![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elmapex | Structured version Visualization version GIF version |
Description: Eliminate antecedent for mapping theorems: domain can be taken to be a set. (Contributed by Stefan O'Rear, 8-Oct-2014.) |
Ref | Expression |
---|---|
elmapex | ⊢ (𝐴 ∈ (𝐵 ↑𝑚 𝐶) → (𝐵 ∈ V ∧ 𝐶 ∈ V)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | n0i 4120 | . 2 ⊢ (𝐴 ∈ (𝐵 ↑𝑚 𝐶) → ¬ (𝐵 ↑𝑚 𝐶) = ∅) | |
2 | fnmap 8102 | . . . 4 ⊢ ↑𝑚 Fn (V × V) | |
3 | fndm 6201 | . . . 4 ⊢ ( ↑𝑚 Fn (V × V) → dom ↑𝑚 = (V × V)) | |
4 | 2, 3 | ax-mp 5 | . . 3 ⊢ dom ↑𝑚 = (V × V) |
5 | 4 | ndmov 7052 | . 2 ⊢ (¬ (𝐵 ∈ V ∧ 𝐶 ∈ V) → (𝐵 ↑𝑚 𝐶) = ∅) |
6 | 1, 5 | nsyl2 145 | 1 ⊢ (𝐴 ∈ (𝐵 ↑𝑚 𝐶) → (𝐵 ∈ V ∧ 𝐶 ∈ V)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 385 = wceq 1653 ∈ wcel 2157 Vcvv 3385 ∅c0 4115 × cxp 5310 dom cdm 5312 Fn wfn 6096 (class class class)co 6878 ↑𝑚 cmap 8095 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-sep 4975 ax-nul 4983 ax-pow 5035 ax-pr 5097 ax-un 7183 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ne 2972 df-ral 3094 df-rex 3095 df-rab 3098 df-v 3387 df-sbc 3634 df-csb 3729 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-nul 4116 df-if 4278 df-pw 4351 df-sn 4369 df-pr 4371 df-op 4375 df-uni 4629 df-iun 4712 df-br 4844 df-opab 4906 df-mpt 4923 df-id 5220 df-xp 5318 df-rel 5319 df-cnv 5320 df-co 5321 df-dm 5322 df-rn 5323 df-res 5324 df-ima 5325 df-iota 6064 df-fun 6103 df-fn 6104 df-f 6105 df-fv 6109 df-ov 6881 df-oprab 6882 df-mpt2 6883 df-1st 7401 df-2nd 7402 df-map 8097 |
This theorem is referenced by: elmapi 8117 elmapssres 8120 mapsspm 8129 mapss 8140 ralxpmap 8147 mapdom1 8367 wemapwe 8844 isf34lem6 9490 mndvcl 20522 mndvass 20523 mndvlid 20524 mndvrid 20525 grpvlinv 20526 grpvrinv 20527 mhmvlin 20528 tposmap 20589 mapfzcons 38065 elmapresaun 38120 ovnhoilem2 41562 |
Copyright terms: Public domain | W3C validator |