| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > plusfeq | Structured version Visualization version GIF version | ||
| Description: If the addition operation is already a function, the functionalization of it is equal to the original operation. (Contributed by Mario Carneiro, 14-Aug-2015.) |
| Ref | Expression |
|---|---|
| plusffval.1 | ⊢ 𝐵 = (Base‘𝐺) |
| plusffval.2 | ⊢ + = (+g‘𝐺) |
| plusffval.3 | ⊢ ⨣ = (+𝑓‘𝐺) |
| Ref | Expression |
|---|---|
| plusfeq | ⊢ ( + Fn (𝐵 × 𝐵) → ⨣ = + ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | plusffval.1 | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
| 2 | plusffval.2 | . . 3 ⊢ + = (+g‘𝐺) | |
| 3 | plusffval.3 | . . 3 ⊢ ⨣ = (+𝑓‘𝐺) | |
| 4 | 1, 2, 3 | plusffval 18628 | . 2 ⊢ ⨣ = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥 + 𝑦)) |
| 5 | fnov 7546 | . . 3 ⊢ ( + Fn (𝐵 × 𝐵) ↔ + = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥 + 𝑦))) | |
| 6 | 5 | biimpi 216 | . 2 ⊢ ( + Fn (𝐵 × 𝐵) → + = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥 + 𝑦))) |
| 7 | 4, 6 | eqtr4id 2788 | 1 ⊢ ( + Fn (𝐵 × 𝐵) → ⨣ = + ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1539 × cxp 5663 Fn wfn 6536 ‘cfv 6541 (class class class)co 7413 ∈ cmpo 7415 Basecbs 17229 +gcplusg 17273 +𝑓cplusf 18619 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-id 5558 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-fv 6549 df-ov 7416 df-oprab 7417 df-mpo 7418 df-1st 7996 df-2nd 7997 df-plusf 18621 |
| This theorem is referenced by: mgmb1mgm1 18637 mndfo 18740 cnfldplusf 21371 efmndtmd 24055 |
| Copyright terms: Public domain | W3C validator |