HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  pjpreeq Structured version   Visualization version   GIF version

Theorem pjpreeq 29661
Description: Equality with a projection. This version of pjeq 29662 does not assume the Axiom of Choice via pjhth 29656. (Contributed by Mario Carneiro, 15-May-2014.) (New usage is discouraged.)
Assertion
Ref Expression
pjpreeq ((𝐻C𝐴 ∈ (𝐻 + (⊥‘𝐻))) → (((proj𝐻)‘𝐴) = 𝐵 ↔ (𝐵𝐻 ∧ ∃𝑥 ∈ (⊥‘𝐻)𝐴 = (𝐵 + 𝑥))))
Distinct variable groups:   𝑥,𝐻   𝑥,𝐴   𝑥,𝐵

Proof of Theorem pjpreeq
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 chsh 29487 . . . . . . . 8 (𝐻C𝐻S )
2 shocsh 29547 . . . . . . . 8 (𝐻S → (⊥‘𝐻) ∈ S )
3 shsel 29577 . . . . . . . 8 ((𝐻S ∧ (⊥‘𝐻) ∈ S ) → (𝐴 ∈ (𝐻 + (⊥‘𝐻)) ↔ ∃𝑦𝐻𝑥 ∈ (⊥‘𝐻)𝐴 = (𝑦 + 𝑥)))
41, 2, 3syl2anc2 584 . . . . . . 7 (𝐻C → (𝐴 ∈ (𝐻 + (⊥‘𝐻)) ↔ ∃𝑦𝐻𝑥 ∈ (⊥‘𝐻)𝐴 = (𝑦 + 𝑥)))
54biimpa 476 . . . . . 6 ((𝐻C𝐴 ∈ (𝐻 + (⊥‘𝐻))) → ∃𝑦𝐻𝑥 ∈ (⊥‘𝐻)𝐴 = (𝑦 + 𝑥))
61, 2syl 17 . . . . . . . 8 (𝐻C → (⊥‘𝐻) ∈ S )
7 ocin 29559 . . . . . . . . 9 (𝐻S → (𝐻 ∩ (⊥‘𝐻)) = 0)
81, 7syl 17 . . . . . . . 8 (𝐻C → (𝐻 ∩ (⊥‘𝐻)) = 0)
9 pjhthmo 29565 . . . . . . . 8 ((𝐻S ∧ (⊥‘𝐻) ∈ S ∧ (𝐻 ∩ (⊥‘𝐻)) = 0) → ∃*𝑦(𝑦𝐻 ∧ ∃𝑥 ∈ (⊥‘𝐻)𝐴 = (𝑦 + 𝑥)))
101, 6, 8, 9syl3anc 1369 . . . . . . 7 (𝐻C → ∃*𝑦(𝑦𝐻 ∧ ∃𝑥 ∈ (⊥‘𝐻)𝐴 = (𝑦 + 𝑥)))
1110adantr 480 . . . . . 6 ((𝐻C𝐴 ∈ (𝐻 + (⊥‘𝐻))) → ∃*𝑦(𝑦𝐻 ∧ ∃𝑥 ∈ (⊥‘𝐻)𝐴 = (𝑦 + 𝑥)))
12 reu5 3351 . . . . . . 7 (∃!𝑦𝐻𝑥 ∈ (⊥‘𝐻)𝐴 = (𝑦 + 𝑥) ↔ (∃𝑦𝐻𝑥 ∈ (⊥‘𝐻)𝐴 = (𝑦 + 𝑥) ∧ ∃*𝑦𝐻𝑥 ∈ (⊥‘𝐻)𝐴 = (𝑦 + 𝑥)))
13 df-rmo 3071 . . . . . . . 8 (∃*𝑦𝐻𝑥 ∈ (⊥‘𝐻)𝐴 = (𝑦 + 𝑥) ↔ ∃*𝑦(𝑦𝐻 ∧ ∃𝑥 ∈ (⊥‘𝐻)𝐴 = (𝑦 + 𝑥)))
1413anbi2i 622 . . . . . . 7 ((∃𝑦𝐻𝑥 ∈ (⊥‘𝐻)𝐴 = (𝑦 + 𝑥) ∧ ∃*𝑦𝐻𝑥 ∈ (⊥‘𝐻)𝐴 = (𝑦 + 𝑥)) ↔ (∃𝑦𝐻𝑥 ∈ (⊥‘𝐻)𝐴 = (𝑦 + 𝑥) ∧ ∃*𝑦(𝑦𝐻 ∧ ∃𝑥 ∈ (⊥‘𝐻)𝐴 = (𝑦 + 𝑥))))
1512, 14bitri 274 . . . . . 6 (∃!𝑦𝐻𝑥 ∈ (⊥‘𝐻)𝐴 = (𝑦 + 𝑥) ↔ (∃𝑦𝐻𝑥 ∈ (⊥‘𝐻)𝐴 = (𝑦 + 𝑥) ∧ ∃*𝑦(𝑦𝐻 ∧ ∃𝑥 ∈ (⊥‘𝐻)𝐴 = (𝑦 + 𝑥))))
165, 11, 15sylanbrc 582 . . . . 5 ((𝐻C𝐴 ∈ (𝐻 + (⊥‘𝐻))) → ∃!𝑦𝐻𝑥 ∈ (⊥‘𝐻)𝐴 = (𝑦 + 𝑥))
17 riotacl 7230 . . . . 5 (∃!𝑦𝐻𝑥 ∈ (⊥‘𝐻)𝐴 = (𝑦 + 𝑥) → (𝑦𝐻𝑥 ∈ (⊥‘𝐻)𝐴 = (𝑦 + 𝑥)) ∈ 𝐻)
1816, 17syl 17 . . . 4 ((𝐻C𝐴 ∈ (𝐻 + (⊥‘𝐻))) → (𝑦𝐻𝑥 ∈ (⊥‘𝐻)𝐴 = (𝑦 + 𝑥)) ∈ 𝐻)
19 eleq1 2826 . . . 4 ((𝑦𝐻𝑥 ∈ (⊥‘𝐻)𝐴 = (𝑦 + 𝑥)) = 𝐵 → ((𝑦𝐻𝑥 ∈ (⊥‘𝐻)𝐴 = (𝑦 + 𝑥)) ∈ 𝐻𝐵𝐻))
2018, 19syl5ibcom 244 . . 3 ((𝐻C𝐴 ∈ (𝐻 + (⊥‘𝐻))) → ((𝑦𝐻𝑥 ∈ (⊥‘𝐻)𝐴 = (𝑦 + 𝑥)) = 𝐵𝐵𝐻))
2120pm4.71rd 562 . 2 ((𝐻C𝐴 ∈ (𝐻 + (⊥‘𝐻))) → ((𝑦𝐻𝑥 ∈ (⊥‘𝐻)𝐴 = (𝑦 + 𝑥)) = 𝐵 ↔ (𝐵𝐻 ∧ (𝑦𝐻𝑥 ∈ (⊥‘𝐻)𝐴 = (𝑦 + 𝑥)) = 𝐵)))
22 shsss 29576 . . . . . 6 ((𝐻S ∧ (⊥‘𝐻) ∈ S ) → (𝐻 + (⊥‘𝐻)) ⊆ ℋ)
231, 2, 22syl2anc2 584 . . . . 5 (𝐻C → (𝐻 + (⊥‘𝐻)) ⊆ ℋ)
2423sselda 3917 . . . 4 ((𝐻C𝐴 ∈ (𝐻 + (⊥‘𝐻))) → 𝐴 ∈ ℋ)
25 pjhval 29660 . . . 4 ((𝐻C𝐴 ∈ ℋ) → ((proj𝐻)‘𝐴) = (𝑦𝐻𝑥 ∈ (⊥‘𝐻)𝐴 = (𝑦 + 𝑥)))
2624, 25syldan 590 . . 3 ((𝐻C𝐴 ∈ (𝐻 + (⊥‘𝐻))) → ((proj𝐻)‘𝐴) = (𝑦𝐻𝑥 ∈ (⊥‘𝐻)𝐴 = (𝑦 + 𝑥)))
2726eqeq1d 2740 . 2 ((𝐻C𝐴 ∈ (𝐻 + (⊥‘𝐻))) → (((proj𝐻)‘𝐴) = 𝐵 ↔ (𝑦𝐻𝑥 ∈ (⊥‘𝐻)𝐴 = (𝑦 + 𝑥)) = 𝐵))
28 id 22 . . . 4 (𝐵𝐻𝐵𝐻)
29 oveq1 7262 . . . . . . 7 (𝑦 = 𝐵 → (𝑦 + 𝑥) = (𝐵 + 𝑥))
3029eqeq2d 2749 . . . . . 6 (𝑦 = 𝐵 → (𝐴 = (𝑦 + 𝑥) ↔ 𝐴 = (𝐵 + 𝑥)))
3130rexbidv 3225 . . . . 5 (𝑦 = 𝐵 → (∃𝑥 ∈ (⊥‘𝐻)𝐴 = (𝑦 + 𝑥) ↔ ∃𝑥 ∈ (⊥‘𝐻)𝐴 = (𝐵 + 𝑥)))
3231riota2 7238 . . . 4 ((𝐵𝐻 ∧ ∃!𝑦𝐻𝑥 ∈ (⊥‘𝐻)𝐴 = (𝑦 + 𝑥)) → (∃𝑥 ∈ (⊥‘𝐻)𝐴 = (𝐵 + 𝑥) ↔ (𝑦𝐻𝑥 ∈ (⊥‘𝐻)𝐴 = (𝑦 + 𝑥)) = 𝐵))
3328, 16, 32syl2anr 596 . . 3 (((𝐻C𝐴 ∈ (𝐻 + (⊥‘𝐻))) ∧ 𝐵𝐻) → (∃𝑥 ∈ (⊥‘𝐻)𝐴 = (𝐵 + 𝑥) ↔ (𝑦𝐻𝑥 ∈ (⊥‘𝐻)𝐴 = (𝑦 + 𝑥)) = 𝐵))
3433pm5.32da 578 . 2 ((𝐻C𝐴 ∈ (𝐻 + (⊥‘𝐻))) → ((𝐵𝐻 ∧ ∃𝑥 ∈ (⊥‘𝐻)𝐴 = (𝐵 + 𝑥)) ↔ (𝐵𝐻 ∧ (𝑦𝐻𝑥 ∈ (⊥‘𝐻)𝐴 = (𝑦 + 𝑥)) = 𝐵)))
3521, 27, 343bitr4d 310 1 ((𝐻C𝐴 ∈ (𝐻 + (⊥‘𝐻))) → (((proj𝐻)‘𝐴) = 𝐵 ↔ (𝐵𝐻 ∧ ∃𝑥 ∈ (⊥‘𝐻)𝐴 = (𝐵 + 𝑥))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  ∃*wmo 2538  wrex 3064  ∃!wreu 3065  ∃*wrmo 3066  cin 3882  wss 3883  cfv 6418  crio 7211  (class class class)co 7255  chba 29182   + cva 29183   S csh 29191   C cch 29192  cort 29193   + cph 29194  0c0h 29198  projcpjh 29200
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-hilex 29262  ax-hfvadd 29263  ax-hvcom 29264  ax-hvass 29265  ax-hv0cl 29266  ax-hvaddid 29267  ax-hfvmul 29268  ax-hvmulid 29269  ax-hvmulass 29270  ax-hvdistr1 29271  ax-hvdistr2 29272  ax-hvmul0 29273  ax-hfi 29342  ax-his2 29346  ax-his3 29347  ax-his4 29348
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-po 5494  df-so 5495  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-grpo 28756  df-ablo 28808  df-hvsub 29234  df-sh 29470  df-ch 29484  df-oc 29515  df-ch0 29516  df-shs 29571  df-pjh 29658
This theorem is referenced by:  pjeq  29662  pjpjpre  29682  chscllem1  29900  chscllem2  29901  chscllem3  29902
  Copyright terms: Public domain W3C validator