| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > funcfn2 | Structured version Visualization version GIF version | ||
| Description: The morphism part of a functor is a function. (Contributed by Mario Carneiro, 3-Jan-2017.) |
| Ref | Expression |
|---|---|
| funcfn2.b | ⊢ 𝐵 = (Base‘𝐷) |
| funcfn2.f | ⊢ (𝜑 → 𝐹(𝐷 Func 𝐸)𝐺) |
| Ref | Expression |
|---|---|
| funcfn2 | ⊢ (𝜑 → 𝐺 Fn (𝐵 × 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funcfn2.b | . . 3 ⊢ 𝐵 = (Base‘𝐷) | |
| 2 | eqid 2730 | . . 3 ⊢ (Hom ‘𝐷) = (Hom ‘𝐷) | |
| 3 | eqid 2730 | . . 3 ⊢ (Hom ‘𝐸) = (Hom ‘𝐸) | |
| 4 | funcfn2.f | . . 3 ⊢ (𝜑 → 𝐹(𝐷 Func 𝐸)𝐺) | |
| 5 | 1, 2, 3, 4 | funcixp 17836 | . 2 ⊢ (𝜑 → 𝐺 ∈ X𝑥 ∈ (𝐵 × 𝐵)(((𝐹‘(1st ‘𝑥))(Hom ‘𝐸)(𝐹‘(2nd ‘𝑥))) ↑m ((Hom ‘𝐷)‘𝑥))) |
| 6 | ixpfn 8879 | . 2 ⊢ (𝐺 ∈ X𝑥 ∈ (𝐵 × 𝐵)(((𝐹‘(1st ‘𝑥))(Hom ‘𝐸)(𝐹‘(2nd ‘𝑥))) ↑m ((Hom ‘𝐷)‘𝑥)) → 𝐺 Fn (𝐵 × 𝐵)) | |
| 7 | 5, 6 | syl 17 | 1 ⊢ (𝜑 → 𝐺 Fn (𝐵 × 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 class class class wbr 5110 × cxp 5639 Fn wfn 6509 ‘cfv 6514 (class class class)co 7390 1st c1st 7969 2nd c2nd 7970 ↑m cmap 8802 Xcixp 8873 Basecbs 17186 Hom chom 17238 Func cfunc 17823 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 df-map 8804 df-ixp 8874 df-func 17827 |
| This theorem is referenced by: funcoppc 17844 cofuval 17851 cofulid 17859 cofurid 17860 prf1st 18172 prf2nd 18173 1st2ndprf 18174 curfuncf 18206 uncfcurf 18207 curf2ndf 18215 oppfvallem 49128 uptposlem 49190 diag1 49297 prcofdiag1 49386 prcofdiag 49387 oppfdiag1 49407 oppfdiag 49409 termcfuncval 49525 |
| Copyright terms: Public domain | W3C validator |