| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > funcfn2 | Structured version Visualization version GIF version | ||
| Description: The morphism part of a functor is a function. (Contributed by Mario Carneiro, 3-Jan-2017.) |
| Ref | Expression |
|---|---|
| funcfn2.b | ⊢ 𝐵 = (Base‘𝐷) |
| funcfn2.f | ⊢ (𝜑 → 𝐹(𝐷 Func 𝐸)𝐺) |
| Ref | Expression |
|---|---|
| funcfn2 | ⊢ (𝜑 → 𝐺 Fn (𝐵 × 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funcfn2.b | . . 3 ⊢ 𝐵 = (Base‘𝐷) | |
| 2 | eqid 2729 | . . 3 ⊢ (Hom ‘𝐷) = (Hom ‘𝐷) | |
| 3 | eqid 2729 | . . 3 ⊢ (Hom ‘𝐸) = (Hom ‘𝐸) | |
| 4 | funcfn2.f | . . 3 ⊢ (𝜑 → 𝐹(𝐷 Func 𝐸)𝐺) | |
| 5 | 1, 2, 3, 4 | funcixp 17829 | . 2 ⊢ (𝜑 → 𝐺 ∈ X𝑥 ∈ (𝐵 × 𝐵)(((𝐹‘(1st ‘𝑥))(Hom ‘𝐸)(𝐹‘(2nd ‘𝑥))) ↑m ((Hom ‘𝐷)‘𝑥))) |
| 6 | ixpfn 8876 | . 2 ⊢ (𝐺 ∈ X𝑥 ∈ (𝐵 × 𝐵)(((𝐹‘(1st ‘𝑥))(Hom ‘𝐸)(𝐹‘(2nd ‘𝑥))) ↑m ((Hom ‘𝐷)‘𝑥)) → 𝐺 Fn (𝐵 × 𝐵)) | |
| 7 | 5, 6 | syl 17 | 1 ⊢ (𝜑 → 𝐺 Fn (𝐵 × 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 class class class wbr 5107 × cxp 5636 Fn wfn 6506 ‘cfv 6511 (class class class)co 7387 1st c1st 7966 2nd c2nd 7967 ↑m cmap 8799 Xcixp 8870 Basecbs 17179 Hom chom 17231 Func cfunc 17816 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-map 8801 df-ixp 8871 df-func 17820 |
| This theorem is referenced by: funcoppc 17837 cofuval 17844 cofulid 17852 cofurid 17853 prf1st 18165 prf2nd 18166 1st2ndprf 18167 curfuncf 18199 uncfcurf 18200 curf2ndf 18208 oppfvallem 49124 uptposlem 49186 diag1 49293 prcofdiag1 49382 prcofdiag 49383 oppfdiag1 49403 oppfdiag 49405 termcfuncval 49521 |
| Copyright terms: Public domain | W3C validator |