| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elmapex | Structured version Visualization version GIF version | ||
| Description: Eliminate antecedent for mapping theorems: domain can be taken to be a set. (Contributed by Stefan O'Rear, 8-Oct-2014.) |
| Ref | Expression |
|---|---|
| elmapex | ⊢ (𝐴 ∈ (𝐵 ↑m 𝐶) → (𝐵 ∈ V ∧ 𝐶 ∈ V)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | n0i 4291 | . 2 ⊢ (𝐴 ∈ (𝐵 ↑m 𝐶) → ¬ (𝐵 ↑m 𝐶) = ∅) | |
| 2 | fnmap 8766 | . . . 4 ⊢ ↑m Fn (V × V) | |
| 3 | 2 | fndmi 6593 | . . 3 ⊢ dom ↑m = (V × V) |
| 4 | 3 | ndmov 7539 | . 2 ⊢ (¬ (𝐵 ∈ V ∧ 𝐶 ∈ V) → (𝐵 ↑m 𝐶) = ∅) |
| 5 | 1, 4 | nsyl2 141 | 1 ⊢ (𝐴 ∈ (𝐵 ↑m 𝐶) → (𝐵 ∈ V ∧ 𝐶 ∈ V)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 Vcvv 3438 ∅c0 4284 × cxp 5619 (class class class)co 7355 ↑m cmap 8759 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2883 df-ne 2931 df-ral 3050 df-rex 3059 df-rab 3398 df-v 3440 df-sbc 3739 df-csb 3848 df-dif 3902 df-un 3904 df-in 3906 df-ss 3916 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-fv 6497 df-ov 7358 df-oprab 7359 df-mpo 7360 df-1st 7930 df-2nd 7931 df-map 8761 |
| This theorem is referenced by: elmapi 8782 elmapssres 8800 mapsspm 8809 elmapresaun 8813 mapss 8822 ralxpmap 8829 mapdom1 9065 wemapwe 9597 isf34lem6 10281 mndvcl 18715 mndvass 18716 mndvlid 18717 mndvrid 18718 mhmvlin 18719 grpvlinv 22323 grpvrinv 22324 tposmap 22382 satfv1lem 35417 mapcod 42351 mapfzcons 42823 ovnhoilem2 46714 |
| Copyright terms: Public domain | W3C validator |