MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ida2 Structured version   Visualization version   GIF version

Theorem ida2 18028
Description: Morphism part of the identity arrow. (Contributed by Mario Carneiro, 11-Jan-2017.)
Hypotheses
Ref Expression
idafval.i 𝐼 = (Ida𝐶)
idafval.b 𝐵 = (Base‘𝐶)
idafval.c (𝜑𝐶 ∈ Cat)
idafval.1 1 = (Id‘𝐶)
idaval.x (𝜑𝑋𝐵)
Assertion
Ref Expression
ida2 (𝜑 → (2nd ‘(𝐼𝑋)) = ( 1𝑋))

Proof of Theorem ida2
StepHypRef Expression
1 idafval.i . . . 4 𝐼 = (Ida𝐶)
2 idafval.b . . . 4 𝐵 = (Base‘𝐶)
3 idafval.c . . . 4 (𝜑𝐶 ∈ Cat)
4 idafval.1 . . . 4 1 = (Id‘𝐶)
5 idaval.x . . . 4 (𝜑𝑋𝐵)
61, 2, 3, 4, 5idaval 18027 . . 3 (𝜑 → (𝐼𝑋) = ⟨𝑋, 𝑋, ( 1𝑋)⟩)
76fveq2d 6865 . 2 (𝜑 → (2nd ‘(𝐼𝑋)) = (2nd ‘⟨𝑋, 𝑋, ( 1𝑋)⟩))
8 fvex 6874 . . 3 ( 1𝑋) ∈ V
9 ot3rdg 7987 . . 3 (( 1𝑋) ∈ V → (2nd ‘⟨𝑋, 𝑋, ( 1𝑋)⟩) = ( 1𝑋))
108, 9ax-mp 5 . 2 (2nd ‘⟨𝑋, 𝑋, ( 1𝑋)⟩) = ( 1𝑋)
117, 10eqtrdi 2781 1 (𝜑 → (2nd ‘(𝐼𝑋)) = ( 1𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  Vcvv 3450  cotp 4600  cfv 6514  2nd c2nd 7970  Basecbs 17186  Catccat 17632  Idccid 17633  Idacida 18022
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-ot 4601  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-2nd 7972  df-ida 18024
This theorem is referenced by:  arwlid  18041  arwrid  18042
  Copyright terms: Public domain W3C validator