MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  plusffn Structured version   Visualization version   GIF version

Theorem plusffn 18583
Description: The group addition operation is a function. (Contributed by Mario Carneiro, 20-Sep-2015.)
Hypotheses
Ref Expression
plusffn.1 𝐵 = (Base‘𝐺)
plusffn.2 = (+𝑓𝐺)
Assertion
Ref Expression
plusffn Fn (𝐵 × 𝐵)

Proof of Theorem plusffn
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 plusffn.1 . . 3 𝐵 = (Base‘𝐺)
2 eqid 2730 . . 3 (+g𝐺) = (+g𝐺)
3 plusffn.2 . . 3 = (+𝑓𝐺)
41, 2, 3plusffval 18580 . 2 = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥(+g𝐺)𝑦))
5 ovex 7423 . 2 (𝑥(+g𝐺)𝑦) ∈ V
64, 5fnmpoi 8052 1 Fn (𝐵 × 𝐵)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540   × cxp 5639   Fn wfn 6509  cfv 6514  (class class class)co 7390  Basecbs 17186  +gcplusg 17227  +𝑓cplusf 18571
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-1st 7971  df-2nd 7972  df-plusf 18573
This theorem is referenced by:  lmodfopnelem1  20811  tmdcn2  23983  plusfreseq  48156
  Copyright terms: Public domain W3C validator