Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ida2 | Structured version Visualization version GIF version |
Description: Morphism part of the identity arrow. (Contributed by Mario Carneiro, 11-Jan-2017.) |
Ref | Expression |
---|---|
idafval.i | ⊢ 𝐼 = (Ida‘𝐶) |
idafval.b | ⊢ 𝐵 = (Base‘𝐶) |
idafval.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
idafval.1 | ⊢ 1 = (Id‘𝐶) |
idaval.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
Ref | Expression |
---|---|
ida2 | ⊢ (𝜑 → (2nd ‘(𝐼‘𝑋)) = ( 1 ‘𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | idafval.i | . . . 4 ⊢ 𝐼 = (Ida‘𝐶) | |
2 | idafval.b | . . . 4 ⊢ 𝐵 = (Base‘𝐶) | |
3 | idafval.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
4 | idafval.1 | . . . 4 ⊢ 1 = (Id‘𝐶) | |
5 | idaval.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
6 | 1, 2, 3, 4, 5 | idaval 17384 | . . 3 ⊢ (𝜑 → (𝐼‘𝑋) = 〈𝑋, 𝑋, ( 1 ‘𝑋)〉) |
7 | 6 | fveq2d 6662 | . 2 ⊢ (𝜑 → (2nd ‘(𝐼‘𝑋)) = (2nd ‘〈𝑋, 𝑋, ( 1 ‘𝑋)〉)) |
8 | fvex 6671 | . . 3 ⊢ ( 1 ‘𝑋) ∈ V | |
9 | ot3rdg 7709 | . . 3 ⊢ (( 1 ‘𝑋) ∈ V → (2nd ‘〈𝑋, 𝑋, ( 1 ‘𝑋)〉) = ( 1 ‘𝑋)) | |
10 | 8, 9 | ax-mp 5 | . 2 ⊢ (2nd ‘〈𝑋, 𝑋, ( 1 ‘𝑋)〉) = ( 1 ‘𝑋) |
11 | 7, 10 | eqtrdi 2809 | 1 ⊢ (𝜑 → (2nd ‘(𝐼‘𝑋)) = ( 1 ‘𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1538 ∈ wcel 2111 Vcvv 3409 〈cotp 4530 ‘cfv 6335 2nd c2nd 7692 Basecbs 16541 Catccat 16993 Idccid 16994 Idacida 17379 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-rep 5156 ax-sep 5169 ax-nul 5176 ax-pr 5298 ax-un 7459 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-ral 3075 df-rex 3076 df-reu 3077 df-rab 3079 df-v 3411 df-sbc 3697 df-csb 3806 df-dif 3861 df-un 3863 df-in 3865 df-ss 3875 df-nul 4226 df-if 4421 df-sn 4523 df-pr 4525 df-op 4529 df-ot 4531 df-uni 4799 df-iun 4885 df-br 5033 df-opab 5095 df-mpt 5113 df-id 5430 df-xp 5530 df-rel 5531 df-cnv 5532 df-co 5533 df-dm 5534 df-rn 5535 df-res 5536 df-ima 5537 df-iota 6294 df-fun 6337 df-fn 6338 df-f 6339 df-f1 6340 df-fo 6341 df-f1o 6342 df-fv 6343 df-2nd 7694 df-ida 17381 |
This theorem is referenced by: arwlid 17398 arwrid 17399 |
Copyright terms: Public domain | W3C validator |