MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elmapex Structured version   Visualization version   GIF version

Theorem elmapex 8841
Description: Eliminate antecedent for mapping theorems: domain can be taken to be a set. (Contributed by Stefan O'Rear, 8-Oct-2014.)
Assertion
Ref Expression
elmapex (𝐴 ∈ (𝐵m 𝐶) → (𝐵 ∈ V ∧ 𝐶 ∈ V))

Proof of Theorem elmapex
StepHypRef Expression
1 n0i 4333 . 2 (𝐴 ∈ (𝐵m 𝐶) → ¬ (𝐵m 𝐶) = ∅)
2 fnmap 8826 . . . 4 m Fn (V × V)
32fndmi 6653 . . 3 dom ↑m = (V × V)
43ndmov 7590 . 2 (¬ (𝐵 ∈ V ∧ 𝐶 ∈ V) → (𝐵m 𝐶) = ∅)
51, 4nsyl2 141 1 (𝐴 ∈ (𝐵m 𝐶) → (𝐵 ∈ V ∧ 𝐶 ∈ V))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wcel 2106  Vcvv 3474  c0 4322   × cxp 5674  (class class class)co 7408  m cmap 8819
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-fv 6551  df-ov 7411  df-oprab 7412  df-mpo 7413  df-1st 7974  df-2nd 7975  df-map 8821
This theorem is referenced by:  elmapi  8842  elmapssres  8860  mapsspm  8869  elmapresaun  8873  mapss  8882  ralxpmap  8889  mapdom1  9141  wemapwe  9691  isf34lem6  10374  mndvcl  21892  mndvass  21893  mndvlid  21894  mndvrid  21895  grpvlinv  21896  grpvrinv  21897  mhmvlin  21898  tposmap  21958  satfv1lem  34348  mapcod  41069  mapfzcons  41444  ovnhoilem2  45308
  Copyright terms: Public domain W3C validator