 op1stg 7959 . . . 4 ((𝐴 ∈ V ∧ tpos 𝐵 ∈ V) → (1st ‘⟨𝐴, tpos 𝐵⟩) = 𝐴)
2215, 17, 21syl2anc 584 . . 3 (𝜑 → (1st ‘⟨𝐴, tpos 𝐵⟩) = 𝐴)
2320, 22eqtrd 2764 . 2 (𝜑 → (1st𝐺) = 𝐴)
2414fveq2d 6844 . . 3 (𝜑 → (2nd𝐺) = (2nd ‘⟨𝐴, tpos 𝐵⟩))
25 op2ndg 7960 . . . 4 ((𝐴 ∈ V ∧ tpos 𝐵 ∈ V) → (2nd ‘⟨𝐴, tpos 𝐵⟩) = tpos 𝐵)
2615, 17, 25syl2anc 584 . . 3 (𝜑 → (2nd ‘⟨𝐴, tpos 𝐵⟩) = tpos 𝐵)
2724, 26eqtrd 2764 . 2 (𝜑 → (2nd𝐺) = tpos 𝐵)
2819, 23, 27jca32 515 1 (𝜑 → (𝐺 ∈ (V × V) ∧ ((1st𝐺) = 𝐴 ∧ (2nd𝐺) = tpos 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3444  c0 4292  ifcif 4484  cop 4591   × cxp 5629  dom cdm 5631  Rel wrel 5636  cfv 6499  (class class class)co 7369  1st c1st 7945  2nd c2nd 7946  tpos ctpos 8181   oppFunc coppf 49104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-fv 6507  df-ov 7372  df-oprab 7373  df-mpo 7374  df-1st 7947  df-2nd 7948  df-tpos 8182  df-oppf 49105
This theorem is referenced by:  2oppf  49114  funcoppc4  49126
  Copyright terms: Public domain W3C validator