Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > plusffn | Structured version Visualization version GIF version |
Description: The group addition operation is a function. (Contributed by Mario Carneiro, 20-Sep-2015.) |
Ref | Expression |
---|---|
plusffn.1 | ⊢ 𝐵 = (Base‘𝐺) |
plusffn.2 | ⊢ ⨣ = (+𝑓‘𝐺) |
Ref | Expression |
---|---|
plusffn | ⊢ ⨣ Fn (𝐵 × 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | plusffn.1 | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
2 | eqid 2736 | . . 3 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
3 | plusffn.2 | . . 3 ⊢ ⨣ = (+𝑓‘𝐺) | |
4 | 1, 2, 3 | plusffval 18381 | . 2 ⊢ ⨣ = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥(+g‘𝐺)𝑦)) |
5 | ovex 7340 | . 2 ⊢ (𝑥(+g‘𝐺)𝑦) ∈ V | |
6 | 4, 5 | fnmpoi 7942 | 1 ⊢ ⨣ Fn (𝐵 × 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 × cxp 5598 Fn wfn 6453 ‘cfv 6458 (class class class)co 7307 Basecbs 16961 +gcplusg 17011 +𝑓cplusf 18372 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 ax-un 7620 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3306 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-iun 4933 df-br 5082 df-opab 5144 df-mpt 5165 df-id 5500 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-fv 6466 df-ov 7310 df-oprab 7311 df-mpo 7312 df-1st 7863 df-2nd 7864 df-plusf 18374 |
This theorem is referenced by: lmodfopnelem1 20208 tmdcn2 23289 plusfreseq 45570 |
Copyright terms: Public domain | W3C validator |