HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  pjpreeq Structured version   Visualization version   GIF version

Theorem pjpreeq 31334
Description: Equality with a projection. This version of pjeq 31335 does not assume the Axiom of Choice via pjhth 31329. (Contributed by Mario Carneiro, 15-May-2014.) (New usage is discouraged.)
Assertion
Ref Expression
pjpreeq ((𝐻C𝐴 ∈ (𝐻 + (⊥‘𝐻))) → (((proj𝐻)‘𝐴) = 𝐵 ↔ (𝐵𝐻 ∧ ∃𝑥 ∈ (⊥‘𝐻)𝐴 = (𝐵 + 𝑥))))
Distinct variable groups:   𝑥,𝐻   𝑥,𝐴   𝑥,𝐵

Proof of Theorem pjpreeq
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 chsh 31160 . . . . . . . 8 (𝐻C𝐻S )
2 shocsh 31220 . . . . . . . 8 (𝐻S → (⊥‘𝐻) ∈ S )
3 shsel 31250 . . . . . . . 8 ((𝐻S ∧ (⊥‘𝐻) ∈ S ) → (𝐴 ∈ (𝐻 + (⊥‘𝐻)) ↔ ∃𝑦𝐻𝑥 ∈ (⊥‘𝐻)𝐴 = (𝑦 + 𝑥)))
41, 2, 3syl2anc2 585 . . . . . . 7 (𝐻C → (𝐴 ∈ (𝐻 + (⊥‘𝐻)) ↔ ∃𝑦𝐻𝑥 ∈ (⊥‘𝐻)𝐴 = (𝑦 + 𝑥)))
54biimpa 476 . . . . . 6 ((𝐻C𝐴 ∈ (𝐻 + (⊥‘𝐻))) → ∃𝑦𝐻𝑥 ∈ (⊥‘𝐻)𝐴 = (𝑦 + 𝑥))
61, 2syl 17 . . . . . . . 8 (𝐻C → (⊥‘𝐻) ∈ S )
7 ocin 31232 . . . . . . . . 9 (𝐻S → (𝐻 ∩ (⊥‘𝐻)) = 0)
81, 7syl 17 . . . . . . . 8 (𝐻C → (𝐻 ∩ (⊥‘𝐻)) = 0)
9 pjhthmo 31238 . . . . . . . 8 ((𝐻S ∧ (⊥‘𝐻) ∈ S ∧ (𝐻 ∩ (⊥‘𝐻)) = 0) → ∃*𝑦(𝑦𝐻 ∧ ∃𝑥 ∈ (⊥‘𝐻)𝐴 = (𝑦 + 𝑥)))
101, 6, 8, 9syl3anc 1373 . . . . . . 7 (𝐻C → ∃*𝑦(𝑦𝐻 ∧ ∃𝑥 ∈ (⊥‘𝐻)𝐴 = (𝑦 + 𝑥)))
1110adantr 480 . . . . . 6 ((𝐻C𝐴 ∈ (𝐻 + (⊥‘𝐻))) → ∃*𝑦(𝑦𝐻 ∧ ∃𝑥 ∈ (⊥‘𝐻)𝐴 = (𝑦 + 𝑥)))
12 reu5 3358 . . . . . . 7 (∃!𝑦𝐻𝑥 ∈ (⊥‘𝐻)𝐴 = (𝑦 + 𝑥) ↔ (∃𝑦𝐻𝑥 ∈ (⊥‘𝐻)𝐴 = (𝑦 + 𝑥) ∧ ∃*𝑦𝐻𝑥 ∈ (⊥‘𝐻)𝐴 = (𝑦 + 𝑥)))
13 df-rmo 3356 . . . . . . . 8 (∃*𝑦𝐻𝑥 ∈ (⊥‘𝐻)𝐴 = (𝑦 + 𝑥) ↔ ∃*𝑦(𝑦𝐻 ∧ ∃𝑥 ∈ (⊥‘𝐻)𝐴 = (𝑦 + 𝑥)))
1413anbi2i 623 . . . . . . 7 ((∃𝑦𝐻𝑥 ∈ (⊥‘𝐻)𝐴 = (𝑦 + 𝑥) ∧ ∃*𝑦𝐻𝑥 ∈ (⊥‘𝐻)𝐴 = (𝑦 + 𝑥)) ↔ (∃𝑦𝐻𝑥 ∈ (⊥‘𝐻)𝐴 = (𝑦 + 𝑥) ∧ ∃*𝑦(𝑦𝐻 ∧ ∃𝑥 ∈ (⊥‘𝐻)𝐴 = (𝑦 + 𝑥))))
1512, 14bitri 275 . . . . . 6 (∃!𝑦𝐻𝑥 ∈ (⊥‘𝐻)𝐴 = (𝑦 + 𝑥) ↔ (∃𝑦𝐻𝑥 ∈ (⊥‘𝐻)𝐴 = (𝑦 + 𝑥) ∧ ∃*𝑦(𝑦𝐻 ∧ ∃𝑥 ∈ (⊥‘𝐻)𝐴 = (𝑦 + 𝑥))))
165, 11, 15sylanbrc 583 . . . . 5 ((𝐻C𝐴 ∈ (𝐻 + (⊥‘𝐻))) → ∃!𝑦𝐻𝑥 ∈ (⊥‘𝐻)𝐴 = (𝑦 + 𝑥))
17 riotacl 7364 . . . . 5 (∃!𝑦𝐻𝑥 ∈ (⊥‘𝐻)𝐴 = (𝑦 + 𝑥) → (𝑦𝐻𝑥 ∈ (⊥‘𝐻)𝐴 = (𝑦 + 𝑥)) ∈ 𝐻)
1816, 17syl 17 . . . 4 ((𝐻C𝐴 ∈ (𝐻 + (⊥‘𝐻))) → (𝑦𝐻𝑥 ∈ (⊥‘𝐻)𝐴 = (𝑦 + 𝑥)) ∈ 𝐻)
19 eleq1 2817 . . . 4 ((𝑦𝐻𝑥 ∈ (⊥‘𝐻)𝐴 = (𝑦 + 𝑥)) = 𝐵 → ((𝑦𝐻𝑥 ∈ (⊥‘𝐻)𝐴 = (𝑦 + 𝑥)) ∈ 𝐻𝐵𝐻))
2018, 19syl5ibcom 245 . . 3 ((𝐻C𝐴 ∈ (𝐻 + (⊥‘𝐻))) → ((𝑦𝐻𝑥 ∈ (⊥‘𝐻)𝐴 = (𝑦 + 𝑥)) = 𝐵𝐵𝐻))
2120pm4.71rd 562 . 2 ((𝐻C𝐴 ∈ (𝐻 + (⊥‘𝐻))) → ((𝑦𝐻𝑥 ∈ (⊥‘𝐻)𝐴 = (𝑦 + 𝑥)) = 𝐵 ↔ (𝐵𝐻 ∧ (𝑦𝐻𝑥 ∈ (⊥‘𝐻)𝐴 = (𝑦 + 𝑥)) = 𝐵)))
22 shsss 31249 . . . . . 6 ((𝐻S ∧ (⊥‘𝐻) ∈ S ) → (𝐻 + (⊥‘𝐻)) ⊆ ℋ)
231, 2, 22syl2anc2 585 . . . . 5 (𝐻C → (𝐻 + (⊥‘𝐻)) ⊆ ℋ)
2423sselda 3949 . . . 4 ((𝐻C𝐴 ∈ (𝐻 + (⊥‘𝐻))) → 𝐴 ∈ ℋ)
25 pjhval 31333 . . . 4 ((𝐻C𝐴 ∈ ℋ) → ((proj𝐻)‘𝐴) = (𝑦𝐻𝑥 ∈ (⊥‘𝐻)𝐴 = (𝑦 + 𝑥)))
2624, 25syldan 591 . . 3 ((𝐻C𝐴 ∈ (𝐻 + (⊥‘𝐻))) → ((proj𝐻)‘𝐴) = (𝑦𝐻𝑥 ∈ (⊥‘𝐻)𝐴 = (𝑦 + 𝑥)))
2726eqeq1d 2732 . 2 ((𝐻C𝐴 ∈ (𝐻 + (⊥‘𝐻))) → (((proj𝐻)‘𝐴) = 𝐵 ↔ (𝑦𝐻𝑥 ∈ (⊥‘𝐻)𝐴 = (𝑦 + 𝑥)) = 𝐵))
28 id 22 . . . 4 (𝐵𝐻𝐵𝐻)
29 oveq1 7397 . . . . . . 7 (𝑦 = 𝐵 → (𝑦 + 𝑥) = (𝐵 + 𝑥))
3029eqeq2d 2741 . . . . . 6 (𝑦 = 𝐵 → (𝐴 = (𝑦 + 𝑥) ↔ 𝐴 = (𝐵 + 𝑥)))
3130rexbidv 3158 . . . . 5 (𝑦 = 𝐵 → (∃𝑥 ∈ (⊥‘𝐻)𝐴 = (𝑦 + 𝑥) ↔ ∃𝑥 ∈ (⊥‘𝐻)𝐴 = (𝐵 + 𝑥)))
3231riota2 7372 . . . 4 ((𝐵𝐻 ∧ ∃!𝑦𝐻𝑥 ∈ (⊥‘𝐻)𝐴 = (𝑦 + 𝑥)) → (∃𝑥 ∈ (⊥‘𝐻)𝐴 = (𝐵 + 𝑥) ↔ (𝑦𝐻𝑥 ∈ (⊥‘𝐻)𝐴 = (𝑦 + 𝑥)) = 𝐵))
3328, 16, 32syl2anr 597 . . 3 (((𝐻C𝐴 ∈ (𝐻 + (⊥‘𝐻))) ∧ 𝐵𝐻) → (∃𝑥 ∈ (⊥‘𝐻)𝐴 = (𝐵 + 𝑥) ↔ (𝑦𝐻𝑥 ∈ (⊥‘𝐻)𝐴 = (𝑦 + 𝑥)) = 𝐵))
3433pm5.32da 579 . 2 ((𝐻C𝐴 ∈ (𝐻 + (⊥‘𝐻))) → ((𝐵𝐻 ∧ ∃𝑥 ∈ (⊥‘𝐻)𝐴 = (𝐵 + 𝑥)) ↔ (𝐵𝐻 ∧ (𝑦𝐻𝑥 ∈ (⊥‘𝐻)𝐴 = (𝑦 + 𝑥)) = 𝐵)))
3521, 27, 343bitr4d 311 1 ((𝐻C𝐴 ∈ (𝐻 + (⊥‘𝐻))) → (((proj𝐻)‘𝐴) = 𝐵 ↔ (𝐵𝐻 ∧ ∃𝑥 ∈ (⊥‘𝐻)𝐴 = (𝐵 + 𝑥))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  ∃*wmo 2532  wrex 3054  ∃!wreu 3354  ∃*wrmo 3355  cin 3916  wss 3917  cfv 6514  crio 7346  (class class class)co 7390  chba 30855   + cva 30856   S csh 30864   C cch 30865  cort 30866   + cph 30867  0c0h 30871  projcpjh 30873
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-hilex 30935  ax-hfvadd 30936  ax-hvcom 30937  ax-hvass 30938  ax-hv0cl 30939  ax-hvaddid 30940  ax-hfvmul 30941  ax-hvmulid 30942  ax-hvmulass 30943  ax-hvdistr1 30944  ax-hvdistr2 30945  ax-hvmul0 30946  ax-hfi 31015  ax-his2 31019  ax-his3 31020  ax-his4 31021
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-po 5549  df-so 5550  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-grpo 30429  df-ablo 30481  df-hvsub 30907  df-sh 31143  df-ch 31157  df-oc 31188  df-ch0 31189  df-shs 31244  df-pjh 31331
This theorem is referenced by:  pjeq  31335  pjpjpre  31355  chscllem1  31573  chscllem2  31574  chscllem3  31575
  Copyright terms: Public domain W3C validator