| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elmapex | Structured version Visualization version GIF version | ||
| Description: Eliminate antecedent for mapping theorems: domain can be taken to be a set. (Contributed by Stefan O'Rear, 8-Oct-2014.) |
| Ref | Expression |
|---|---|
| elmapex | ⊢ (𝐴 ∈ (𝐵 ↑m 𝐶) → (𝐵 ∈ V ∧ 𝐶 ∈ V)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | n0i 4288 | . 2 ⊢ (𝐴 ∈ (𝐵 ↑m 𝐶) → ¬ (𝐵 ↑m 𝐶) = ∅) | |
| 2 | fnmap 8752 | . . . 4 ⊢ ↑m Fn (V × V) | |
| 3 | 2 | fndmi 6581 | . . 3 ⊢ dom ↑m = (V × V) |
| 4 | 3 | ndmov 7525 | . 2 ⊢ (¬ (𝐵 ∈ V ∧ 𝐶 ∈ V) → (𝐵 ↑m 𝐶) = ∅) |
| 5 | 1, 4 | nsyl2 141 | 1 ⊢ (𝐴 ∈ (𝐵 ↑m 𝐶) → (𝐵 ∈ V ∧ 𝐶 ∈ V)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2110 Vcvv 3434 ∅c0 4281 × cxp 5612 (class class class)co 7341 ↑m cmap 8745 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7663 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ral 3046 df-rex 3055 df-rab 3394 df-v 3436 df-sbc 3740 df-csb 3849 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-nul 4282 df-if 4474 df-pw 4550 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4858 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6433 df-fun 6479 df-fn 6480 df-f 6481 df-fv 6485 df-ov 7344 df-oprab 7345 df-mpo 7346 df-1st 7916 df-2nd 7917 df-map 8747 |
| This theorem is referenced by: elmapi 8768 elmapssres 8786 mapsspm 8795 elmapresaun 8799 mapss 8808 ralxpmap 8815 mapdom1 9050 wemapwe 9582 isf34lem6 10263 mndvcl 18697 mndvass 18698 mndvlid 18699 mndvrid 18700 mhmvlin 18701 grpvlinv 22306 grpvrinv 22307 tposmap 22365 satfv1lem 35374 mapcod 42255 mapfzcons 42728 ovnhoilem2 46619 |
| Copyright terms: Public domain | W3C validator |