MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elmapex Structured version   Visualization version   GIF version

Theorem elmapex 8767
Description: Eliminate antecedent for mapping theorems: domain can be taken to be a set. (Contributed by Stefan O'Rear, 8-Oct-2014.)
Assertion
Ref Expression
elmapex (𝐴 ∈ (𝐵m 𝐶) → (𝐵 ∈ V ∧ 𝐶 ∈ V))

Proof of Theorem elmapex
StepHypRef Expression
1 n0i 4288 . 2 (𝐴 ∈ (𝐵m 𝐶) → ¬ (𝐵m 𝐶) = ∅)
2 fnmap 8752 . . . 4 m Fn (V × V)
32fndmi 6581 . . 3 dom ↑m = (V × V)
43ndmov 7525 . 2 (¬ (𝐵 ∈ V ∧ 𝐶 ∈ V) → (𝐵m 𝐶) = ∅)
51, 4nsyl2 141 1 (𝐴 ∈ (𝐵m 𝐶) → (𝐵 ∈ V ∧ 𝐶 ∈ V))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2110  Vcvv 3434  c0 4281   × cxp 5612  (class class class)co 7341  m cmap 8745
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7663
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ral 3046  df-rex 3055  df-rab 3394  df-v 3436  df-sbc 3740  df-csb 3849  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4858  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-fv 6485  df-ov 7344  df-oprab 7345  df-mpo 7346  df-1st 7916  df-2nd 7917  df-map 8747
This theorem is referenced by:  elmapi  8768  elmapssres  8786  mapsspm  8795  elmapresaun  8799  mapss  8808  ralxpmap  8815  mapdom1  9050  wemapwe  9582  isf34lem6  10263  mndvcl  18697  mndvass  18698  mndvlid  18699  mndvrid  18700  mhmvlin  18701  grpvlinv  22306  grpvrinv  22307  tposmap  22365  satfv1lem  35374  mapcod  42255  mapfzcons  42728  ovnhoilem2  46619
  Copyright terms: Public domain W3C validator