Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > pjhval | Structured version Visualization version GIF version |
Description: Value of a projection. (Contributed by NM, 23-Oct-1999.) (Revised by Mario Carneiro, 15-Dec-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
pjhval | ⊢ ((𝐻 ∈ Cℋ ∧ 𝐴 ∈ ℋ) → ((projℎ‘𝐻)‘𝐴) = (℩𝑥 ∈ 𝐻 ∃𝑦 ∈ (⊥‘𝐻)𝐴 = (𝑥 +ℎ 𝑦))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pjhfval 29659 | . . 3 ⊢ (𝐻 ∈ Cℋ → (projℎ‘𝐻) = (𝑧 ∈ ℋ ↦ (℩𝑥 ∈ 𝐻 ∃𝑦 ∈ (⊥‘𝐻)𝑧 = (𝑥 +ℎ 𝑦)))) | |
2 | 1 | fveq1d 6758 | . 2 ⊢ (𝐻 ∈ Cℋ → ((projℎ‘𝐻)‘𝐴) = ((𝑧 ∈ ℋ ↦ (℩𝑥 ∈ 𝐻 ∃𝑦 ∈ (⊥‘𝐻)𝑧 = (𝑥 +ℎ 𝑦)))‘𝐴)) |
3 | eqeq1 2742 | . . . . 5 ⊢ (𝑧 = 𝐴 → (𝑧 = (𝑥 +ℎ 𝑦) ↔ 𝐴 = (𝑥 +ℎ 𝑦))) | |
4 | 3 | rexbidv 3225 | . . . 4 ⊢ (𝑧 = 𝐴 → (∃𝑦 ∈ (⊥‘𝐻)𝑧 = (𝑥 +ℎ 𝑦) ↔ ∃𝑦 ∈ (⊥‘𝐻)𝐴 = (𝑥 +ℎ 𝑦))) |
5 | 4 | riotabidv 7214 | . . 3 ⊢ (𝑧 = 𝐴 → (℩𝑥 ∈ 𝐻 ∃𝑦 ∈ (⊥‘𝐻)𝑧 = (𝑥 +ℎ 𝑦)) = (℩𝑥 ∈ 𝐻 ∃𝑦 ∈ (⊥‘𝐻)𝐴 = (𝑥 +ℎ 𝑦))) |
6 | eqid 2738 | . . 3 ⊢ (𝑧 ∈ ℋ ↦ (℩𝑥 ∈ 𝐻 ∃𝑦 ∈ (⊥‘𝐻)𝑧 = (𝑥 +ℎ 𝑦))) = (𝑧 ∈ ℋ ↦ (℩𝑥 ∈ 𝐻 ∃𝑦 ∈ (⊥‘𝐻)𝑧 = (𝑥 +ℎ 𝑦))) | |
7 | riotaex 7216 | . . 3 ⊢ (℩𝑥 ∈ 𝐻 ∃𝑦 ∈ (⊥‘𝐻)𝐴 = (𝑥 +ℎ 𝑦)) ∈ V | |
8 | 5, 6, 7 | fvmpt 6857 | . 2 ⊢ (𝐴 ∈ ℋ → ((𝑧 ∈ ℋ ↦ (℩𝑥 ∈ 𝐻 ∃𝑦 ∈ (⊥‘𝐻)𝑧 = (𝑥 +ℎ 𝑦)))‘𝐴) = (℩𝑥 ∈ 𝐻 ∃𝑦 ∈ (⊥‘𝐻)𝐴 = (𝑥 +ℎ 𝑦))) |
9 | 2, 8 | sylan9eq 2799 | 1 ⊢ ((𝐻 ∈ Cℋ ∧ 𝐴 ∈ ℋ) → ((projℎ‘𝐻)‘𝐴) = (℩𝑥 ∈ 𝐻 ∃𝑦 ∈ (⊥‘𝐻)𝐴 = (𝑥 +ℎ 𝑦))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∃wrex 3064 ↦ cmpt 5153 ‘cfv 6418 ℩crio 7211 (class class class)co 7255 ℋchba 29182 +ℎ cva 29183 Cℋ cch 29192 ⊥cort 29193 projℎcpjh 29200 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-hilex 29262 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-pjh 29658 |
This theorem is referenced by: pjpreeq 29661 |
Copyright terms: Public domain | W3C validator |