HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  pjhval Structured version   Visualization version   GIF version

Theorem pjhval 31326
Description: Value of a projection. (Contributed by NM, 23-Oct-1999.) (Revised by Mario Carneiro, 15-Dec-2013.) (New usage is discouraged.)
Assertion
Ref Expression
pjhval ((𝐻C𝐴 ∈ ℋ) → ((proj𝐻)‘𝐴) = (𝑥𝐻𝑦 ∈ (⊥‘𝐻)𝐴 = (𝑥 + 𝑦)))
Distinct variable groups:   𝑥,𝑦,𝐻   𝑥,𝐴,𝑦

Proof of Theorem pjhval
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 pjhfval 31325 . . 3 (𝐻C → (proj𝐻) = (𝑧 ∈ ℋ ↦ (𝑥𝐻𝑦 ∈ (⊥‘𝐻)𝑧 = (𝑥 + 𝑦))))
21fveq1d 6860 . 2 (𝐻C → ((proj𝐻)‘𝐴) = ((𝑧 ∈ ℋ ↦ (𝑥𝐻𝑦 ∈ (⊥‘𝐻)𝑧 = (𝑥 + 𝑦)))‘𝐴))
3 eqeq1 2733 . . . . 5 (𝑧 = 𝐴 → (𝑧 = (𝑥 + 𝑦) ↔ 𝐴 = (𝑥 + 𝑦)))
43rexbidv 3157 . . . 4 (𝑧 = 𝐴 → (∃𝑦 ∈ (⊥‘𝐻)𝑧 = (𝑥 + 𝑦) ↔ ∃𝑦 ∈ (⊥‘𝐻)𝐴 = (𝑥 + 𝑦)))
54riotabidv 7346 . . 3 (𝑧 = 𝐴 → (𝑥𝐻𝑦 ∈ (⊥‘𝐻)𝑧 = (𝑥 + 𝑦)) = (𝑥𝐻𝑦 ∈ (⊥‘𝐻)𝐴 = (𝑥 + 𝑦)))
6 eqid 2729 . . 3 (𝑧 ∈ ℋ ↦ (𝑥𝐻𝑦 ∈ (⊥‘𝐻)𝑧 = (𝑥 + 𝑦))) = (𝑧 ∈ ℋ ↦ (𝑥𝐻𝑦 ∈ (⊥‘𝐻)𝑧 = (𝑥 + 𝑦)))
7 riotaex 7348 . . 3 (𝑥𝐻𝑦 ∈ (⊥‘𝐻)𝐴 = (𝑥 + 𝑦)) ∈ V
85, 6, 7fvmpt 6968 . 2 (𝐴 ∈ ℋ → ((𝑧 ∈ ℋ ↦ (𝑥𝐻𝑦 ∈ (⊥‘𝐻)𝑧 = (𝑥 + 𝑦)))‘𝐴) = (𝑥𝐻𝑦 ∈ (⊥‘𝐻)𝐴 = (𝑥 + 𝑦)))
92, 8sylan9eq 2784 1 ((𝐻C𝐴 ∈ ℋ) → ((proj𝐻)‘𝐴) = (𝑥𝐻𝑦 ∈ (⊥‘𝐻)𝐴 = (𝑥 + 𝑦)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wrex 3053  cmpt 5188  cfv 6511  crio 7343  (class class class)co 7387  chba 30848   + cva 30849   C cch 30858  cort 30859  projcpjh 30866
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pr 5387  ax-hilex 30928
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-pjh 31324
This theorem is referenced by:  pjpreeq  31327
  Copyright terms: Public domain W3C validator