| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > pjfni | Structured version Visualization version GIF version | ||
| Description: Functionality of a projection. (Contributed by NM, 30-Oct-1999.) (Revised by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| pjfn.1 | ⊢ 𝐻 ∈ Cℋ |
| Ref | Expression |
|---|---|
| pjfni | ⊢ (projℎ‘𝐻) Fn ℋ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | riotaex 7310 | . 2 ⊢ (℩𝑦 ∈ 𝐻 ∃𝑧 ∈ (⊥‘𝐻)𝑥 = (𝑦 +ℎ 𝑧)) ∈ V | |
| 2 | pjfn.1 | . . 3 ⊢ 𝐻 ∈ Cℋ | |
| 3 | pjhfval 31340 | . . 3 ⊢ (𝐻 ∈ Cℋ → (projℎ‘𝐻) = (𝑥 ∈ ℋ ↦ (℩𝑦 ∈ 𝐻 ∃𝑧 ∈ (⊥‘𝐻)𝑥 = (𝑦 +ℎ 𝑧)))) | |
| 4 | 2, 3 | ax-mp 5 | . 2 ⊢ (projℎ‘𝐻) = (𝑥 ∈ ℋ ↦ (℩𝑦 ∈ 𝐻 ∃𝑧 ∈ (⊥‘𝐻)𝑥 = (𝑦 +ℎ 𝑧))) |
| 5 | 1, 4 | fnmpti 6625 | 1 ⊢ (projℎ‘𝐻) Fn ℋ |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 ∃wrex 3053 ↦ cmpt 5173 Fn wfn 6477 ‘cfv 6482 ℩crio 7305 (class class class)co 7349 ℋchba 30863 +ℎ cva 30864 Cℋ cch 30873 ⊥cort 30874 projℎcpjh 30881 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pr 5371 ax-hilex 30943 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-pjh 31339 |
| This theorem is referenced by: pjrni 31646 pjfoi 31647 pjfi 31648 dfiop2 31697 hmopidmpji 32096 pjssdif2i 32118 pjimai 32120 |
| Copyright terms: Public domain | W3C validator |