MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  plusffn Structured version   Visualization version   GIF version

Theorem plusffn 18405
Description: The group addition operation is a function. (Contributed by Mario Carneiro, 20-Sep-2015.)
Hypotheses
Ref Expression
plusffn.1 𝐵 = (Base‘𝐺)
plusffn.2 = (+𝑓𝐺)
Assertion
Ref Expression
plusffn Fn (𝐵 × 𝐵)

Proof of Theorem plusffn
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 plusffn.1 . . 3 𝐵 = (Base‘𝐺)
2 eqid 2737 . . 3 (+g𝐺) = (+g𝐺)
3 plusffn.2 . . 3 = (+𝑓𝐺)
41, 2, 3plusffval 18402 . 2 = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥(+g𝐺)𝑦))
5 ovex 7348 . 2 (𝑥(+g𝐺)𝑦) ∈ V
64, 5fnmpoi 7955 1 Fn (𝐵 × 𝐵)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540   × cxp 5605   Fn wfn 6460  cfv 6465  (class class class)co 7315  Basecbs 16982  +gcplusg 17032  +𝑓cplusf 18393
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2708  ax-sep 5238  ax-nul 5245  ax-pow 5303  ax-pr 5367  ax-un 7628
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3405  df-v 3443  df-sbc 3727  df-csb 3843  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4268  df-if 4472  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4851  df-iun 4939  df-br 5088  df-opab 5150  df-mpt 5171  df-id 5507  df-xp 5613  df-rel 5614  df-cnv 5615  df-co 5616  df-dm 5617  df-rn 5618  df-res 5619  df-ima 5620  df-iota 6417  df-fun 6467  df-fn 6468  df-f 6469  df-fv 6473  df-ov 7318  df-oprab 7319  df-mpo 7320  df-1st 7876  df-2nd 7877  df-plusf 18395
This theorem is referenced by:  lmodfopnelem1  20231  tmdcn2  23312  plusfreseq  45578
  Copyright terms: Public domain W3C validator