Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ida2 | Structured version Visualization version GIF version |
Description: Morphism part of the identity arrow. (Contributed by Mario Carneiro, 11-Jan-2017.) |
Ref | Expression |
---|---|
idafval.i | ⊢ 𝐼 = (Ida‘𝐶) |
idafval.b | ⊢ 𝐵 = (Base‘𝐶) |
idafval.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
idafval.1 | ⊢ 1 = (Id‘𝐶) |
idaval.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
Ref | Expression |
---|---|
ida2 | ⊢ (𝜑 → (2nd ‘(𝐼‘𝑋)) = ( 1 ‘𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | idafval.i | . . . 4 ⊢ 𝐼 = (Ida‘𝐶) | |
2 | idafval.b | . . . 4 ⊢ 𝐵 = (Base‘𝐶) | |
3 | idafval.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
4 | idafval.1 | . . . 4 ⊢ 1 = (Id‘𝐶) | |
5 | idaval.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
6 | 1, 2, 3, 4, 5 | idaval 17822 | . . 3 ⊢ (𝜑 → (𝐼‘𝑋) = 〈𝑋, 𝑋, ( 1 ‘𝑋)〉) |
7 | 6 | fveq2d 6808 | . 2 ⊢ (𝜑 → (2nd ‘(𝐼‘𝑋)) = (2nd ‘〈𝑋, 𝑋, ( 1 ‘𝑋)〉)) |
8 | fvex 6817 | . . 3 ⊢ ( 1 ‘𝑋) ∈ V | |
9 | ot3rdg 7879 | . . 3 ⊢ (( 1 ‘𝑋) ∈ V → (2nd ‘〈𝑋, 𝑋, ( 1 ‘𝑋)〉) = ( 1 ‘𝑋)) | |
10 | 8, 9 | ax-mp 5 | . 2 ⊢ (2nd ‘〈𝑋, 𝑋, ( 1 ‘𝑋)〉) = ( 1 ‘𝑋) |
11 | 7, 10 | eqtrdi 2792 | 1 ⊢ (𝜑 → (2nd ‘(𝐼‘𝑋)) = ( 1 ‘𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2104 Vcvv 3437 〈cotp 4573 ‘cfv 6458 2nd c2nd 7862 Basecbs 16961 Catccat 17422 Idccid 17423 Idacida 17817 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-rep 5218 ax-sep 5232 ax-nul 5239 ax-pr 5361 ax-un 7620 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-reu 3305 df-rab 3306 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-sn 4566 df-pr 4568 df-op 4572 df-ot 4574 df-uni 4845 df-iun 4933 df-br 5082 df-opab 5144 df-mpt 5165 df-id 5500 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-2nd 7864 df-ida 17819 |
This theorem is referenced by: arwlid 17836 arwrid 17837 |
Copyright terms: Public domain | W3C validator |