Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > funcfn2 | Structured version Visualization version GIF version |
Description: The morphism part of a functor is a function. (Contributed by Mario Carneiro, 3-Jan-2017.) |
Ref | Expression |
---|---|
funcfn2.b | ⊢ 𝐵 = (Base‘𝐷) |
funcfn2.f | ⊢ (𝜑 → 𝐹(𝐷 Func 𝐸)𝐺) |
Ref | Expression |
---|---|
funcfn2 | ⊢ (𝜑 → 𝐺 Fn (𝐵 × 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funcfn2.b | . . 3 ⊢ 𝐵 = (Base‘𝐷) | |
2 | eqid 2737 | . . 3 ⊢ (Hom ‘𝐷) = (Hom ‘𝐷) | |
3 | eqid 2737 | . . 3 ⊢ (Hom ‘𝐸) = (Hom ‘𝐸) | |
4 | funcfn2.f | . . 3 ⊢ (𝜑 → 𝐹(𝐷 Func 𝐸)𝐺) | |
5 | 1, 2, 3, 4 | funcixp 17684 | . 2 ⊢ (𝜑 → 𝐺 ∈ X𝑥 ∈ (𝐵 × 𝐵)(((𝐹‘(1st ‘𝑥))(Hom ‘𝐸)(𝐹‘(2nd ‘𝑥))) ↑m ((Hom ‘𝐷)‘𝑥))) |
6 | ixpfn 8771 | . 2 ⊢ (𝐺 ∈ X𝑥 ∈ (𝐵 × 𝐵)(((𝐹‘(1st ‘𝑥))(Hom ‘𝐸)(𝐹‘(2nd ‘𝑥))) ↑m ((Hom ‘𝐷)‘𝑥)) → 𝐺 Fn (𝐵 × 𝐵)) | |
7 | 5, 6 | syl 17 | 1 ⊢ (𝜑 → 𝐺 Fn (𝐵 × 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2106 class class class wbr 5100 × cxp 5625 Fn wfn 6483 ‘cfv 6488 (class class class)co 7346 1st c1st 7906 2nd c2nd 7907 ↑m cmap 8695 Xcixp 8765 Basecbs 17014 Hom chom 17075 Func cfunc 17671 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2708 ax-rep 5237 ax-sep 5251 ax-nul 5258 ax-pow 5315 ax-pr 5379 ax-un 7659 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3406 df-v 3445 df-sbc 3735 df-csb 3851 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4278 df-if 4482 df-pw 4557 df-sn 4582 df-pr 4584 df-op 4588 df-uni 4861 df-iun 4951 df-br 5101 df-opab 5163 df-mpt 5184 df-id 5525 df-xp 5633 df-rel 5634 df-cnv 5635 df-co 5636 df-dm 5637 df-rn 5638 df-iota 6440 df-fun 6490 df-fn 6491 df-f 6492 df-fv 6496 df-ov 7349 df-oprab 7350 df-mpo 7351 df-map 8697 df-ixp 8766 df-func 17675 |
This theorem is referenced by: funcoppc 17692 cofuval 17699 cofulid 17707 cofurid 17708 prf1st 18023 prf2nd 18024 1st2ndprf 18025 curfuncf 18058 uncfcurf 18059 curf2ndf 18067 |
Copyright terms: Public domain | W3C validator |