MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  plusffn Structured version   Visualization version   GIF version

Theorem plusffn 18616
Description: The group addition operation is a function. (Contributed by Mario Carneiro, 20-Sep-2015.)
Hypotheses
Ref Expression
plusffn.1 𝐵 = (Base‘𝐺)
plusffn.2 = (+𝑓𝐺)
Assertion
Ref Expression
plusffn Fn (𝐵 × 𝐵)

Proof of Theorem plusffn
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 plusffn.1 . . 3 𝐵 = (Base‘𝐺)
2 eqid 2728 . . 3 (+g𝐺) = (+g𝐺)
3 plusffn.2 . . 3 = (+𝑓𝐺)
41, 2, 3plusffval 18613 . 2 = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥(+g𝐺)𝑦))
5 ovex 7459 . 2 (𝑥(+g𝐺)𝑦) ∈ V
64, 5fnmpoi 8080 1 Fn (𝐵 × 𝐵)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1533   × cxp 5680   Fn wfn 6548  cfv 6553  (class class class)co 7426  Basecbs 17187  +gcplusg 17240  +𝑓cplusf 18604
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-sep 5303  ax-nul 5310  ax-pow 5369  ax-pr 5433  ax-un 7746
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-ral 3059  df-rex 3068  df-rab 3431  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4327  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-iun 5002  df-br 5153  df-opab 5215  df-mpt 5236  df-id 5580  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-fv 6561  df-ov 7429  df-oprab 7430  df-mpo 7431  df-1st 7999  df-2nd 8000  df-plusf 18606
This theorem is referenced by:  lmodfopnelem1  20788  tmdcn2  24013  plusfreseq  47304
  Copyright terms: Public domain W3C validator