| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > pjfni | Structured version Visualization version GIF version | ||
| Description: Functionality of a projection. (Contributed by NM, 30-Oct-1999.) (Revised by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| pjfn.1 | ⊢ 𝐻 ∈ Cℋ |
| Ref | Expression |
|---|---|
| pjfni | ⊢ (projℎ‘𝐻) Fn ℋ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | riotaex 7307 | . 2 ⊢ (℩𝑦 ∈ 𝐻 ∃𝑧 ∈ (⊥‘𝐻)𝑥 = (𝑦 +ℎ 𝑧)) ∈ V | |
| 2 | pjfn.1 | . . 3 ⊢ 𝐻 ∈ Cℋ | |
| 3 | pjhfval 31376 | . . 3 ⊢ (𝐻 ∈ Cℋ → (projℎ‘𝐻) = (𝑥 ∈ ℋ ↦ (℩𝑦 ∈ 𝐻 ∃𝑧 ∈ (⊥‘𝐻)𝑥 = (𝑦 +ℎ 𝑧)))) | |
| 4 | 2, 3 | ax-mp 5 | . 2 ⊢ (projℎ‘𝐻) = (𝑥 ∈ ℋ ↦ (℩𝑦 ∈ 𝐻 ∃𝑧 ∈ (⊥‘𝐻)𝑥 = (𝑦 +ℎ 𝑧))) |
| 5 | 1, 4 | fnmpti 6624 | 1 ⊢ (projℎ‘𝐻) Fn ℋ |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∈ wcel 2111 ∃wrex 3056 ↦ cmpt 5170 Fn wfn 6476 ‘cfv 6481 ℩crio 7302 (class class class)co 7346 ℋchba 30899 +ℎ cva 30900 Cℋ cch 30909 ⊥cort 30910 projℎcpjh 30917 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pr 5368 ax-hilex 30979 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-pjh 31375 |
| This theorem is referenced by: pjrni 31682 pjfoi 31683 pjfi 31684 dfiop2 31733 hmopidmpji 32132 pjssdif2i 32154 pjimai 32156 |
| Copyright terms: Public domain | W3C validator |