MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ida2 Structured version   Visualization version   GIF version

Theorem ida2 17984
Description: Morphism part of the identity arrow. (Contributed by Mario Carneiro, 11-Jan-2017.)
Hypotheses
Ref Expression
idafval.i 𝐼 = (Ida𝐶)
idafval.b 𝐵 = (Base‘𝐶)
idafval.c (𝜑𝐶 ∈ Cat)
idafval.1 1 = (Id‘𝐶)
idaval.x (𝜑𝑋𝐵)
Assertion
Ref Expression
ida2 (𝜑 → (2nd ‘(𝐼𝑋)) = ( 1𝑋))

Proof of Theorem ida2
StepHypRef Expression
1 idafval.i . . . 4 𝐼 = (Ida𝐶)
2 idafval.b . . . 4 𝐵 = (Base‘𝐶)
3 idafval.c . . . 4 (𝜑𝐶 ∈ Cat)
4 idafval.1 . . . 4 1 = (Id‘𝐶)
5 idaval.x . . . 4 (𝜑𝑋𝐵)
61, 2, 3, 4, 5idaval 17983 . . 3 (𝜑 → (𝐼𝑋) = ⟨𝑋, 𝑋, ( 1𝑋)⟩)
76fveq2d 6830 . 2 (𝜑 → (2nd ‘(𝐼𝑋)) = (2nd ‘⟨𝑋, 𝑋, ( 1𝑋)⟩))
8 fvex 6839 . . 3 ( 1𝑋) ∈ V
9 ot3rdg 7947 . . 3 (( 1𝑋) ∈ V → (2nd ‘⟨𝑋, 𝑋, ( 1𝑋)⟩) = ( 1𝑋))
108, 9ax-mp 5 . 2 (2nd ‘⟨𝑋, 𝑋, ( 1𝑋)⟩) = ( 1𝑋)
117, 10eqtrdi 2780 1 (𝜑 → (2nd ‘(𝐼𝑋)) = ( 1𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  Vcvv 3438  cotp 4587  cfv 6486  2nd c2nd 7930  Basecbs 17138  Catccat 17588  Idccid 17589  Idacida 17978
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-ot 4588  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-2nd 7932  df-ida 17980
This theorem is referenced by:  arwlid  17997  arwrid  17998
  Copyright terms: Public domain W3C validator