| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > pjhval | Structured version Visualization version GIF version | ||
| Description: Value of a projection. (Contributed by NM, 23-Oct-1999.) (Revised by Mario Carneiro, 15-Dec-2013.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| pjhval | ⊢ ((𝐻 ∈ Cℋ ∧ 𝐴 ∈ ℋ) → ((projℎ‘𝐻)‘𝐴) = (℩𝑥 ∈ 𝐻 ∃𝑦 ∈ (⊥‘𝐻)𝐴 = (𝑥 +ℎ 𝑦))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pjhfval 31368 | . . 3 ⊢ (𝐻 ∈ Cℋ → (projℎ‘𝐻) = (𝑧 ∈ ℋ ↦ (℩𝑥 ∈ 𝐻 ∃𝑦 ∈ (⊥‘𝐻)𝑧 = (𝑥 +ℎ 𝑦)))) | |
| 2 | 1 | fveq1d 6819 | . 2 ⊢ (𝐻 ∈ Cℋ → ((projℎ‘𝐻)‘𝐴) = ((𝑧 ∈ ℋ ↦ (℩𝑥 ∈ 𝐻 ∃𝑦 ∈ (⊥‘𝐻)𝑧 = (𝑥 +ℎ 𝑦)))‘𝐴)) |
| 3 | eqeq1 2735 | . . . . 5 ⊢ (𝑧 = 𝐴 → (𝑧 = (𝑥 +ℎ 𝑦) ↔ 𝐴 = (𝑥 +ℎ 𝑦))) | |
| 4 | 3 | rexbidv 3156 | . . . 4 ⊢ (𝑧 = 𝐴 → (∃𝑦 ∈ (⊥‘𝐻)𝑧 = (𝑥 +ℎ 𝑦) ↔ ∃𝑦 ∈ (⊥‘𝐻)𝐴 = (𝑥 +ℎ 𝑦))) |
| 5 | 4 | riotabidv 7300 | . . 3 ⊢ (𝑧 = 𝐴 → (℩𝑥 ∈ 𝐻 ∃𝑦 ∈ (⊥‘𝐻)𝑧 = (𝑥 +ℎ 𝑦)) = (℩𝑥 ∈ 𝐻 ∃𝑦 ∈ (⊥‘𝐻)𝐴 = (𝑥 +ℎ 𝑦))) |
| 6 | eqid 2731 | . . 3 ⊢ (𝑧 ∈ ℋ ↦ (℩𝑥 ∈ 𝐻 ∃𝑦 ∈ (⊥‘𝐻)𝑧 = (𝑥 +ℎ 𝑦))) = (𝑧 ∈ ℋ ↦ (℩𝑥 ∈ 𝐻 ∃𝑦 ∈ (⊥‘𝐻)𝑧 = (𝑥 +ℎ 𝑦))) | |
| 7 | riotaex 7302 | . . 3 ⊢ (℩𝑥 ∈ 𝐻 ∃𝑦 ∈ (⊥‘𝐻)𝐴 = (𝑥 +ℎ 𝑦)) ∈ V | |
| 8 | 5, 6, 7 | fvmpt 6924 | . 2 ⊢ (𝐴 ∈ ℋ → ((𝑧 ∈ ℋ ↦ (℩𝑥 ∈ 𝐻 ∃𝑦 ∈ (⊥‘𝐻)𝑧 = (𝑥 +ℎ 𝑦)))‘𝐴) = (℩𝑥 ∈ 𝐻 ∃𝑦 ∈ (⊥‘𝐻)𝐴 = (𝑥 +ℎ 𝑦))) |
| 9 | 2, 8 | sylan9eq 2786 | 1 ⊢ ((𝐻 ∈ Cℋ ∧ 𝐴 ∈ ℋ) → ((projℎ‘𝐻)‘𝐴) = (℩𝑥 ∈ 𝐻 ∃𝑦 ∈ (⊥‘𝐻)𝐴 = (𝑥 +ℎ 𝑦))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∃wrex 3056 ↦ cmpt 5167 ‘cfv 6476 ℩crio 7297 (class class class)co 7341 ℋchba 30891 +ℎ cva 30892 Cℋ cch 30901 ⊥cort 30902 projℎcpjh 30909 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5212 ax-sep 5229 ax-nul 5239 ax-pr 5365 ax-hilex 30971 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-if 4471 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-id 5506 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-riota 7298 df-pjh 31367 |
| This theorem is referenced by: pjpreeq 31370 |
| Copyright terms: Public domain | W3C validator |