| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ida2 | Structured version Visualization version GIF version | ||
| Description: Morphism part of the identity arrow. (Contributed by Mario Carneiro, 11-Jan-2017.) |
| Ref | Expression |
|---|---|
| idafval.i | ⊢ 𝐼 = (Ida‘𝐶) |
| idafval.b | ⊢ 𝐵 = (Base‘𝐶) |
| idafval.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
| idafval.1 | ⊢ 1 = (Id‘𝐶) |
| idaval.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| ida2 | ⊢ (𝜑 → (2nd ‘(𝐼‘𝑋)) = ( 1 ‘𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | idafval.i | . . . 4 ⊢ 𝐼 = (Ida‘𝐶) | |
| 2 | idafval.b | . . . 4 ⊢ 𝐵 = (Base‘𝐶) | |
| 3 | idafval.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
| 4 | idafval.1 | . . . 4 ⊢ 1 = (Id‘𝐶) | |
| 5 | idaval.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 6 | 1, 2, 3, 4, 5 | idaval 17973 | . . 3 ⊢ (𝜑 → (𝐼‘𝑋) = 〈𝑋, 𝑋, ( 1 ‘𝑋)〉) |
| 7 | 6 | fveq2d 6835 | . 2 ⊢ (𝜑 → (2nd ‘(𝐼‘𝑋)) = (2nd ‘〈𝑋, 𝑋, ( 1 ‘𝑋)〉)) |
| 8 | fvex 6844 | . . 3 ⊢ ( 1 ‘𝑋) ∈ V | |
| 9 | ot3rdg 7946 | . . 3 ⊢ (( 1 ‘𝑋) ∈ V → (2nd ‘〈𝑋, 𝑋, ( 1 ‘𝑋)〉) = ( 1 ‘𝑋)) | |
| 10 | 8, 9 | ax-mp 5 | . 2 ⊢ (2nd ‘〈𝑋, 𝑋, ( 1 ‘𝑋)〉) = ( 1 ‘𝑋) |
| 11 | 7, 10 | eqtrdi 2784 | 1 ⊢ (𝜑 → (2nd ‘(𝐼‘𝑋)) = ( 1 ‘𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2113 Vcvv 3437 〈cotp 4585 ‘cfv 6489 2nd c2nd 7929 Basecbs 17127 Catccat 17578 Idccid 17579 Idacida 17968 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pr 5374 ax-un 7677 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-ot 4586 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-2nd 7931 df-ida 17970 |
| This theorem is referenced by: arwlid 17987 arwrid 17988 |
| Copyright terms: Public domain | W3C validator |