![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > plusfeq | Structured version Visualization version GIF version |
Description: If the addition operation is already a function, the functionalization of it is equal to the original operation. (Contributed by Mario Carneiro, 14-Aug-2015.) |
Ref | Expression |
---|---|
plusffval.1 | ⊢ 𝐵 = (Base‘𝐺) |
plusffval.2 | ⊢ + = (+g‘𝐺) |
plusffval.3 | ⊢ ⨣ = (+𝑓‘𝐺) |
Ref | Expression |
---|---|
plusfeq | ⊢ ( + Fn (𝐵 × 𝐵) → ⨣ = + ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | plusffval.1 | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
2 | plusffval.2 | . . 3 ⊢ + = (+g‘𝐺) | |
3 | plusffval.3 | . . 3 ⊢ ⨣ = (+𝑓‘𝐺) | |
4 | 1, 2, 3 | plusffval 18686 | . 2 ⊢ ⨣ = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥 + 𝑦)) |
5 | fnov 7583 | . . 3 ⊢ ( + Fn (𝐵 × 𝐵) ↔ + = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥 + 𝑦))) | |
6 | 5 | biimpi 216 | . 2 ⊢ ( + Fn (𝐵 × 𝐵) → + = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥 + 𝑦))) |
7 | 4, 6 | eqtr4id 2799 | 1 ⊢ ( + Fn (𝐵 × 𝐵) → ⨣ = + ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 × cxp 5698 Fn wfn 6570 ‘cfv 6575 (class class class)co 7450 ∈ cmpo 7452 Basecbs 17260 +gcplusg 17313 +𝑓cplusf 18677 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7772 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6527 df-fun 6577 df-fn 6578 df-f 6579 df-fv 6583 df-ov 7453 df-oprab 7454 df-mpo 7455 df-1st 8032 df-2nd 8033 df-plusf 18679 |
This theorem is referenced by: mgmb1mgm1 18695 mndfo 18798 cnfldplusf 21434 efmndtmd 24132 |
Copyright terms: Public domain | W3C validator |