![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > funcfn2 | Structured version Visualization version GIF version |
Description: The morphism part of a functor is a function. (Contributed by Mario Carneiro, 3-Jan-2017.) |
Ref | Expression |
---|---|
funcfn2.b | ⊢ 𝐵 = (Base‘𝐷) |
funcfn2.f | ⊢ (𝜑 → 𝐹(𝐷 Func 𝐸)𝐺) |
Ref | Expression |
---|---|
funcfn2 | ⊢ (𝜑 → 𝐺 Fn (𝐵 × 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funcfn2.b | . . 3 ⊢ 𝐵 = (Base‘𝐷) | |
2 | eqid 2777 | . . 3 ⊢ (Hom ‘𝐷) = (Hom ‘𝐷) | |
3 | eqid 2777 | . . 3 ⊢ (Hom ‘𝐸) = (Hom ‘𝐸) | |
4 | funcfn2.f | . . 3 ⊢ (𝜑 → 𝐹(𝐷 Func 𝐸)𝐺) | |
5 | 1, 2, 3, 4 | funcixp 16912 | . 2 ⊢ (𝜑 → 𝐺 ∈ X𝑥 ∈ (𝐵 × 𝐵)(((𝐹‘(1st ‘𝑥))(Hom ‘𝐸)(𝐹‘(2nd ‘𝑥))) ↑𝑚 ((Hom ‘𝐷)‘𝑥))) |
6 | ixpfn 8200 | . 2 ⊢ (𝐺 ∈ X𝑥 ∈ (𝐵 × 𝐵)(((𝐹‘(1st ‘𝑥))(Hom ‘𝐸)(𝐹‘(2nd ‘𝑥))) ↑𝑚 ((Hom ‘𝐷)‘𝑥)) → 𝐺 Fn (𝐵 × 𝐵)) | |
7 | 5, 6 | syl 17 | 1 ⊢ (𝜑 → 𝐺 Fn (𝐵 × 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1601 ∈ wcel 2106 class class class wbr 4886 × cxp 5353 Fn wfn 6130 ‘cfv 6135 (class class class)co 6922 1st c1st 7443 2nd c2nd 7444 ↑𝑚 cmap 8140 Xcixp 8194 Basecbs 16255 Hom chom 16349 Func cfunc 16899 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2054 ax-8 2108 ax-9 2115 ax-10 2134 ax-11 2149 ax-12 2162 ax-13 2333 ax-ext 2753 ax-rep 5006 ax-sep 5017 ax-nul 5025 ax-pow 5077 ax-pr 5138 ax-un 7226 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2550 df-eu 2586 df-clab 2763 df-cleq 2769 df-clel 2773 df-nfc 2920 df-ne 2969 df-ral 3094 df-rex 3095 df-reu 3096 df-rab 3098 df-v 3399 df-sbc 3652 df-csb 3751 df-dif 3794 df-un 3796 df-in 3798 df-ss 3805 df-nul 4141 df-if 4307 df-pw 4380 df-sn 4398 df-pr 4400 df-op 4404 df-uni 4672 df-iun 4755 df-br 4887 df-opab 4949 df-mpt 4966 df-id 5261 df-xp 5361 df-rel 5362 df-cnv 5363 df-co 5364 df-dm 5365 df-rn 5366 df-res 5367 df-ima 5368 df-iota 6099 df-fun 6137 df-fn 6138 df-f 6139 df-f1 6140 df-fo 6141 df-f1o 6142 df-fv 6143 df-ov 6925 df-oprab 6926 df-mpt2 6927 df-map 8142 df-ixp 8195 df-func 16903 |
This theorem is referenced by: funcoppc 16920 cofuval 16927 cofulid 16935 cofurid 16936 prf1st 17230 prf2nd 17231 1st2ndprf 17232 curfuncf 17264 uncfcurf 17265 curf2ndf 17273 |
Copyright terms: Public domain | W3C validator |