| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elmapex | Structured version Visualization version GIF version | ||
| Description: Eliminate antecedent for mapping theorems: domain can be taken to be a set. (Contributed by Stefan O'Rear, 8-Oct-2014.) |
| Ref | Expression |
|---|---|
| elmapex | ⊢ (𝐴 ∈ (𝐵 ↑m 𝐶) → (𝐵 ∈ V ∧ 𝐶 ∈ V)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | n0i 4303 | . 2 ⊢ (𝐴 ∈ (𝐵 ↑m 𝐶) → ¬ (𝐵 ↑m 𝐶) = ∅) | |
| 2 | fnmap 8806 | . . . 4 ⊢ ↑m Fn (V × V) | |
| 3 | 2 | fndmi 6622 | . . 3 ⊢ dom ↑m = (V × V) |
| 4 | 3 | ndmov 7573 | . 2 ⊢ (¬ (𝐵 ∈ V ∧ 𝐶 ∈ V) → (𝐵 ↑m 𝐶) = ∅) |
| 5 | 1, 4 | nsyl2 141 | 1 ⊢ (𝐴 ∈ (𝐵 ↑m 𝐶) → (𝐵 ∈ V ∧ 𝐶 ∈ V)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3447 ∅c0 4296 × cxp 5636 (class class class)co 7387 ↑m cmap 8799 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-1st 7968 df-2nd 7969 df-map 8801 |
| This theorem is referenced by: elmapi 8822 elmapssres 8840 mapsspm 8849 elmapresaun 8853 mapss 8862 ralxpmap 8869 mapdom1 9106 wemapwe 9650 isf34lem6 10333 mndvcl 18724 mndvass 18725 mndvlid 18726 mndvrid 18727 mhmvlin 18728 grpvlinv 22285 grpvrinv 22286 tposmap 22344 satfv1lem 35349 mapcod 42231 mapfzcons 42704 ovnhoilem2 46600 |
| Copyright terms: Public domain | W3C validator |