MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elmapex Structured version   Visualization version   GIF version

Theorem elmapex 8426
Description: Eliminate antecedent for mapping theorems: domain can be taken to be a set. (Contributed by Stefan O'Rear, 8-Oct-2014.)
Assertion
Ref Expression
elmapex (𝐴 ∈ (𝐵m 𝐶) → (𝐵 ∈ V ∧ 𝐶 ∈ V))

Proof of Theorem elmapex
StepHypRef Expression
1 n0i 4298 . 2 (𝐴 ∈ (𝐵m 𝐶) → ¬ (𝐵m 𝐶) = ∅)
2 fnmap 8412 . . . 4 m Fn (V × V)
3 fndm 6454 . . . 4 ( ↑m Fn (V × V) → dom ↑m = (V × V))
42, 3ax-mp 5 . . 3 dom ↑m = (V × V)
54ndmov 7331 . 2 (¬ (𝐵 ∈ V ∧ 𝐶 ∈ V) → (𝐵m 𝐶) = ∅)
61, 5nsyl2 143 1 (𝐴 ∈ (𝐵m 𝐶) → (𝐵 ∈ V ∧ 𝐶 ∈ V))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1533  wcel 2110  Vcvv 3494  c0 4290   × cxp 5552  dom cdm 5554   Fn wfn 6349  (class class class)co 7155  m cmap 8405
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329  ax-un 7460
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4838  df-iun 4920  df-br 5066  df-opab 5128  df-mpt 5146  df-id 5459  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-fv 6362  df-ov 7158  df-oprab 7159  df-mpo 7160  df-1st 7688  df-2nd 7689  df-map 8407
This theorem is referenced by:  elmapi  8427  elmapssres  8430  mapsspm  8439  elmapresaun  8443  mapss  8452  ralxpmap  8459  mapdom1  8681  wemapwe  9159  isf34lem6  9801  mndvcl  21001  mndvass  21002  mndvlid  21003  mndvrid  21004  grpvlinv  21005  grpvrinv  21006  mhmvlin  21007  tposmap  21065  satfv1lem  32609  mapfzcons  39311  ovnhoilem2  42883
  Copyright terms: Public domain W3C validator