HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  pjpreeq Structured version   Visualization version   GIF version

Theorem pjpreeq 31426
Description: Equality with a projection. This version of pjeq 31427 does not assume the Axiom of Choice via pjhth 31421. (Contributed by Mario Carneiro, 15-May-2014.) (New usage is discouraged.)
Assertion
Ref Expression
pjpreeq ((𝐻C𝐴 ∈ (𝐻 + (⊥‘𝐻))) → (((proj𝐻)‘𝐴) = 𝐵 ↔ (𝐵𝐻 ∧ ∃𝑥 ∈ (⊥‘𝐻)𝐴 = (𝐵 + 𝑥))))
Distinct variable groups:   𝑥,𝐻   𝑥,𝐴   𝑥,𝐵

Proof of Theorem pjpreeq
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 chsh 31252 . . . . . . . 8 (𝐻C𝐻S )
2 shocsh 31312 . . . . . . . 8 (𝐻S → (⊥‘𝐻) ∈ S )
3 shsel 31342 . . . . . . . 8 ((𝐻S ∧ (⊥‘𝐻) ∈ S ) → (𝐴 ∈ (𝐻 + (⊥‘𝐻)) ↔ ∃𝑦𝐻𝑥 ∈ (⊥‘𝐻)𝐴 = (𝑦 + 𝑥)))
41, 2, 3syl2anc2 585 . . . . . . 7 (𝐻C → (𝐴 ∈ (𝐻 + (⊥‘𝐻)) ↔ ∃𝑦𝐻𝑥 ∈ (⊥‘𝐻)𝐴 = (𝑦 + 𝑥)))
54biimpa 476 . . . . . 6 ((𝐻C𝐴 ∈ (𝐻 + (⊥‘𝐻))) → ∃𝑦𝐻𝑥 ∈ (⊥‘𝐻)𝐴 = (𝑦 + 𝑥))
61, 2syl 17 . . . . . . . 8 (𝐻C → (⊥‘𝐻) ∈ S )
7 ocin 31324 . . . . . . . . 9 (𝐻S → (𝐻 ∩ (⊥‘𝐻)) = 0)
81, 7syl 17 . . . . . . . 8 (𝐻C → (𝐻 ∩ (⊥‘𝐻)) = 0)
9 pjhthmo 31330 . . . . . . . 8 ((𝐻S ∧ (⊥‘𝐻) ∈ S ∧ (𝐻 ∩ (⊥‘𝐻)) = 0) → ∃*𝑦(𝑦𝐻 ∧ ∃𝑥 ∈ (⊥‘𝐻)𝐴 = (𝑦 + 𝑥)))
101, 6, 8, 9syl3anc 1370 . . . . . . 7 (𝐻C → ∃*𝑦(𝑦𝐻 ∧ ∃𝑥 ∈ (⊥‘𝐻)𝐴 = (𝑦 + 𝑥)))
1110adantr 480 . . . . . 6 ((𝐻C𝐴 ∈ (𝐻 + (⊥‘𝐻))) → ∃*𝑦(𝑦𝐻 ∧ ∃𝑥 ∈ (⊥‘𝐻)𝐴 = (𝑦 + 𝑥)))
12 reu5 3379 . . . . . . 7 (∃!𝑦𝐻𝑥 ∈ (⊥‘𝐻)𝐴 = (𝑦 + 𝑥) ↔ (∃𝑦𝐻𝑥 ∈ (⊥‘𝐻)𝐴 = (𝑦 + 𝑥) ∧ ∃*𝑦𝐻𝑥 ∈ (⊥‘𝐻)𝐴 = (𝑦 + 𝑥)))
13 df-rmo 3377 . . . . . . . 8 (∃*𝑦𝐻𝑥 ∈ (⊥‘𝐻)𝐴 = (𝑦 + 𝑥) ↔ ∃*𝑦(𝑦𝐻 ∧ ∃𝑥 ∈ (⊥‘𝐻)𝐴 = (𝑦 + 𝑥)))
1413anbi2i 623 . . . . . . 7 ((∃𝑦𝐻𝑥 ∈ (⊥‘𝐻)𝐴 = (𝑦 + 𝑥) ∧ ∃*𝑦𝐻𝑥 ∈ (⊥‘𝐻)𝐴 = (𝑦 + 𝑥)) ↔ (∃𝑦𝐻𝑥 ∈ (⊥‘𝐻)𝐴 = (𝑦 + 𝑥) ∧ ∃*𝑦(𝑦𝐻 ∧ ∃𝑥 ∈ (⊥‘𝐻)𝐴 = (𝑦 + 𝑥))))
1512, 14bitri 275 . . . . . 6 (∃!𝑦𝐻𝑥 ∈ (⊥‘𝐻)𝐴 = (𝑦 + 𝑥) ↔ (∃𝑦𝐻𝑥 ∈ (⊥‘𝐻)𝐴 = (𝑦 + 𝑥) ∧ ∃*𝑦(𝑦𝐻 ∧ ∃𝑥 ∈ (⊥‘𝐻)𝐴 = (𝑦 + 𝑥))))
165, 11, 15sylanbrc 583 . . . . 5 ((𝐻C𝐴 ∈ (𝐻 + (⊥‘𝐻))) → ∃!𝑦𝐻𝑥 ∈ (⊥‘𝐻)𝐴 = (𝑦 + 𝑥))
17 riotacl 7404 . . . . 5 (∃!𝑦𝐻𝑥 ∈ (⊥‘𝐻)𝐴 = (𝑦 + 𝑥) → (𝑦𝐻𝑥 ∈ (⊥‘𝐻)𝐴 = (𝑦 + 𝑥)) ∈ 𝐻)
1816, 17syl 17 . . . 4 ((𝐻C𝐴 ∈ (𝐻 + (⊥‘𝐻))) → (𝑦𝐻𝑥 ∈ (⊥‘𝐻)𝐴 = (𝑦 + 𝑥)) ∈ 𝐻)
19 eleq1 2826 . . . 4 ((𝑦𝐻𝑥 ∈ (⊥‘𝐻)𝐴 = (𝑦 + 𝑥)) = 𝐵 → ((𝑦𝐻𝑥 ∈ (⊥‘𝐻)𝐴 = (𝑦 + 𝑥)) ∈ 𝐻𝐵𝐻))
2018, 19syl5ibcom 245 . . 3 ((𝐻C𝐴 ∈ (𝐻 + (⊥‘𝐻))) → ((𝑦𝐻𝑥 ∈ (⊥‘𝐻)𝐴 = (𝑦 + 𝑥)) = 𝐵𝐵𝐻))
2120pm4.71rd 562 . 2 ((𝐻C𝐴 ∈ (𝐻 + (⊥‘𝐻))) → ((𝑦𝐻𝑥 ∈ (⊥‘𝐻)𝐴 = (𝑦 + 𝑥)) = 𝐵 ↔ (𝐵𝐻 ∧ (𝑦𝐻𝑥 ∈ (⊥‘𝐻)𝐴 = (𝑦 + 𝑥)) = 𝐵)))
22 shsss 31341 . . . . . 6 ((𝐻S ∧ (⊥‘𝐻) ∈ S ) → (𝐻 + (⊥‘𝐻)) ⊆ ℋ)
231, 2, 22syl2anc2 585 . . . . 5 (𝐻C → (𝐻 + (⊥‘𝐻)) ⊆ ℋ)
2423sselda 3994 . . . 4 ((𝐻C𝐴 ∈ (𝐻 + (⊥‘𝐻))) → 𝐴 ∈ ℋ)
25 pjhval 31425 . . . 4 ((𝐻C𝐴 ∈ ℋ) → ((proj𝐻)‘𝐴) = (𝑦𝐻𝑥 ∈ (⊥‘𝐻)𝐴 = (𝑦 + 𝑥)))
2624, 25syldan 591 . . 3 ((𝐻C𝐴 ∈ (𝐻 + (⊥‘𝐻))) → ((proj𝐻)‘𝐴) = (𝑦𝐻𝑥 ∈ (⊥‘𝐻)𝐴 = (𝑦 + 𝑥)))
2726eqeq1d 2736 . 2 ((𝐻C𝐴 ∈ (𝐻 + (⊥‘𝐻))) → (((proj𝐻)‘𝐴) = 𝐵 ↔ (𝑦𝐻𝑥 ∈ (⊥‘𝐻)𝐴 = (𝑦 + 𝑥)) = 𝐵))
28 id 22 . . . 4 (𝐵𝐻𝐵𝐻)
29 oveq1 7437 . . . . . . 7 (𝑦 = 𝐵 → (𝑦 + 𝑥) = (𝐵 + 𝑥))
3029eqeq2d 2745 . . . . . 6 (𝑦 = 𝐵 → (𝐴 = (𝑦 + 𝑥) ↔ 𝐴 = (𝐵 + 𝑥)))
3130rexbidv 3176 . . . . 5 (𝑦 = 𝐵 → (∃𝑥 ∈ (⊥‘𝐻)𝐴 = (𝑦 + 𝑥) ↔ ∃𝑥 ∈ (⊥‘𝐻)𝐴 = (𝐵 + 𝑥)))
3231riota2 7412 . . . 4 ((𝐵𝐻 ∧ ∃!𝑦𝐻𝑥 ∈ (⊥‘𝐻)𝐴 = (𝑦 + 𝑥)) → (∃𝑥 ∈ (⊥‘𝐻)𝐴 = (𝐵 + 𝑥) ↔ (𝑦𝐻𝑥 ∈ (⊥‘𝐻)𝐴 = (𝑦 + 𝑥)) = 𝐵))
3328, 16, 32syl2anr 597 . . 3 (((𝐻C𝐴 ∈ (𝐻 + (⊥‘𝐻))) ∧ 𝐵𝐻) → (∃𝑥 ∈ (⊥‘𝐻)𝐴 = (𝐵 + 𝑥) ↔ (𝑦𝐻𝑥 ∈ (⊥‘𝐻)𝐴 = (𝑦 + 𝑥)) = 𝐵))
3433pm5.32da 579 . 2 ((𝐻C𝐴 ∈ (𝐻 + (⊥‘𝐻))) → ((𝐵𝐻 ∧ ∃𝑥 ∈ (⊥‘𝐻)𝐴 = (𝐵 + 𝑥)) ↔ (𝐵𝐻 ∧ (𝑦𝐻𝑥 ∈ (⊥‘𝐻)𝐴 = (𝑦 + 𝑥)) = 𝐵)))
3521, 27, 343bitr4d 311 1 ((𝐻C𝐴 ∈ (𝐻 + (⊥‘𝐻))) → (((proj𝐻)‘𝐴) = 𝐵 ↔ (𝐵𝐻 ∧ ∃𝑥 ∈ (⊥‘𝐻)𝐴 = (𝐵 + 𝑥))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1536  wcel 2105  ∃*wmo 2535  wrex 3067  ∃!wreu 3375  ∃*wrmo 3376  cin 3961  wss 3962  cfv 6562  crio 7386  (class class class)co 7430  chba 30947   + cva 30948   S csh 30956   C cch 30957  cort 30958   + cph 30959  0c0h 30963  projcpjh 30965
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229  ax-hilex 31027  ax-hfvadd 31028  ax-hvcom 31029  ax-hvass 31030  ax-hv0cl 31031  ax-hvaddid 31032  ax-hfvmul 31033  ax-hvmulid 31034  ax-hvmulass 31035  ax-hvdistr1 31036  ax-hvdistr2 31037  ax-hvmul0 31038  ax-hfi 31107  ax-his2 31111  ax-his3 31112  ax-his4 31113
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5582  df-po 5596  df-so 5597  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-er 8743  df-en 8984  df-dom 8985  df-sdom 8986  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-div 11918  df-grpo 30521  df-ablo 30573  df-hvsub 30999  df-sh 31235  df-ch 31249  df-oc 31280  df-ch0 31281  df-shs 31336  df-pjh 31423
This theorem is referenced by:  pjeq  31427  pjpjpre  31447  chscllem1  31665  chscllem2  31666  chscllem3  31667
  Copyright terms: Public domain W3C validator