| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > pjfni | Structured version Visualization version GIF version | ||
| Description: Functionality of a projection. (Contributed by NM, 30-Oct-1999.) (Revised by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| pjfn.1 | ⊢ 𝐻 ∈ Cℋ |
| Ref | Expression |
|---|---|
| pjfni | ⊢ (projℎ‘𝐻) Fn ℋ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | riotaex 7371 | . 2 ⊢ (℩𝑦 ∈ 𝐻 ∃𝑧 ∈ (⊥‘𝐻)𝑥 = (𝑦 +ℎ 𝑧)) ∈ V | |
| 2 | pjfn.1 | . . 3 ⊢ 𝐻 ∈ Cℋ | |
| 3 | pjhfval 31382 | . . 3 ⊢ (𝐻 ∈ Cℋ → (projℎ‘𝐻) = (𝑥 ∈ ℋ ↦ (℩𝑦 ∈ 𝐻 ∃𝑧 ∈ (⊥‘𝐻)𝑥 = (𝑦 +ℎ 𝑧)))) | |
| 4 | 2, 3 | ax-mp 5 | . 2 ⊢ (projℎ‘𝐻) = (𝑥 ∈ ℋ ↦ (℩𝑦 ∈ 𝐻 ∃𝑧 ∈ (⊥‘𝐻)𝑥 = (𝑦 +ℎ 𝑧))) |
| 5 | 1, 4 | fnmpti 6686 | 1 ⊢ (projℎ‘𝐻) Fn ℋ |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 ∃wrex 3061 ↦ cmpt 5206 Fn wfn 6531 ‘cfv 6536 ℩crio 7366 (class class class)co 7410 ℋchba 30905 +ℎ cva 30906 Cℋ cch 30915 ⊥cort 30916 projℎcpjh 30923 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pr 5407 ax-hilex 30985 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-pjh 31381 |
| This theorem is referenced by: pjrni 31688 pjfoi 31689 pjfi 31690 dfiop2 31739 hmopidmpji 32138 pjssdif2i 32160 pjimai 32162 |
| Copyright terms: Public domain | W3C validator |