| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > oppfval | Structured version Visualization version GIF version | ||
| Description: Value of the opposite functor. (Contributed by Zhi Wang, 4-Nov-2025.) |
| Ref | Expression |
|---|---|
| oppfval | ⊢ (𝐹(𝐶 Func 𝐷)𝐺 → (𝐹oppFunc𝐺) = 〈𝐹, tpos 𝐺〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relfunc 17862 | . . 3 ⊢ Rel (𝐶 Func 𝐷) | |
| 2 | 1 | brrelex12i 5707 | . 2 ⊢ (𝐹(𝐶 Func 𝐷)𝐺 → (𝐹 ∈ V ∧ 𝐺 ∈ V)) |
| 3 | simpl 482 | . . . 4 ⊢ ((𝑓 = 𝐹 ∧ 𝑔 = 𝐺) → 𝑓 = 𝐹) | |
| 4 | simpr 484 | . . . . 5 ⊢ ((𝑓 = 𝐹 ∧ 𝑔 = 𝐺) → 𝑔 = 𝐺) | |
| 5 | 4 | tposeqd 8223 | . . . 4 ⊢ ((𝑓 = 𝐹 ∧ 𝑔 = 𝐺) → tpos 𝑔 = tpos 𝐺) |
| 6 | 3, 5 | opeq12d 4855 | . . 3 ⊢ ((𝑓 = 𝐹 ∧ 𝑔 = 𝐺) → 〈𝑓, tpos 𝑔〉 = 〈𝐹, tpos 𝐺〉) |
| 7 | df-oppf 48951 | . . 3 ⊢ oppFunc = (𝑓 ∈ V, 𝑔 ∈ V ↦ 〈𝑓, tpos 𝑔〉) | |
| 8 | opex 5437 | . . 3 ⊢ 〈𝐹, tpos 𝐺〉 ∈ V | |
| 9 | 6, 7, 8 | ovmpoa 7557 | . 2 ⊢ ((𝐹 ∈ V ∧ 𝐺 ∈ V) → (𝐹oppFunc𝐺) = 〈𝐹, tpos 𝐺〉) |
| 10 | 2, 9 | syl 17 | 1 ⊢ (𝐹(𝐶 Func 𝐷)𝐺 → (𝐹oppFunc𝐺) = 〈𝐹, tpos 𝐺〉) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 Vcvv 3457 〈cop 4605 class class class wbr 5117 (class class class)co 7400 tpos ctpos 8219 Func cfunc 17854 oppFunccoppf 48950 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5264 ax-nul 5274 ax-pr 5400 ax-un 7724 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ral 3051 df-rex 3060 df-rab 3414 df-v 3459 df-sbc 3764 df-csb 3873 df-dif 3927 df-un 3929 df-in 3931 df-ss 3941 df-nul 4307 df-if 4499 df-sn 4600 df-pr 4602 df-op 4606 df-uni 4882 df-iun 4967 df-br 5118 df-opab 5180 df-mpt 5200 df-id 5546 df-xp 5658 df-rel 5659 df-cnv 5660 df-co 5661 df-dm 5662 df-rn 5663 df-res 5664 df-ima 5665 df-iota 6481 df-fun 6530 df-fv 6536 df-ov 7403 df-oprab 7404 df-mpo 7405 df-1st 7983 df-2nd 7984 df-tpos 8220 df-func 17858 df-oppf 48951 |
| This theorem is referenced by: oppfoppc 48953 ranval 49356 |
| Copyright terms: Public domain | W3C validator |