![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > coa2 | Structured version Visualization version GIF version |
Description: The morphism part of arrow composition. (Contributed by Mario Carneiro, 11-Jan-2017.) |
Ref | Expression |
---|---|
homdmcoa.o | โข ยท = (compaโ๐ถ) |
homdmcoa.h | โข ๐ป = (Homaโ๐ถ) |
homdmcoa.f | โข (๐ โ ๐น โ (๐๐ป๐)) |
homdmcoa.g | โข (๐ โ ๐บ โ (๐๐ป๐)) |
coaval.x | โข โ = (compโ๐ถ) |
Ref | Expression |
---|---|
coa2 | โข (๐ โ (2nd โ(๐บ ยท ๐น)) = ((2nd โ๐บ)(โจ๐, ๐โฉ โ ๐)(2nd โ๐น))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | homdmcoa.o | . . . 4 โข ยท = (compaโ๐ถ) | |
2 | homdmcoa.h | . . . 4 โข ๐ป = (Homaโ๐ถ) | |
3 | homdmcoa.f | . . . 4 โข (๐ โ ๐น โ (๐๐ป๐)) | |
4 | homdmcoa.g | . . . 4 โข (๐ โ ๐บ โ (๐๐ป๐)) | |
5 | coaval.x | . . . 4 โข โ = (compโ๐ถ) | |
6 | 1, 2, 3, 4, 5 | coaval 18025 | . . 3 โข (๐ โ (๐บ ยท ๐น) = โจ๐, ๐, ((2nd โ๐บ)(โจ๐, ๐โฉ โ ๐)(2nd โ๐น))โฉ) |
7 | 6 | fveq2d 6895 | . 2 โข (๐ โ (2nd โ(๐บ ยท ๐น)) = (2nd โโจ๐, ๐, ((2nd โ๐บ)(โจ๐, ๐โฉ โ ๐)(2nd โ๐น))โฉ)) |
8 | ovex 7445 | . . 3 โข ((2nd โ๐บ)(โจ๐, ๐โฉ โ ๐)(2nd โ๐น)) โ V | |
9 | ot3rdg 7995 | . . 3 โข (((2nd โ๐บ)(โจ๐, ๐โฉ โ ๐)(2nd โ๐น)) โ V โ (2nd โโจ๐, ๐, ((2nd โ๐บ)(โจ๐, ๐โฉ โ ๐)(2nd โ๐น))โฉ) = ((2nd โ๐บ)(โจ๐, ๐โฉ โ ๐)(2nd โ๐น))) | |
10 | 8, 9 | ax-mp 5 | . 2 โข (2nd โโจ๐, ๐, ((2nd โ๐บ)(โจ๐, ๐โฉ โ ๐)(2nd โ๐น))โฉ) = ((2nd โ๐บ)(โจ๐, ๐โฉ โ ๐)(2nd โ๐น)) |
11 | 7, 10 | eqtrdi 2787 | 1 โข (๐ โ (2nd โ(๐บ ยท ๐น)) = ((2nd โ๐บ)(โจ๐, ๐โฉ โ ๐)(2nd โ๐น))) |
Colors of variables: wff setvar class |
Syntax hints: โ wi 4 = wceq 1540 โ wcel 2105 Vcvv 3473 โจcop 4634 โจcotp 4636 โcfv 6543 (class class class)co 7412 2nd c2nd 7978 compcco 17216 Homachoma 17980 compaccoa 18011 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-ot 4637 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7415 df-oprab 7416 df-mpo 7417 df-1st 7979 df-2nd 7980 df-doma 17981 df-coda 17982 df-homa 17983 df-arw 17984 df-coa 18013 |
This theorem is referenced by: arwass 18031 |
Copyright terms: Public domain | W3C validator |