Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > coa2 | Structured version Visualization version GIF version |
Description: The morphism part of arrow composition. (Contributed by Mario Carneiro, 11-Jan-2017.) |
Ref | Expression |
---|---|
homdmcoa.o | ⊢ · = (compa‘𝐶) |
homdmcoa.h | ⊢ 𝐻 = (Homa‘𝐶) |
homdmcoa.f | ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐻𝑌)) |
homdmcoa.g | ⊢ (𝜑 → 𝐺 ∈ (𝑌𝐻𝑍)) |
coaval.x | ⊢ ∙ = (comp‘𝐶) |
Ref | Expression |
---|---|
coa2 | ⊢ (𝜑 → (2nd ‘(𝐺 · 𝐹)) = ((2nd ‘𝐺)(〈𝑋, 𝑌〉 ∙ 𝑍)(2nd ‘𝐹))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | homdmcoa.o | . . . 4 ⊢ · = (compa‘𝐶) | |
2 | homdmcoa.h | . . . 4 ⊢ 𝐻 = (Homa‘𝐶) | |
3 | homdmcoa.f | . . . 4 ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐻𝑌)) | |
4 | homdmcoa.g | . . . 4 ⊢ (𝜑 → 𝐺 ∈ (𝑌𝐻𝑍)) | |
5 | coaval.x | . . . 4 ⊢ ∙ = (comp‘𝐶) | |
6 | 1, 2, 3, 4, 5 | coaval 17699 | . . 3 ⊢ (𝜑 → (𝐺 · 𝐹) = 〈𝑋, 𝑍, ((2nd ‘𝐺)(〈𝑋, 𝑌〉 ∙ 𝑍)(2nd ‘𝐹))〉) |
7 | 6 | fveq2d 6760 | . 2 ⊢ (𝜑 → (2nd ‘(𝐺 · 𝐹)) = (2nd ‘〈𝑋, 𝑍, ((2nd ‘𝐺)(〈𝑋, 𝑌〉 ∙ 𝑍)(2nd ‘𝐹))〉)) |
8 | ovex 7288 | . . 3 ⊢ ((2nd ‘𝐺)(〈𝑋, 𝑌〉 ∙ 𝑍)(2nd ‘𝐹)) ∈ V | |
9 | ot3rdg 7820 | . . 3 ⊢ (((2nd ‘𝐺)(〈𝑋, 𝑌〉 ∙ 𝑍)(2nd ‘𝐹)) ∈ V → (2nd ‘〈𝑋, 𝑍, ((2nd ‘𝐺)(〈𝑋, 𝑌〉 ∙ 𝑍)(2nd ‘𝐹))〉) = ((2nd ‘𝐺)(〈𝑋, 𝑌〉 ∙ 𝑍)(2nd ‘𝐹))) | |
10 | 8, 9 | ax-mp 5 | . 2 ⊢ (2nd ‘〈𝑋, 𝑍, ((2nd ‘𝐺)(〈𝑋, 𝑌〉 ∙ 𝑍)(2nd ‘𝐹))〉) = ((2nd ‘𝐺)(〈𝑋, 𝑌〉 ∙ 𝑍)(2nd ‘𝐹)) |
11 | 7, 10 | eqtrdi 2795 | 1 ⊢ (𝜑 → (2nd ‘(𝐺 · 𝐹)) = ((2nd ‘𝐺)(〈𝑋, 𝑌〉 ∙ 𝑍)(2nd ‘𝐹))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 Vcvv 3422 〈cop 4564 〈cotp 4566 ‘cfv 6418 (class class class)co 7255 2nd c2nd 7803 compcco 16900 Homachoma 17654 compaccoa 17685 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-ot 4567 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-1st 7804 df-2nd 7805 df-doma 17655 df-coda 17656 df-homa 17657 df-arw 17658 df-coa 17687 |
This theorem is referenced by: arwass 17705 |
Copyright terms: Public domain | W3C validator |