HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  pjfni Structured version   Visualization version   GIF version

Theorem pjfni 31645
Description: Functionality of a projection. (Contributed by NM, 30-Oct-1999.) (Revised by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.)
Hypothesis
Ref Expression
pjfn.1 𝐻C
Assertion
Ref Expression
pjfni (proj𝐻) Fn ℋ

Proof of Theorem pjfni
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 riotaex 7310 . 2 (𝑦𝐻𝑧 ∈ (⊥‘𝐻)𝑥 = (𝑦 + 𝑧)) ∈ V
2 pjfn.1 . . 3 𝐻C
3 pjhfval 31340 . . 3 (𝐻C → (proj𝐻) = (𝑥 ∈ ℋ ↦ (𝑦𝐻𝑧 ∈ (⊥‘𝐻)𝑥 = (𝑦 + 𝑧))))
42, 3ax-mp 5 . 2 (proj𝐻) = (𝑥 ∈ ℋ ↦ (𝑦𝐻𝑧 ∈ (⊥‘𝐻)𝑥 = (𝑦 + 𝑧)))
51, 4fnmpti 6625 1 (proj𝐻) Fn ℋ
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2109  wrex 3053  cmpt 5173   Fn wfn 6477  cfv 6482  crio 7305  (class class class)co 7349  chba 30863   + cva 30864   C cch 30873  cort 30874  projcpjh 30881
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pr 5371  ax-hilex 30943
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-pjh 31339
This theorem is referenced by:  pjrni  31646  pjfoi  31647  pjfi  31648  dfiop2  31697  hmopidmpji  32096  pjssdif2i  32118  pjimai  32120
  Copyright terms: Public domain W3C validator