![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > pjfni | Structured version Visualization version GIF version |
Description: Functionality of a projection. (Contributed by NM, 30-Oct-1999.) (Revised by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
pjfn.1 | ⊢ 𝐻 ∈ Cℋ |
Ref | Expression |
---|---|
pjfni | ⊢ (projℎ‘𝐻) Fn ℋ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | riotaex 6871 | . 2 ⊢ (℩𝑦 ∈ 𝐻 ∃𝑧 ∈ (⊥‘𝐻)𝑥 = (𝑦 +ℎ 𝑧)) ∈ V | |
2 | pjfn.1 | . . 3 ⊢ 𝐻 ∈ Cℋ | |
3 | pjhfval 28811 | . . 3 ⊢ (𝐻 ∈ Cℋ → (projℎ‘𝐻) = (𝑥 ∈ ℋ ↦ (℩𝑦 ∈ 𝐻 ∃𝑧 ∈ (⊥‘𝐻)𝑥 = (𝑦 +ℎ 𝑧)))) | |
4 | 2, 3 | ax-mp 5 | . 2 ⊢ (projℎ‘𝐻) = (𝑥 ∈ ℋ ↦ (℩𝑦 ∈ 𝐻 ∃𝑧 ∈ (⊥‘𝐻)𝑥 = (𝑦 +ℎ 𝑧))) |
5 | 1, 4 | fnmpti 6256 | 1 ⊢ (projℎ‘𝐻) Fn ℋ |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1658 ∈ wcel 2166 ∃wrex 3119 ↦ cmpt 4953 Fn wfn 6119 ‘cfv 6124 ℩crio 6866 (class class class)co 6906 ℋchba 28332 +ℎ cva 28333 Cℋ cch 28342 ⊥cort 28343 projℎcpjh 28350 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-9 2175 ax-10 2194 ax-11 2209 ax-12 2222 ax-13 2391 ax-ext 2804 ax-rep 4995 ax-sep 5006 ax-nul 5014 ax-pr 5128 ax-hilex 28412 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 881 df-3an 1115 df-tru 1662 df-ex 1881 df-nf 1885 df-sb 2070 df-mo 2606 df-eu 2641 df-clab 2813 df-cleq 2819 df-clel 2822 df-nfc 2959 df-ne 3001 df-ral 3123 df-rex 3124 df-reu 3125 df-rab 3127 df-v 3417 df-sbc 3664 df-csb 3759 df-dif 3802 df-un 3804 df-in 3806 df-ss 3813 df-nul 4146 df-if 4308 df-sn 4399 df-pr 4401 df-op 4405 df-uni 4660 df-iun 4743 df-br 4875 df-opab 4937 df-mpt 4954 df-id 5251 df-xp 5349 df-rel 5350 df-cnv 5351 df-co 5352 df-dm 5353 df-rn 5354 df-res 5355 df-ima 5356 df-iota 6087 df-fun 6126 df-fn 6127 df-f 6128 df-f1 6129 df-fo 6130 df-f1o 6131 df-fv 6132 df-riota 6867 df-pjh 28810 |
This theorem is referenced by: pjrni 29117 pjfoi 29118 pjfi 29119 dfiop2 29168 hmopidmpji 29567 pjssdif2i 29589 pjimai 29591 |
Copyright terms: Public domain | W3C validator |