| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > oppfval | Structured version Visualization version GIF version | ||
| Description: Value of the opposite functor. (Contributed by Zhi Wang, 4-Nov-2025.) |
| Ref | Expression |
|---|---|
| oppfval | ⊢ (𝐹(𝐶 Func 𝐷)𝐺 → (𝐹 oppFunc 𝐺) = 〈𝐹, tpos 𝐺〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relfunc 17804 | . . . 4 ⊢ Rel (𝐶 Func 𝐷) | |
| 2 | 1 | brrelex12i 5686 | . . 3 ⊢ (𝐹(𝐶 Func 𝐷)𝐺 → (𝐹 ∈ V ∧ 𝐺 ∈ V)) |
| 3 | oppfvalg 49108 | . . 3 ⊢ ((𝐹 ∈ V ∧ 𝐺 ∈ V) → (𝐹 oppFunc 𝐺) = if((Rel 𝐺 ∧ Rel dom 𝐺), 〈𝐹, tpos 𝐺〉, ∅)) | |
| 4 | 2, 3 | syl 17 | . 2 ⊢ (𝐹(𝐶 Func 𝐷)𝐺 → (𝐹 oppFunc 𝐺) = if((Rel 𝐺 ∧ Rel dom 𝐺), 〈𝐹, tpos 𝐺〉, ∅)) |
| 5 | oppfvallem 49117 | . . 3 ⊢ (𝐹(𝐶 Func 𝐷)𝐺 → (Rel 𝐺 ∧ Rel dom 𝐺)) | |
| 6 | 5 | iftrued 4492 | . 2 ⊢ (𝐹(𝐶 Func 𝐷)𝐺 → if((Rel 𝐺 ∧ Rel dom 𝐺), 〈𝐹, tpos 𝐺〉, ∅) = 〈𝐹, tpos 𝐺〉) |
| 7 | 4, 6 | eqtrd 2764 | 1 ⊢ (𝐹(𝐶 Func 𝐷)𝐺 → (𝐹 oppFunc 𝐺) = 〈𝐹, tpos 𝐺〉) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3444 ∅c0 4292 ifcif 4484 〈cop 4591 class class class wbr 5102 dom cdm 5631 Rel wrel 5636 (class class class)co 7369 tpos ctpos 8181 Func cfunc 17796 oppFunc coppf 49104 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-fv 6507 df-ov 7372 df-oprab 7373 df-mpo 7374 df-1st 7947 df-2nd 7948 df-tpos 8182 df-map 8778 df-ixp 8848 df-func 17800 df-oppf 49105 |
| This theorem is referenced by: oppfval2 49119 oppfval3 49120 oppfoppc 49123 ranval 49602 termolmd 49652 |
| Copyright terms: Public domain | W3C validator |