MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funcfn2 Structured version   Visualization version   GIF version

Theorem funcfn2 17500
Description: The morphism part of a functor is a function. (Contributed by Mario Carneiro, 3-Jan-2017.)
Hypotheses
Ref Expression
funcfn2.b 𝐵 = (Base‘𝐷)
funcfn2.f (𝜑𝐹(𝐷 Func 𝐸)𝐺)
Assertion
Ref Expression
funcfn2 (𝜑𝐺 Fn (𝐵 × 𝐵))

Proof of Theorem funcfn2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 funcfn2.b . . 3 𝐵 = (Base‘𝐷)
2 eqid 2738 . . 3 (Hom ‘𝐷) = (Hom ‘𝐷)
3 eqid 2738 . . 3 (Hom ‘𝐸) = (Hom ‘𝐸)
4 funcfn2.f . . 3 (𝜑𝐹(𝐷 Func 𝐸)𝐺)
51, 2, 3, 4funcixp 17498 . 2 (𝜑𝐺X𝑥 ∈ (𝐵 × 𝐵)(((𝐹‘(1st𝑥))(Hom ‘𝐸)(𝐹‘(2nd𝑥))) ↑m ((Hom ‘𝐷)‘𝑥)))
6 ixpfn 8649 . 2 (𝐺X𝑥 ∈ (𝐵 × 𝐵)(((𝐹‘(1st𝑥))(Hom ‘𝐸)(𝐹‘(2nd𝑥))) ↑m ((Hom ‘𝐷)‘𝑥)) → 𝐺 Fn (𝐵 × 𝐵))
75, 6syl 17 1 (𝜑𝐺 Fn (𝐵 × 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2108   class class class wbr 5070   × cxp 5578   Fn wfn 6413  cfv 6418  (class class class)co 7255  1st c1st 7802  2nd c2nd 7803  m cmap 8573  Xcixp 8643  Basecbs 16840  Hom chom 16899   Func cfunc 17485
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-map 8575  df-ixp 8644  df-func 17489
This theorem is referenced by:  funcoppc  17506  cofuval  17513  cofulid  17521  cofurid  17522  prf1st  17837  prf2nd  17838  1st2ndprf  17839  curfuncf  17872  uncfcurf  17873  curf2ndf  17881
  Copyright terms: Public domain W3C validator