HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  pjpreeq Structured version   Visualization version   GIF version

Theorem pjpreeq 30616
Description: Equality with a projection. This version of pjeq 30617 does not assume the Axiom of Choice via pjhth 30611. (Contributed by Mario Carneiro, 15-May-2014.) (New usage is discouraged.)
Assertion
Ref Expression
pjpreeq ((𝐻C𝐴 ∈ (𝐻 + (⊥‘𝐻))) → (((proj𝐻)‘𝐴) = 𝐵 ↔ (𝐵𝐻 ∧ ∃𝑥 ∈ (⊥‘𝐻)𝐴 = (𝐵 + 𝑥))))
Distinct variable groups:   𝑥,𝐻   𝑥,𝐴   𝑥,𝐵

Proof of Theorem pjpreeq
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 chsh 30442 . . . . . . . 8 (𝐻C𝐻S )
2 shocsh 30502 . . . . . . . 8 (𝐻S → (⊥‘𝐻) ∈ S )
3 shsel 30532 . . . . . . . 8 ((𝐻S ∧ (⊥‘𝐻) ∈ S ) → (𝐴 ∈ (𝐻 + (⊥‘𝐻)) ↔ ∃𝑦𝐻𝑥 ∈ (⊥‘𝐻)𝐴 = (𝑦 + 𝑥)))
41, 2, 3syl2anc2 586 . . . . . . 7 (𝐻C → (𝐴 ∈ (𝐻 + (⊥‘𝐻)) ↔ ∃𝑦𝐻𝑥 ∈ (⊥‘𝐻)𝐴 = (𝑦 + 𝑥)))
54biimpa 478 . . . . . 6 ((𝐻C𝐴 ∈ (𝐻 + (⊥‘𝐻))) → ∃𝑦𝐻𝑥 ∈ (⊥‘𝐻)𝐴 = (𝑦 + 𝑥))
61, 2syl 17 . . . . . . . 8 (𝐻C → (⊥‘𝐻) ∈ S )
7 ocin 30514 . . . . . . . . 9 (𝐻S → (𝐻 ∩ (⊥‘𝐻)) = 0)
81, 7syl 17 . . . . . . . 8 (𝐻C → (𝐻 ∩ (⊥‘𝐻)) = 0)
9 pjhthmo 30520 . . . . . . . 8 ((𝐻S ∧ (⊥‘𝐻) ∈ S ∧ (𝐻 ∩ (⊥‘𝐻)) = 0) → ∃*𝑦(𝑦𝐻 ∧ ∃𝑥 ∈ (⊥‘𝐻)𝐴 = (𝑦 + 𝑥)))
101, 6, 8, 9syl3anc 1372 . . . . . . 7 (𝐻C → ∃*𝑦(𝑦𝐻 ∧ ∃𝑥 ∈ (⊥‘𝐻)𝐴 = (𝑦 + 𝑥)))
1110adantr 482 . . . . . 6 ((𝐻C𝐴 ∈ (𝐻 + (⊥‘𝐻))) → ∃*𝑦(𝑦𝐻 ∧ ∃𝑥 ∈ (⊥‘𝐻)𝐴 = (𝑦 + 𝑥)))
12 reu5 3379 . . . . . . 7 (∃!𝑦𝐻𝑥 ∈ (⊥‘𝐻)𝐴 = (𝑦 + 𝑥) ↔ (∃𝑦𝐻𝑥 ∈ (⊥‘𝐻)𝐴 = (𝑦 + 𝑥) ∧ ∃*𝑦𝐻𝑥 ∈ (⊥‘𝐻)𝐴 = (𝑦 + 𝑥)))
13 df-rmo 3377 . . . . . . . 8 (∃*𝑦𝐻𝑥 ∈ (⊥‘𝐻)𝐴 = (𝑦 + 𝑥) ↔ ∃*𝑦(𝑦𝐻 ∧ ∃𝑥 ∈ (⊥‘𝐻)𝐴 = (𝑦 + 𝑥)))
1413anbi2i 624 . . . . . . 7 ((∃𝑦𝐻𝑥 ∈ (⊥‘𝐻)𝐴 = (𝑦 + 𝑥) ∧ ∃*𝑦𝐻𝑥 ∈ (⊥‘𝐻)𝐴 = (𝑦 + 𝑥)) ↔ (∃𝑦𝐻𝑥 ∈ (⊥‘𝐻)𝐴 = (𝑦 + 𝑥) ∧ ∃*𝑦(𝑦𝐻 ∧ ∃𝑥 ∈ (⊥‘𝐻)𝐴 = (𝑦 + 𝑥))))
1512, 14bitri 275 . . . . . 6 (∃!𝑦𝐻𝑥 ∈ (⊥‘𝐻)𝐴 = (𝑦 + 𝑥) ↔ (∃𝑦𝐻𝑥 ∈ (⊥‘𝐻)𝐴 = (𝑦 + 𝑥) ∧ ∃*𝑦(𝑦𝐻 ∧ ∃𝑥 ∈ (⊥‘𝐻)𝐴 = (𝑦 + 𝑥))))
165, 11, 15sylanbrc 584 . . . . 5 ((𝐻C𝐴 ∈ (𝐻 + (⊥‘𝐻))) → ∃!𝑦𝐻𝑥 ∈ (⊥‘𝐻)𝐴 = (𝑦 + 𝑥))
17 riotacl 7370 . . . . 5 (∃!𝑦𝐻𝑥 ∈ (⊥‘𝐻)𝐴 = (𝑦 + 𝑥) → (𝑦𝐻𝑥 ∈ (⊥‘𝐻)𝐴 = (𝑦 + 𝑥)) ∈ 𝐻)
1816, 17syl 17 . . . 4 ((𝐻C𝐴 ∈ (𝐻 + (⊥‘𝐻))) → (𝑦𝐻𝑥 ∈ (⊥‘𝐻)𝐴 = (𝑦 + 𝑥)) ∈ 𝐻)
19 eleq1 2822 . . . 4 ((𝑦𝐻𝑥 ∈ (⊥‘𝐻)𝐴 = (𝑦 + 𝑥)) = 𝐵 → ((𝑦𝐻𝑥 ∈ (⊥‘𝐻)𝐴 = (𝑦 + 𝑥)) ∈ 𝐻𝐵𝐻))
2018, 19syl5ibcom 244 . . 3 ((𝐻C𝐴 ∈ (𝐻 + (⊥‘𝐻))) → ((𝑦𝐻𝑥 ∈ (⊥‘𝐻)𝐴 = (𝑦 + 𝑥)) = 𝐵𝐵𝐻))
2120pm4.71rd 564 . 2 ((𝐻C𝐴 ∈ (𝐻 + (⊥‘𝐻))) → ((𝑦𝐻𝑥 ∈ (⊥‘𝐻)𝐴 = (𝑦 + 𝑥)) = 𝐵 ↔ (𝐵𝐻 ∧ (𝑦𝐻𝑥 ∈ (⊥‘𝐻)𝐴 = (𝑦 + 𝑥)) = 𝐵)))
22 shsss 30531 . . . . . 6 ((𝐻S ∧ (⊥‘𝐻) ∈ S ) → (𝐻 + (⊥‘𝐻)) ⊆ ℋ)
231, 2, 22syl2anc2 586 . . . . 5 (𝐻C → (𝐻 + (⊥‘𝐻)) ⊆ ℋ)
2423sselda 3980 . . . 4 ((𝐻C𝐴 ∈ (𝐻 + (⊥‘𝐻))) → 𝐴 ∈ ℋ)
25 pjhval 30615 . . . 4 ((𝐻C𝐴 ∈ ℋ) → ((proj𝐻)‘𝐴) = (𝑦𝐻𝑥 ∈ (⊥‘𝐻)𝐴 = (𝑦 + 𝑥)))
2624, 25syldan 592 . . 3 ((𝐻C𝐴 ∈ (𝐻 + (⊥‘𝐻))) → ((proj𝐻)‘𝐴) = (𝑦𝐻𝑥 ∈ (⊥‘𝐻)𝐴 = (𝑦 + 𝑥)))
2726eqeq1d 2735 . 2 ((𝐻C𝐴 ∈ (𝐻 + (⊥‘𝐻))) → (((proj𝐻)‘𝐴) = 𝐵 ↔ (𝑦𝐻𝑥 ∈ (⊥‘𝐻)𝐴 = (𝑦 + 𝑥)) = 𝐵))
28 id 22 . . . 4 (𝐵𝐻𝐵𝐻)
29 oveq1 7403 . . . . . . 7 (𝑦 = 𝐵 → (𝑦 + 𝑥) = (𝐵 + 𝑥))
3029eqeq2d 2744 . . . . . 6 (𝑦 = 𝐵 → (𝐴 = (𝑦 + 𝑥) ↔ 𝐴 = (𝐵 + 𝑥)))
3130rexbidv 3179 . . . . 5 (𝑦 = 𝐵 → (∃𝑥 ∈ (⊥‘𝐻)𝐴 = (𝑦 + 𝑥) ↔ ∃𝑥 ∈ (⊥‘𝐻)𝐴 = (𝐵 + 𝑥)))
3231riota2 7378 . . . 4 ((𝐵𝐻 ∧ ∃!𝑦𝐻𝑥 ∈ (⊥‘𝐻)𝐴 = (𝑦 + 𝑥)) → (∃𝑥 ∈ (⊥‘𝐻)𝐴 = (𝐵 + 𝑥) ↔ (𝑦𝐻𝑥 ∈ (⊥‘𝐻)𝐴 = (𝑦 + 𝑥)) = 𝐵))
3328, 16, 32syl2anr 598 . . 3 (((𝐻C𝐴 ∈ (𝐻 + (⊥‘𝐻))) ∧ 𝐵𝐻) → (∃𝑥 ∈ (⊥‘𝐻)𝐴 = (𝐵 + 𝑥) ↔ (𝑦𝐻𝑥 ∈ (⊥‘𝐻)𝐴 = (𝑦 + 𝑥)) = 𝐵))
3433pm5.32da 580 . 2 ((𝐻C𝐴 ∈ (𝐻 + (⊥‘𝐻))) → ((𝐵𝐻 ∧ ∃𝑥 ∈ (⊥‘𝐻)𝐴 = (𝐵 + 𝑥)) ↔ (𝐵𝐻 ∧ (𝑦𝐻𝑥 ∈ (⊥‘𝐻)𝐴 = (𝑦 + 𝑥)) = 𝐵)))
3521, 27, 343bitr4d 311 1 ((𝐻C𝐴 ∈ (𝐻 + (⊥‘𝐻))) → (((proj𝐻)‘𝐴) = 𝐵 ↔ (𝐵𝐻 ∧ ∃𝑥 ∈ (⊥‘𝐻)𝐴 = (𝐵 + 𝑥))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397   = wceq 1542  wcel 2107  ∃*wmo 2533  wrex 3071  ∃!wreu 3375  ∃*wrmo 3376  cin 3945  wss 3946  cfv 6535  crio 7351  (class class class)co 7396  chba 30137   + cva 30138   S csh 30146   C cch 30147  cort 30148   + cph 30149  0c0h 30153  projcpjh 30155
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5281  ax-sep 5295  ax-nul 5302  ax-pow 5359  ax-pr 5423  ax-un 7712  ax-resscn 11154  ax-1cn 11155  ax-icn 11156  ax-addcl 11157  ax-addrcl 11158  ax-mulcl 11159  ax-mulrcl 11160  ax-mulcom 11161  ax-addass 11162  ax-mulass 11163  ax-distr 11164  ax-i2m1 11165  ax-1ne0 11166  ax-1rid 11167  ax-rnegex 11168  ax-rrecex 11169  ax-cnre 11170  ax-pre-lttri 11171  ax-pre-lttrn 11172  ax-pre-ltadd 11173  ax-pre-mulgt0 11174  ax-hilex 30217  ax-hfvadd 30218  ax-hvcom 30219  ax-hvass 30220  ax-hv0cl 30221  ax-hvaddid 30222  ax-hfvmul 30223  ax-hvmulid 30224  ax-hvmulass 30225  ax-hvdistr1 30226  ax-hvdistr2 30227  ax-hvmul0 30228  ax-hfi 30297  ax-his2 30301  ax-his3 30302  ax-his4 30303
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3776  df-csb 3892  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-nul 4321  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4905  df-iun 4995  df-br 5145  df-opab 5207  df-mpt 5228  df-id 5570  df-po 5584  df-so 5585  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-iota 6487  df-fun 6537  df-fn 6538  df-f 6539  df-f1 6540  df-fo 6541  df-f1o 6542  df-fv 6543  df-riota 7352  df-ov 7399  df-oprab 7400  df-mpo 7401  df-er 8691  df-en 8928  df-dom 8929  df-sdom 8930  df-pnf 11237  df-mnf 11238  df-xr 11239  df-ltxr 11240  df-le 11241  df-sub 11433  df-neg 11434  df-div 11859  df-grpo 29711  df-ablo 29763  df-hvsub 30189  df-sh 30425  df-ch 30439  df-oc 30470  df-ch0 30471  df-shs 30526  df-pjh 30613
This theorem is referenced by:  pjeq  30617  pjpjpre  30637  chscllem1  30855  chscllem2  30856  chscllem3  30857
  Copyright terms: Public domain W3C validator