Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > funcfn2 | Structured version Visualization version GIF version |
Description: The morphism part of a functor is a function. (Contributed by Mario Carneiro, 3-Jan-2017.) |
Ref | Expression |
---|---|
funcfn2.b | ⊢ 𝐵 = (Base‘𝐷) |
funcfn2.f | ⊢ (𝜑 → 𝐹(𝐷 Func 𝐸)𝐺) |
Ref | Expression |
---|---|
funcfn2 | ⊢ (𝜑 → 𝐺 Fn (𝐵 × 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funcfn2.b | . . 3 ⊢ 𝐵 = (Base‘𝐷) | |
2 | eqid 2738 | . . 3 ⊢ (Hom ‘𝐷) = (Hom ‘𝐷) | |
3 | eqid 2738 | . . 3 ⊢ (Hom ‘𝐸) = (Hom ‘𝐸) | |
4 | funcfn2.f | . . 3 ⊢ (𝜑 → 𝐹(𝐷 Func 𝐸)𝐺) | |
5 | 1, 2, 3, 4 | funcixp 17498 | . 2 ⊢ (𝜑 → 𝐺 ∈ X𝑥 ∈ (𝐵 × 𝐵)(((𝐹‘(1st ‘𝑥))(Hom ‘𝐸)(𝐹‘(2nd ‘𝑥))) ↑m ((Hom ‘𝐷)‘𝑥))) |
6 | ixpfn 8649 | . 2 ⊢ (𝐺 ∈ X𝑥 ∈ (𝐵 × 𝐵)(((𝐹‘(1st ‘𝑥))(Hom ‘𝐸)(𝐹‘(2nd ‘𝑥))) ↑m ((Hom ‘𝐷)‘𝑥)) → 𝐺 Fn (𝐵 × 𝐵)) | |
7 | 5, 6 | syl 17 | 1 ⊢ (𝜑 → 𝐺 Fn (𝐵 × 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 class class class wbr 5070 × cxp 5578 Fn wfn 6413 ‘cfv 6418 (class class class)co 7255 1st c1st 7802 2nd c2nd 7803 ↑m cmap 8573 Xcixp 8643 Basecbs 16840 Hom chom 16899 Func cfunc 17485 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-map 8575 df-ixp 8644 df-func 17489 |
This theorem is referenced by: funcoppc 17506 cofuval 17513 cofulid 17521 cofurid 17522 prf1st 17837 prf2nd 17838 1st2ndprf 17839 curfuncf 17872 uncfcurf 17873 curf2ndf 17881 |
Copyright terms: Public domain | W3C validator |