MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ida2 Structured version   Visualization version   GIF version

Theorem ida2 17974
Description: Morphism part of the identity arrow. (Contributed by Mario Carneiro, 11-Jan-2017.)
Hypotheses
Ref Expression
idafval.i 𝐼 = (Ida𝐶)
idafval.b 𝐵 = (Base‘𝐶)
idafval.c (𝜑𝐶 ∈ Cat)
idafval.1 1 = (Id‘𝐶)
idaval.x (𝜑𝑋𝐵)
Assertion
Ref Expression
ida2 (𝜑 → (2nd ‘(𝐼𝑋)) = ( 1𝑋))

Proof of Theorem ida2
StepHypRef Expression
1 idafval.i . . . 4 𝐼 = (Ida𝐶)
2 idafval.b . . . 4 𝐵 = (Base‘𝐶)
3 idafval.c . . . 4 (𝜑𝐶 ∈ Cat)
4 idafval.1 . . . 4 1 = (Id‘𝐶)
5 idaval.x . . . 4 (𝜑𝑋𝐵)
61, 2, 3, 4, 5idaval 17973 . . 3 (𝜑 → (𝐼𝑋) = ⟨𝑋, 𝑋, ( 1𝑋)⟩)
76fveq2d 6835 . 2 (𝜑 → (2nd ‘(𝐼𝑋)) = (2nd ‘⟨𝑋, 𝑋, ( 1𝑋)⟩))
8 fvex 6844 . . 3 ( 1𝑋) ∈ V
9 ot3rdg 7946 . . 3 (( 1𝑋) ∈ V → (2nd ‘⟨𝑋, 𝑋, ( 1𝑋)⟩) = ( 1𝑋))
108, 9ax-mp 5 . 2 (2nd ‘⟨𝑋, 𝑋, ( 1𝑋)⟩) = ( 1𝑋)
117, 10eqtrdi 2784 1 (𝜑 → (2nd ‘(𝐼𝑋)) = ( 1𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2113  Vcvv 3437  cotp 4585  cfv 6489  2nd c2nd 7929  Basecbs 17127  Catccat 17578  Idccid 17579  Idacida 17968
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pr 5374  ax-un 7677
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-ot 4586  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-2nd 7931  df-ida 17970
This theorem is referenced by:  arwlid  17987  arwrid  17988
  Copyright terms: Public domain W3C validator