![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > plusfeq | Structured version Visualization version GIF version |
Description: If the addition operation is already a function, the functionalization of it is equal to the original operation. (Contributed by Mario Carneiro, 14-Aug-2015.) |
Ref | Expression |
---|---|
plusffval.1 | ⊢ 𝐵 = (Base‘𝐺) |
plusffval.2 | ⊢ + = (+g‘𝐺) |
plusffval.3 | ⊢ ⨣ = (+𝑓‘𝐺) |
Ref | Expression |
---|---|
plusfeq | ⊢ ( + Fn (𝐵 × 𝐵) → ⨣ = + ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | plusffval.1 | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
2 | plusffval.2 | . . 3 ⊢ + = (+g‘𝐺) | |
3 | plusffval.3 | . . 3 ⊢ ⨣ = (+𝑓‘𝐺) | |
4 | 1, 2, 3 | plusffval 18681 | . 2 ⊢ ⨣ = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥 + 𝑦)) |
5 | fnov 7571 | . . 3 ⊢ ( + Fn (𝐵 × 𝐵) ↔ + = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥 + 𝑦))) | |
6 | 5 | biimpi 216 | . 2 ⊢ ( + Fn (𝐵 × 𝐵) → + = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥 + 𝑦))) |
7 | 4, 6 | eqtr4id 2796 | 1 ⊢ ( + Fn (𝐵 × 𝐵) → ⨣ = + ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 × cxp 5691 Fn wfn 6564 ‘cfv 6569 (class class class)co 7438 ∈ cmpo 7440 Basecbs 17254 +gcplusg 17307 +𝑓cplusf 18672 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5305 ax-nul 5315 ax-pow 5374 ax-pr 5441 ax-un 7761 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3483 df-sbc 3795 df-csb 3912 df-dif 3969 df-un 3971 df-in 3973 df-ss 3983 df-nul 4343 df-if 4535 df-pw 4610 df-sn 4635 df-pr 4637 df-op 4641 df-uni 4916 df-iun 5001 df-br 5152 df-opab 5214 df-mpt 5235 df-id 5587 df-xp 5699 df-rel 5700 df-cnv 5701 df-co 5702 df-dm 5703 df-rn 5704 df-res 5705 df-ima 5706 df-iota 6522 df-fun 6571 df-fn 6572 df-f 6573 df-fv 6577 df-ov 7441 df-oprab 7442 df-mpo 7443 df-1st 8022 df-2nd 8023 df-plusf 18674 |
This theorem is referenced by: mgmb1mgm1 18690 mndfo 18793 cnfldplusf 21436 efmndtmd 24134 |
Copyright terms: Public domain | W3C validator |