| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ida2 | Structured version Visualization version GIF version | ||
| Description: Morphism part of the identity arrow. (Contributed by Mario Carneiro, 11-Jan-2017.) |
| Ref | Expression |
|---|---|
| idafval.i | ⊢ 𝐼 = (Ida‘𝐶) |
| idafval.b | ⊢ 𝐵 = (Base‘𝐶) |
| idafval.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
| idafval.1 | ⊢ 1 = (Id‘𝐶) |
| idaval.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| ida2 | ⊢ (𝜑 → (2nd ‘(𝐼‘𝑋)) = ( 1 ‘𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | idafval.i | . . . 4 ⊢ 𝐼 = (Ida‘𝐶) | |
| 2 | idafval.b | . . . 4 ⊢ 𝐵 = (Base‘𝐶) | |
| 3 | idafval.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
| 4 | idafval.1 | . . . 4 ⊢ 1 = (Id‘𝐶) | |
| 5 | idaval.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 6 | 1, 2, 3, 4, 5 | idaval 17983 | . . 3 ⊢ (𝜑 → (𝐼‘𝑋) = 〈𝑋, 𝑋, ( 1 ‘𝑋)〉) |
| 7 | 6 | fveq2d 6830 | . 2 ⊢ (𝜑 → (2nd ‘(𝐼‘𝑋)) = (2nd ‘〈𝑋, 𝑋, ( 1 ‘𝑋)〉)) |
| 8 | fvex 6839 | . . 3 ⊢ ( 1 ‘𝑋) ∈ V | |
| 9 | ot3rdg 7947 | . . 3 ⊢ (( 1 ‘𝑋) ∈ V → (2nd ‘〈𝑋, 𝑋, ( 1 ‘𝑋)〉) = ( 1 ‘𝑋)) | |
| 10 | 8, 9 | ax-mp 5 | . 2 ⊢ (2nd ‘〈𝑋, 𝑋, ( 1 ‘𝑋)〉) = ( 1 ‘𝑋) |
| 11 | 7, 10 | eqtrdi 2780 | 1 ⊢ (𝜑 → (2nd ‘(𝐼‘𝑋)) = ( 1 ‘𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 Vcvv 3438 〈cotp 4587 ‘cfv 6486 2nd c2nd 7930 Basecbs 17138 Catccat 17588 Idccid 17589 Idacida 17978 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-ot 4588 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-2nd 7932 df-ida 17980 |
| This theorem is referenced by: arwlid 17997 arwrid 17998 |
| Copyright terms: Public domain | W3C validator |