| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > coa2 | Structured version Visualization version GIF version | ||
| Description: The morphism part of arrow composition. (Contributed by Mario Carneiro, 11-Jan-2017.) |
| Ref | Expression |
|---|---|
| homdmcoa.o | ⊢ · = (compa‘𝐶) |
| homdmcoa.h | ⊢ 𝐻 = (Homa‘𝐶) |
| homdmcoa.f | ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐻𝑌)) |
| homdmcoa.g | ⊢ (𝜑 → 𝐺 ∈ (𝑌𝐻𝑍)) |
| coaval.x | ⊢ ∙ = (comp‘𝐶) |
| Ref | Expression |
|---|---|
| coa2 | ⊢ (𝜑 → (2nd ‘(𝐺 · 𝐹)) = ((2nd ‘𝐺)(〈𝑋, 𝑌〉 ∙ 𝑍)(2nd ‘𝐹))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | homdmcoa.o | . . . 4 ⊢ · = (compa‘𝐶) | |
| 2 | homdmcoa.h | . . . 4 ⊢ 𝐻 = (Homa‘𝐶) | |
| 3 | homdmcoa.f | . . . 4 ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐻𝑌)) | |
| 4 | homdmcoa.g | . . . 4 ⊢ (𝜑 → 𝐺 ∈ (𝑌𝐻𝑍)) | |
| 5 | coaval.x | . . . 4 ⊢ ∙ = (comp‘𝐶) | |
| 6 | 1, 2, 3, 4, 5 | coaval 18030 | . . 3 ⊢ (𝜑 → (𝐺 · 𝐹) = 〈𝑋, 𝑍, ((2nd ‘𝐺)(〈𝑋, 𝑌〉 ∙ 𝑍)(2nd ‘𝐹))〉) |
| 7 | 6 | fveq2d 6862 | . 2 ⊢ (𝜑 → (2nd ‘(𝐺 · 𝐹)) = (2nd ‘〈𝑋, 𝑍, ((2nd ‘𝐺)(〈𝑋, 𝑌〉 ∙ 𝑍)(2nd ‘𝐹))〉)) |
| 8 | ovex 7420 | . . 3 ⊢ ((2nd ‘𝐺)(〈𝑋, 𝑌〉 ∙ 𝑍)(2nd ‘𝐹)) ∈ V | |
| 9 | ot3rdg 7984 | . . 3 ⊢ (((2nd ‘𝐺)(〈𝑋, 𝑌〉 ∙ 𝑍)(2nd ‘𝐹)) ∈ V → (2nd ‘〈𝑋, 𝑍, ((2nd ‘𝐺)(〈𝑋, 𝑌〉 ∙ 𝑍)(2nd ‘𝐹))〉) = ((2nd ‘𝐺)(〈𝑋, 𝑌〉 ∙ 𝑍)(2nd ‘𝐹))) | |
| 10 | 8, 9 | ax-mp 5 | . 2 ⊢ (2nd ‘〈𝑋, 𝑍, ((2nd ‘𝐺)(〈𝑋, 𝑌〉 ∙ 𝑍)(2nd ‘𝐹))〉) = ((2nd ‘𝐺)(〈𝑋, 𝑌〉 ∙ 𝑍)(2nd ‘𝐹)) |
| 11 | 7, 10 | eqtrdi 2780 | 1 ⊢ (𝜑 → (2nd ‘(𝐺 · 𝐹)) = ((2nd ‘𝐺)(〈𝑋, 𝑌〉 ∙ 𝑍)(2nd ‘𝐹))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 Vcvv 3447 〈cop 4595 〈cotp 4597 ‘cfv 6511 (class class class)co 7387 2nd c2nd 7967 compcco 17232 Homachoma 17985 compaccoa 18016 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-ot 4598 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-1st 7968 df-2nd 7969 df-doma 17986 df-coda 17987 df-homa 17988 df-arw 17989 df-coa 18018 |
| This theorem is referenced by: arwass 18036 |
| Copyright terms: Public domain | W3C validator |