MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pmfun Structured version   Visualization version   GIF version

Theorem pmfun 8114
Description: A partial function is a function. (Contributed by Mario Carneiro, 30-Jan-2014.) (Revised by Mario Carneiro, 26-Apr-2015.)
Assertion
Ref Expression
pmfun (𝐹 ∈ (𝐴pm 𝐵) → Fun 𝐹)

Proof of Theorem pmfun
StepHypRef Expression
1 elpmi 8113 . 2 (𝐹 ∈ (𝐴pm 𝐵) → (𝐹:dom 𝐹𝐴 ∧ dom 𝐹𝐵))
2 ffun 6258 . . 3 (𝐹:dom 𝐹𝐴 → Fun 𝐹)
32adantr 473 . 2 ((𝐹:dom 𝐹𝐴 ∧ dom 𝐹𝐵) → Fun 𝐹)
41, 3syl 17 1 (𝐹 ∈ (𝐴pm 𝐵) → Fun 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 385  wcel 2157  wss 3768  dom cdm 5311  Fun wfun 6094  wf 6096  (class class class)co 6877  pm cpm 8095
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2377  ax-ext 2776  ax-sep 4974  ax-nul 4982  ax-pow 5034  ax-pr 5096  ax-un 7182
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2591  df-eu 2609  df-clab 2785  df-cleq 2791  df-clel 2794  df-nfc 2929  df-ne 2971  df-ral 3093  df-rex 3094  df-rab 3097  df-v 3386  df-sbc 3633  df-csb 3728  df-dif 3771  df-un 3773  df-in 3775  df-ss 3782  df-nul 4115  df-if 4277  df-pw 4350  df-sn 4368  df-pr 4370  df-op 4374  df-uni 4628  df-iun 4711  df-br 4843  df-opab 4905  df-mpt 4922  df-id 5219  df-xp 5317  df-rel 5318  df-cnv 5319  df-co 5320  df-dm 5321  df-rn 5322  df-res 5323  df-ima 5324  df-iota 6063  df-fun 6102  df-fn 6103  df-f 6104  df-fv 6108  df-ov 6880  df-oprab 6881  df-mpt2 6882  df-1st 7400  df-2nd 7401  df-pm 8097
This theorem is referenced by:  lmbr2  21389  lmff  21431  c1lip2  24099
  Copyright terms: Public domain W3C validator