Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ida2 | Structured version Visualization version GIF version |
Description: Morphism part of the identity arrow. (Contributed by Mario Carneiro, 11-Jan-2017.) |
Ref | Expression |
---|---|
idafval.i | ⊢ 𝐼 = (Ida‘𝐶) |
idafval.b | ⊢ 𝐵 = (Base‘𝐶) |
idafval.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
idafval.1 | ⊢ 1 = (Id‘𝐶) |
idaval.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
Ref | Expression |
---|---|
ida2 | ⊢ (𝜑 → (2nd ‘(𝐼‘𝑋)) = ( 1 ‘𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | idafval.i | . . . 4 ⊢ 𝐼 = (Ida‘𝐶) | |
2 | idafval.b | . . . 4 ⊢ 𝐵 = (Base‘𝐶) | |
3 | idafval.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
4 | idafval.1 | . . . 4 ⊢ 1 = (Id‘𝐶) | |
5 | idaval.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
6 | 1, 2, 3, 4, 5 | idaval 17754 | . . 3 ⊢ (𝜑 → (𝐼‘𝑋) = 〈𝑋, 𝑋, ( 1 ‘𝑋)〉) |
7 | 6 | fveq2d 6772 | . 2 ⊢ (𝜑 → (2nd ‘(𝐼‘𝑋)) = (2nd ‘〈𝑋, 𝑋, ( 1 ‘𝑋)〉)) |
8 | fvex 6781 | . . 3 ⊢ ( 1 ‘𝑋) ∈ V | |
9 | ot3rdg 7833 | . . 3 ⊢ (( 1 ‘𝑋) ∈ V → (2nd ‘〈𝑋, 𝑋, ( 1 ‘𝑋)〉) = ( 1 ‘𝑋)) | |
10 | 8, 9 | ax-mp 5 | . 2 ⊢ (2nd ‘〈𝑋, 𝑋, ( 1 ‘𝑋)〉) = ( 1 ‘𝑋) |
11 | 7, 10 | eqtrdi 2795 | 1 ⊢ (𝜑 → (2nd ‘(𝐼‘𝑋)) = ( 1 ‘𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2109 Vcvv 3430 〈cotp 4574 ‘cfv 6430 2nd c2nd 7816 Basecbs 16893 Catccat 17354 Idccid 17355 Idacida 17749 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-rep 5213 ax-sep 5226 ax-nul 5233 ax-pr 5355 ax-un 7579 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-ral 3070 df-rex 3071 df-reu 3072 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-sn 4567 df-pr 4569 df-op 4573 df-ot 4575 df-uni 4845 df-iun 4931 df-br 5079 df-opab 5141 df-mpt 5162 df-id 5488 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-2nd 7818 df-ida 17751 |
This theorem is referenced by: arwlid 17768 arwrid 17769 |
Copyright terms: Public domain | W3C validator |