Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  oppfval Structured version   Visualization version   GIF version

Theorem oppfval 48952
Description: Value of the opposite functor. (Contributed by Zhi Wang, 4-Nov-2025.)
Assertion
Ref Expression
oppfval (𝐹(𝐶 Func 𝐷)𝐺 → (𝐹oppFunc𝐺) = ⟨𝐹, tpos 𝐺⟩)

Proof of Theorem oppfval
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relfunc 17862 . . 3 Rel (𝐶 Func 𝐷)
21brrelex12i 5707 . 2 (𝐹(𝐶 Func 𝐷)𝐺 → (𝐹 ∈ V ∧ 𝐺 ∈ V))
3 simpl 482 . . . 4 ((𝑓 = 𝐹𝑔 = 𝐺) → 𝑓 = 𝐹)
4 simpr 484 . . . . 5 ((𝑓 = 𝐹𝑔 = 𝐺) → 𝑔 = 𝐺)
54tposeqd 8223 . . . 4 ((𝑓 = 𝐹𝑔 = 𝐺) → tpos 𝑔 = tpos 𝐺)
63, 5opeq12d 4855 . . 3 ((𝑓 = 𝐹𝑔 = 𝐺) → ⟨𝑓, tpos 𝑔⟩ = ⟨𝐹, tpos 𝐺⟩)
7 df-oppf 48951 . . 3 oppFunc = (𝑓 ∈ V, 𝑔 ∈ V ↦ ⟨𝑓, tpos 𝑔⟩)
8 opex 5437 . . 3 𝐹, tpos 𝐺⟩ ∈ V
96, 7, 8ovmpoa 7557 . 2 ((𝐹 ∈ V ∧ 𝐺 ∈ V) → (𝐹oppFunc𝐺) = ⟨𝐹, tpos 𝐺⟩)
102, 9syl 17 1 (𝐹(𝐶 Func 𝐷)𝐺 → (𝐹oppFunc𝐺) = ⟨𝐹, tpos 𝐺⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2107  Vcvv 3457  cop 4605   class class class wbr 5117  (class class class)co 7400  tpos ctpos 8219   Func cfunc 17854  oppFunccoppf 48950
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5264  ax-nul 5274  ax-pr 5400  ax-un 7724
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ral 3051  df-rex 3060  df-rab 3414  df-v 3459  df-sbc 3764  df-csb 3873  df-dif 3927  df-un 3929  df-in 3931  df-ss 3941  df-nul 4307  df-if 4499  df-sn 4600  df-pr 4602  df-op 4606  df-uni 4882  df-iun 4967  df-br 5118  df-opab 5180  df-mpt 5200  df-id 5546  df-xp 5658  df-rel 5659  df-cnv 5660  df-co 5661  df-dm 5662  df-rn 5663  df-res 5664  df-ima 5665  df-iota 6481  df-fun 6530  df-fv 6536  df-ov 7403  df-oprab 7404  df-mpo 7405  df-1st 7983  df-2nd 7984  df-tpos 8220  df-func 17858  df-oppf 48951
This theorem is referenced by:  oppfoppc  48953  ranval  49356
  Copyright terms: Public domain W3C validator