![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > pjhval | Structured version Visualization version GIF version |
Description: Value of a projection. (Contributed by NM, 23-Oct-1999.) (Revised by Mario Carneiro, 15-Dec-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
pjhval | ⊢ ((𝐻 ∈ Cℋ ∧ 𝐴 ∈ ℋ) → ((projℎ‘𝐻)‘𝐴) = (℩𝑥 ∈ 𝐻 ∃𝑦 ∈ (⊥‘𝐻)𝐴 = (𝑥 +ℎ 𝑦))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pjhfval 30916 | . . 3 ⊢ (𝐻 ∈ Cℋ → (projℎ‘𝐻) = (𝑧 ∈ ℋ ↦ (℩𝑥 ∈ 𝐻 ∃𝑦 ∈ (⊥‘𝐻)𝑧 = (𝑥 +ℎ 𝑦)))) | |
2 | 1 | fveq1d 6892 | . 2 ⊢ (𝐻 ∈ Cℋ → ((projℎ‘𝐻)‘𝐴) = ((𝑧 ∈ ℋ ↦ (℩𝑥 ∈ 𝐻 ∃𝑦 ∈ (⊥‘𝐻)𝑧 = (𝑥 +ℎ 𝑦)))‘𝐴)) |
3 | eqeq1 2734 | . . . . 5 ⊢ (𝑧 = 𝐴 → (𝑧 = (𝑥 +ℎ 𝑦) ↔ 𝐴 = (𝑥 +ℎ 𝑦))) | |
4 | 3 | rexbidv 3176 | . . . 4 ⊢ (𝑧 = 𝐴 → (∃𝑦 ∈ (⊥‘𝐻)𝑧 = (𝑥 +ℎ 𝑦) ↔ ∃𝑦 ∈ (⊥‘𝐻)𝐴 = (𝑥 +ℎ 𝑦))) |
5 | 4 | riotabidv 7369 | . . 3 ⊢ (𝑧 = 𝐴 → (℩𝑥 ∈ 𝐻 ∃𝑦 ∈ (⊥‘𝐻)𝑧 = (𝑥 +ℎ 𝑦)) = (℩𝑥 ∈ 𝐻 ∃𝑦 ∈ (⊥‘𝐻)𝐴 = (𝑥 +ℎ 𝑦))) |
6 | eqid 2730 | . . 3 ⊢ (𝑧 ∈ ℋ ↦ (℩𝑥 ∈ 𝐻 ∃𝑦 ∈ (⊥‘𝐻)𝑧 = (𝑥 +ℎ 𝑦))) = (𝑧 ∈ ℋ ↦ (℩𝑥 ∈ 𝐻 ∃𝑦 ∈ (⊥‘𝐻)𝑧 = (𝑥 +ℎ 𝑦))) | |
7 | riotaex 7371 | . . 3 ⊢ (℩𝑥 ∈ 𝐻 ∃𝑦 ∈ (⊥‘𝐻)𝐴 = (𝑥 +ℎ 𝑦)) ∈ V | |
8 | 5, 6, 7 | fvmpt 6997 | . 2 ⊢ (𝐴 ∈ ℋ → ((𝑧 ∈ ℋ ↦ (℩𝑥 ∈ 𝐻 ∃𝑦 ∈ (⊥‘𝐻)𝑧 = (𝑥 +ℎ 𝑦)))‘𝐴) = (℩𝑥 ∈ 𝐻 ∃𝑦 ∈ (⊥‘𝐻)𝐴 = (𝑥 +ℎ 𝑦))) |
9 | 2, 8 | sylan9eq 2790 | 1 ⊢ ((𝐻 ∈ Cℋ ∧ 𝐴 ∈ ℋ) → ((projℎ‘𝐻)‘𝐴) = (℩𝑥 ∈ 𝐻 ∃𝑦 ∈ (⊥‘𝐻)𝐴 = (𝑥 +ℎ 𝑦))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1539 ∈ wcel 2104 ∃wrex 3068 ↦ cmpt 5230 ‘cfv 6542 ℩crio 7366 (class class class)co 7411 ℋchba 30439 +ℎ cva 30440 Cℋ cch 30449 ⊥cort 30450 projℎcpjh 30457 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pr 5426 ax-hilex 30519 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-ral 3060 df-rex 3069 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7367 df-pjh 30915 |
This theorem is referenced by: pjpreeq 30918 |
Copyright terms: Public domain | W3C validator |