MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  plusfeq Structured version   Visualization version   GIF version

Theorem plusfeq 18579
Description: If the addition operation is already a function, the functionalization of it is equal to the original operation. (Contributed by Mario Carneiro, 14-Aug-2015.)
Hypotheses
Ref Expression
plusffval.1 𝐵 = (Base‘𝐺)
plusffval.2 + = (+g𝐺)
plusffval.3 = (+𝑓𝐺)
Assertion
Ref Expression
plusfeq ( + Fn (𝐵 × 𝐵) → = + )

Proof of Theorem plusfeq
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 plusffval.1 . . 3 𝐵 = (Base‘𝐺)
2 plusffval.2 . . 3 + = (+g𝐺)
3 plusffval.3 . . 3 = (+𝑓𝐺)
41, 2, 3plusffval 18577 . 2 = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥 + 𝑦))
5 fnov 7543 . . 3 ( + Fn (𝐵 × 𝐵) ↔ + = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥 + 𝑦)))
65biimpi 215 . 2 ( + Fn (𝐵 × 𝐵) → + = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥 + 𝑦)))
74, 6eqtr4id 2790 1 ( + Fn (𝐵 × 𝐵) → = + )
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540   × cxp 5674   Fn wfn 6538  cfv 6543  (class class class)co 7412  cmpo 7414  Basecbs 17151  +gcplusg 17204  +𝑓cplusf 18568
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-fv 6551  df-ov 7415  df-oprab 7416  df-mpo 7417  df-1st 7979  df-2nd 7980  df-plusf 18570
This theorem is referenced by:  mgmb1mgm1  18586  mndfo  18689  cnfldplusf  21261  efmndtmd  23925
  Copyright terms: Public domain W3C validator