| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > pjhval | Structured version Visualization version GIF version | ||
| Description: Value of a projection. (Contributed by NM, 23-Oct-1999.) (Revised by Mario Carneiro, 15-Dec-2013.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| pjhval | ⊢ ((𝐻 ∈ Cℋ ∧ 𝐴 ∈ ℋ) → ((projℎ‘𝐻)‘𝐴) = (℩𝑥 ∈ 𝐻 ∃𝑦 ∈ (⊥‘𝐻)𝐴 = (𝑥 +ℎ 𝑦))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pjhfval 31332 | . . 3 ⊢ (𝐻 ∈ Cℋ → (projℎ‘𝐻) = (𝑧 ∈ ℋ ↦ (℩𝑥 ∈ 𝐻 ∃𝑦 ∈ (⊥‘𝐻)𝑧 = (𝑥 +ℎ 𝑦)))) | |
| 2 | 1 | fveq1d 6863 | . 2 ⊢ (𝐻 ∈ Cℋ → ((projℎ‘𝐻)‘𝐴) = ((𝑧 ∈ ℋ ↦ (℩𝑥 ∈ 𝐻 ∃𝑦 ∈ (⊥‘𝐻)𝑧 = (𝑥 +ℎ 𝑦)))‘𝐴)) |
| 3 | eqeq1 2734 | . . . . 5 ⊢ (𝑧 = 𝐴 → (𝑧 = (𝑥 +ℎ 𝑦) ↔ 𝐴 = (𝑥 +ℎ 𝑦))) | |
| 4 | 3 | rexbidv 3158 | . . . 4 ⊢ (𝑧 = 𝐴 → (∃𝑦 ∈ (⊥‘𝐻)𝑧 = (𝑥 +ℎ 𝑦) ↔ ∃𝑦 ∈ (⊥‘𝐻)𝐴 = (𝑥 +ℎ 𝑦))) |
| 5 | 4 | riotabidv 7349 | . . 3 ⊢ (𝑧 = 𝐴 → (℩𝑥 ∈ 𝐻 ∃𝑦 ∈ (⊥‘𝐻)𝑧 = (𝑥 +ℎ 𝑦)) = (℩𝑥 ∈ 𝐻 ∃𝑦 ∈ (⊥‘𝐻)𝐴 = (𝑥 +ℎ 𝑦))) |
| 6 | eqid 2730 | . . 3 ⊢ (𝑧 ∈ ℋ ↦ (℩𝑥 ∈ 𝐻 ∃𝑦 ∈ (⊥‘𝐻)𝑧 = (𝑥 +ℎ 𝑦))) = (𝑧 ∈ ℋ ↦ (℩𝑥 ∈ 𝐻 ∃𝑦 ∈ (⊥‘𝐻)𝑧 = (𝑥 +ℎ 𝑦))) | |
| 7 | riotaex 7351 | . . 3 ⊢ (℩𝑥 ∈ 𝐻 ∃𝑦 ∈ (⊥‘𝐻)𝐴 = (𝑥 +ℎ 𝑦)) ∈ V | |
| 8 | 5, 6, 7 | fvmpt 6971 | . 2 ⊢ (𝐴 ∈ ℋ → ((𝑧 ∈ ℋ ↦ (℩𝑥 ∈ 𝐻 ∃𝑦 ∈ (⊥‘𝐻)𝑧 = (𝑥 +ℎ 𝑦)))‘𝐴) = (℩𝑥 ∈ 𝐻 ∃𝑦 ∈ (⊥‘𝐻)𝐴 = (𝑥 +ℎ 𝑦))) |
| 9 | 2, 8 | sylan9eq 2785 | 1 ⊢ ((𝐻 ∈ Cℋ ∧ 𝐴 ∈ ℋ) → ((projℎ‘𝐻)‘𝐴) = (℩𝑥 ∈ 𝐻 ∃𝑦 ∈ (⊥‘𝐻)𝐴 = (𝑥 +ℎ 𝑦))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∃wrex 3054 ↦ cmpt 5191 ‘cfv 6514 ℩crio 7346 (class class class)co 7390 ℋchba 30855 +ℎ cva 30856 Cℋ cch 30865 ⊥cort 30866 projℎcpjh 30873 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pr 5390 ax-hilex 30935 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-pjh 31331 |
| This theorem is referenced by: pjpreeq 31334 |
| Copyright terms: Public domain | W3C validator |