Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > funcfn2 | Structured version Visualization version GIF version |
Description: The morphism part of a functor is a function. (Contributed by Mario Carneiro, 3-Jan-2017.) |
Ref | Expression |
---|---|
funcfn2.b | ⊢ 𝐵 = (Base‘𝐷) |
funcfn2.f | ⊢ (𝜑 → 𝐹(𝐷 Func 𝐸)𝐺) |
Ref | Expression |
---|---|
funcfn2 | ⊢ (𝜑 → 𝐺 Fn (𝐵 × 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funcfn2.b | . . 3 ⊢ 𝐵 = (Base‘𝐷) | |
2 | eqid 2738 | . . 3 ⊢ (Hom ‘𝐷) = (Hom ‘𝐷) | |
3 | eqid 2738 | . . 3 ⊢ (Hom ‘𝐸) = (Hom ‘𝐸) | |
4 | funcfn2.f | . . 3 ⊢ (𝜑 → 𝐹(𝐷 Func 𝐸)𝐺) | |
5 | 1, 2, 3, 4 | funcixp 17582 | . 2 ⊢ (𝜑 → 𝐺 ∈ X𝑥 ∈ (𝐵 × 𝐵)(((𝐹‘(1st ‘𝑥))(Hom ‘𝐸)(𝐹‘(2nd ‘𝑥))) ↑m ((Hom ‘𝐷)‘𝑥))) |
6 | ixpfn 8691 | . 2 ⊢ (𝐺 ∈ X𝑥 ∈ (𝐵 × 𝐵)(((𝐹‘(1st ‘𝑥))(Hom ‘𝐸)(𝐹‘(2nd ‘𝑥))) ↑m ((Hom ‘𝐷)‘𝑥)) → 𝐺 Fn (𝐵 × 𝐵)) | |
7 | 5, 6 | syl 17 | 1 ⊢ (𝜑 → 𝐺 Fn (𝐵 × 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2106 class class class wbr 5074 × cxp 5587 Fn wfn 6428 ‘cfv 6433 (class class class)co 7275 1st c1st 7829 2nd c2nd 7830 ↑m cmap 8615 Xcixp 8685 Basecbs 16912 Hom chom 16973 Func cfunc 17569 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 df-map 8617 df-ixp 8686 df-func 17573 |
This theorem is referenced by: funcoppc 17590 cofuval 17597 cofulid 17605 cofurid 17606 prf1st 17921 prf2nd 17922 1st2ndprf 17923 curfuncf 17956 uncfcurf 17957 curf2ndf 17965 |
Copyright terms: Public domain | W3C validator |