![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > plusfeq | Structured version Visualization version GIF version |
Description: If the addition operation is already a function, the functionalization of it is equal to the original operation. (Contributed by Mario Carneiro, 14-Aug-2015.) |
Ref | Expression |
---|---|
plusffval.1 | ⊢ 𝐵 = (Base‘𝐺) |
plusffval.2 | ⊢ + = (+g‘𝐺) |
plusffval.3 | ⊢ ⨣ = (+𝑓‘𝐺) |
Ref | Expression |
---|---|
plusfeq | ⊢ ( + Fn (𝐵 × 𝐵) → ⨣ = + ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | plusffval.1 | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
2 | plusffval.2 | . . 3 ⊢ + = (+g‘𝐺) | |
3 | plusffval.3 | . . 3 ⊢ ⨣ = (+𝑓‘𝐺) | |
4 | 1, 2, 3 | plusffval 18577 | . 2 ⊢ ⨣ = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥 + 𝑦)) |
5 | fnov 7543 | . . 3 ⊢ ( + Fn (𝐵 × 𝐵) ↔ + = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥 + 𝑦))) | |
6 | 5 | biimpi 215 | . 2 ⊢ ( + Fn (𝐵 × 𝐵) → + = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥 + 𝑦))) |
7 | 4, 6 | eqtr4id 2790 | 1 ⊢ ( + Fn (𝐵 × 𝐵) → ⨣ = + ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1540 × cxp 5674 Fn wfn 6538 ‘cfv 6543 (class class class)co 7412 ∈ cmpo 7414 Basecbs 17151 +gcplusg 17204 +𝑓cplusf 18568 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-fv 6551 df-ov 7415 df-oprab 7416 df-mpo 7417 df-1st 7979 df-2nd 7980 df-plusf 18570 |
This theorem is referenced by: mgmb1mgm1 18586 mndfo 18689 cnfldplusf 21261 efmndtmd 23925 |
Copyright terms: Public domain | W3C validator |