MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  c1lip2 Structured version   Visualization version   GIF version

Theorem c1lip2 24066
Description: C^1 functions are Lipschitz continuous on closed intervals. (Contributed by Stefan O'Rear, 16-Nov-2014.) (Revised by Stefan O'Rear, 6-May-2015.)
Hypotheses
Ref Expression
c1lip2.a (𝜑𝐴 ∈ ℝ)
c1lip2.b (𝜑𝐵 ∈ ℝ)
c1lip2.f (𝜑𝐹 ∈ ((Cn‘ℝ)‘1))
c1lip2.rn (𝜑 → ran 𝐹 ⊆ ℝ)
c1lip2.dm (𝜑 → (𝐴[,]𝐵) ⊆ dom 𝐹)
Assertion
Ref Expression
c1lip2 (𝜑 → ∃𝑘 ∈ ℝ ∀𝑥 ∈ (𝐴[,]𝐵)∀𝑦 ∈ (𝐴[,]𝐵)(abs‘((𝐹𝑦) − (𝐹𝑥))) ≤ (𝑘 · (abs‘(𝑦𝑥))))
Distinct variable groups:   𝜑,𝑥,𝑦,𝑘   𝑥,𝐴,𝑦,𝑘   𝑥,𝐵,𝑦,𝑘   𝑥,𝐹,𝑦,𝑘

Proof of Theorem c1lip2
StepHypRef Expression
1 c1lip2.a . 2 (𝜑𝐴 ∈ ℝ)
2 c1lip2.b . 2 (𝜑𝐵 ∈ ℝ)
3 c1lip2.f . . 3 (𝜑𝐹 ∈ ((Cn‘ℝ)‘1))
4 ax-resscn 10250 . . . . 5 ℝ ⊆ ℂ
5 1nn0 11560 . . . . 5 1 ∈ ℕ0
6 elcpn 24002 . . . . 5 ((ℝ ⊆ ℂ ∧ 1 ∈ ℕ0) → (𝐹 ∈ ((Cn‘ℝ)‘1) ↔ (𝐹 ∈ (ℂ ↑pm ℝ) ∧ ((ℝ D𝑛 𝐹)‘1) ∈ (dom 𝐹cn→ℂ))))
74, 5, 6mp2an 683 . . . 4 (𝐹 ∈ ((Cn‘ℝ)‘1) ↔ (𝐹 ∈ (ℂ ↑pm ℝ) ∧ ((ℝ D𝑛 𝐹)‘1) ∈ (dom 𝐹cn→ℂ)))
87simplbi 491 . . 3 (𝐹 ∈ ((Cn‘ℝ)‘1) → 𝐹 ∈ (ℂ ↑pm ℝ))
93, 8syl 17 . 2 (𝜑𝐹 ∈ (ℂ ↑pm ℝ))
10 c1lip2.dm . . 3 (𝜑 → (𝐴[,]𝐵) ⊆ dom 𝐹)
11 pmfun 8084 . . . . . . . . 9 (𝐹 ∈ (ℂ ↑pm ℝ) → Fun 𝐹)
129, 11syl 17 . . . . . . . 8 (𝜑 → Fun 𝐹)
13 funfn 6100 . . . . . . . 8 (Fun 𝐹𝐹 Fn dom 𝐹)
1412, 13sylib 209 . . . . . . 7 (𝜑𝐹 Fn dom 𝐹)
15 c1lip2.rn . . . . . . 7 (𝜑 → ran 𝐹 ⊆ ℝ)
16 df-f 6074 . . . . . . 7 (𝐹:dom 𝐹⟶ℝ ↔ (𝐹 Fn dom 𝐹 ∧ ran 𝐹 ⊆ ℝ))
1714, 15, 16sylanbrc 578 . . . . . 6 (𝜑𝐹:dom 𝐹⟶ℝ)
18 cnex 10274 . . . . . . . . 9 ℂ ∈ V
19 reex 10284 . . . . . . . . 9 ℝ ∈ V
2018, 19elpm2 8096 . . . . . . . 8 (𝐹 ∈ (ℂ ↑pm ℝ) ↔ (𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ ℝ))
2120simprbi 490 . . . . . . 7 (𝐹 ∈ (ℂ ↑pm ℝ) → dom 𝐹 ⊆ ℝ)
229, 21syl 17 . . . . . 6 (𝜑 → dom 𝐹 ⊆ ℝ)
23 dvfre 24019 . . . . . 6 ((𝐹:dom 𝐹⟶ℝ ∧ dom 𝐹 ⊆ ℝ) → (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℝ)
2417, 22, 23syl2anc 579 . . . . 5 (𝜑 → (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℝ)
25 0p1e1 11405 . . . . . . . . . . 11 (0 + 1) = 1
2625fveq2i 6382 . . . . . . . . . 10 ((ℝ D𝑛 𝐹)‘(0 + 1)) = ((ℝ D𝑛 𝐹)‘1)
27 0nn0 11559 . . . . . . . . . . . 12 0 ∈ ℕ0
28 dvnp1 23993 . . . . . . . . . . . 12 ((ℝ ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm ℝ) ∧ 0 ∈ ℕ0) → ((ℝ D𝑛 𝐹)‘(0 + 1)) = (ℝ D ((ℝ D𝑛 𝐹)‘0)))
294, 27, 28mp3an13 1576 . . . . . . . . . . 11 (𝐹 ∈ (ℂ ↑pm ℝ) → ((ℝ D𝑛 𝐹)‘(0 + 1)) = (ℝ D ((ℝ D𝑛 𝐹)‘0)))
309, 29syl 17 . . . . . . . . . 10 (𝜑 → ((ℝ D𝑛 𝐹)‘(0 + 1)) = (ℝ D ((ℝ D𝑛 𝐹)‘0)))
3126, 30syl5eqr 2813 . . . . . . . . 9 (𝜑 → ((ℝ D𝑛 𝐹)‘1) = (ℝ D ((ℝ D𝑛 𝐹)‘0)))
32 dvn0 23992 . . . . . . . . . . 11 ((ℝ ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm ℝ)) → ((ℝ D𝑛 𝐹)‘0) = 𝐹)
334, 9, 32sylancr 581 . . . . . . . . . 10 (𝜑 → ((ℝ D𝑛 𝐹)‘0) = 𝐹)
3433oveq2d 6862 . . . . . . . . 9 (𝜑 → (ℝ D ((ℝ D𝑛 𝐹)‘0)) = (ℝ D 𝐹))
3531, 34eqtrd 2799 . . . . . . . 8 (𝜑 → ((ℝ D𝑛 𝐹)‘1) = (ℝ D 𝐹))
367simprbi 490 . . . . . . . . 9 (𝐹 ∈ ((Cn‘ℝ)‘1) → ((ℝ D𝑛 𝐹)‘1) ∈ (dom 𝐹cn→ℂ))
373, 36syl 17 . . . . . . . 8 (𝜑 → ((ℝ D𝑛 𝐹)‘1) ∈ (dom 𝐹cn→ℂ))
3835, 37eqeltrrd 2845 . . . . . . 7 (𝜑 → (ℝ D 𝐹) ∈ (dom 𝐹cn→ℂ))
39 cncff 22989 . . . . . . 7 ((ℝ D 𝐹) ∈ (dom 𝐹cn→ℂ) → (ℝ D 𝐹):dom 𝐹⟶ℂ)
40 fdm 6233 . . . . . . 7 ((ℝ D 𝐹):dom 𝐹⟶ℂ → dom (ℝ D 𝐹) = dom 𝐹)
4138, 39, 403syl 18 . . . . . 6 (𝜑 → dom (ℝ D 𝐹) = dom 𝐹)
4241feq2d 6211 . . . . 5 (𝜑 → ((ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℝ ↔ (ℝ D 𝐹):dom 𝐹⟶ℝ))
4324, 42mpbid 223 . . . 4 (𝜑 → (ℝ D 𝐹):dom 𝐹⟶ℝ)
44 cncffvrn 22994 . . . . 5 ((ℝ ⊆ ℂ ∧ (ℝ D 𝐹) ∈ (dom 𝐹cn→ℂ)) → ((ℝ D 𝐹) ∈ (dom 𝐹cn→ℝ) ↔ (ℝ D 𝐹):dom 𝐹⟶ℝ))
454, 38, 44sylancr 581 . . . 4 (𝜑 → ((ℝ D 𝐹) ∈ (dom 𝐹cn→ℝ) ↔ (ℝ D 𝐹):dom 𝐹⟶ℝ))
4643, 45mpbird 248 . . 3 (𝜑 → (ℝ D 𝐹) ∈ (dom 𝐹cn→ℝ))
47 rescncf 22993 . . 3 ((𝐴[,]𝐵) ⊆ dom 𝐹 → ((ℝ D 𝐹) ∈ (dom 𝐹cn→ℝ) → ((ℝ D 𝐹) ↾ (𝐴[,]𝐵)) ∈ ((𝐴[,]𝐵)–cn→ℝ)))
4810, 46, 47sylc 65 . 2 (𝜑 → ((ℝ D 𝐹) ↾ (𝐴[,]𝐵)) ∈ ((𝐴[,]𝐵)–cn→ℝ))
4919prid1 4454 . . . . . . . . 9 ℝ ∈ {ℝ, ℂ}
50 1eluzge0 11937 . . . . . . . . 9 1 ∈ (ℤ‘0)
51 cpnord 24003 . . . . . . . . 9 ((ℝ ∈ {ℝ, ℂ} ∧ 0 ∈ ℕ0 ∧ 1 ∈ (ℤ‘0)) → ((Cn‘ℝ)‘1) ⊆ ((Cn‘ℝ)‘0))
5249, 27, 50, 51mp3an 1585 . . . . . . . 8 ((Cn‘ℝ)‘1) ⊆ ((Cn‘ℝ)‘0)
5352, 3sseldi 3761 . . . . . . 7 (𝜑𝐹 ∈ ((Cn‘ℝ)‘0))
54 elcpn 24002 . . . . . . . . 9 ((ℝ ⊆ ℂ ∧ 0 ∈ ℕ0) → (𝐹 ∈ ((Cn‘ℝ)‘0) ↔ (𝐹 ∈ (ℂ ↑pm ℝ) ∧ ((ℝ D𝑛 𝐹)‘0) ∈ (dom 𝐹cn→ℂ))))
554, 27, 54mp2an 683 . . . . . . . 8 (𝐹 ∈ ((Cn‘ℝ)‘0) ↔ (𝐹 ∈ (ℂ ↑pm ℝ) ∧ ((ℝ D𝑛 𝐹)‘0) ∈ (dom 𝐹cn→ℂ)))
5655simprbi 490 . . . . . . 7 (𝐹 ∈ ((Cn‘ℝ)‘0) → ((ℝ D𝑛 𝐹)‘0) ∈ (dom 𝐹cn→ℂ))
5753, 56syl 17 . . . . . 6 (𝜑 → ((ℝ D𝑛 𝐹)‘0) ∈ (dom 𝐹cn→ℂ))
5833, 57eqeltrrd 2845 . . . . 5 (𝜑𝐹 ∈ (dom 𝐹cn→ℂ))
59 cncffvrn 22994 . . . . 5 ((ℝ ⊆ ℂ ∧ 𝐹 ∈ (dom 𝐹cn→ℂ)) → (𝐹 ∈ (dom 𝐹cn→ℝ) ↔ 𝐹:dom 𝐹⟶ℝ))
604, 58, 59sylancr 581 . . . 4 (𝜑 → (𝐹 ∈ (dom 𝐹cn→ℝ) ↔ 𝐹:dom 𝐹⟶ℝ))
6117, 60mpbird 248 . . 3 (𝜑𝐹 ∈ (dom 𝐹cn→ℝ))
62 rescncf 22993 . . 3 ((𝐴[,]𝐵) ⊆ dom 𝐹 → (𝐹 ∈ (dom 𝐹cn→ℝ) → (𝐹 ↾ (𝐴[,]𝐵)) ∈ ((𝐴[,]𝐵)–cn→ℝ)))
6310, 61, 62sylc 65 . 2 (𝜑 → (𝐹 ↾ (𝐴[,]𝐵)) ∈ ((𝐴[,]𝐵)–cn→ℝ))
641, 2, 9, 48, 63c1lip1 24065 1 (𝜑 → ∃𝑘 ∈ ℝ ∀𝑥 ∈ (𝐴[,]𝐵)∀𝑦 ∈ (𝐴[,]𝐵)(abs‘((𝐹𝑦) − (𝐹𝑥))) ≤ (𝑘 · (abs‘(𝑦𝑥))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 197  wa 384   = wceq 1652  wcel 2155  wral 3055  wrex 3056  wss 3734  {cpr 4338   class class class wbr 4811  dom cdm 5279  ran crn 5280  cres 5281  Fun wfun 6064   Fn wfn 6065  wf 6066  cfv 6070  (class class class)co 6846  pm cpm 8065  cc 10191  cr 10192  0cc0 10193  1c1 10194   + caddc 10196   · cmul 10198  cle 10333  cmin 10524  0cn0 11542  cuz 11891  [,]cicc 12385  abscabs 14273  cnccncf 22972   D cdv 23932   D𝑛 cdvn 23933  Cnccpn 23934
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-rep 4932  ax-sep 4943  ax-nul 4951  ax-pow 5003  ax-pr 5064  ax-un 7151  ax-inf2 8757  ax-cnex 10249  ax-resscn 10250  ax-1cn 10251  ax-icn 10252  ax-addcl 10253  ax-addrcl 10254  ax-mulcl 10255  ax-mulrcl 10256  ax-mulcom 10257  ax-addass 10258  ax-mulass 10259  ax-distr 10260  ax-i2m1 10261  ax-1ne0 10262  ax-1rid 10263  ax-rnegex 10264  ax-rrecex 10265  ax-cnre 10266  ax-pre-lttri 10267  ax-pre-lttrn 10268  ax-pre-ltadd 10269  ax-pre-mulgt0 10270  ax-pre-sup 10271  ax-addf 10272  ax-mulf 10273
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-reu 3062  df-rmo 3063  df-rab 3064  df-v 3352  df-sbc 3599  df-csb 3694  df-dif 3737  df-un 3739  df-in 3741  df-ss 3748  df-pss 3750  df-nul 4082  df-if 4246  df-pw 4319  df-sn 4337  df-pr 4339  df-tp 4341  df-op 4343  df-uni 4597  df-int 4636  df-iun 4680  df-iin 4681  df-br 4812  df-opab 4874  df-mpt 4891  df-tr 4914  df-id 5187  df-eprel 5192  df-po 5200  df-so 5201  df-fr 5238  df-se 5239  df-we 5240  df-xp 5285  df-rel 5286  df-cnv 5287  df-co 5288  df-dm 5289  df-rn 5290  df-res 5291  df-ima 5292  df-pred 5867  df-ord 5913  df-on 5914  df-lim 5915  df-suc 5916  df-iota 6033  df-fun 6072  df-fn 6073  df-f 6074  df-f1 6075  df-fo 6076  df-f1o 6077  df-fv 6078  df-isom 6079  df-riota 6807  df-ov 6849  df-oprab 6850  df-mpt2 6851  df-of 7099  df-om 7268  df-1st 7370  df-2nd 7371  df-supp 7502  df-wrecs 7614  df-recs 7676  df-rdg 7714  df-1o 7768  df-2o 7769  df-oadd 7772  df-er 7951  df-map 8066  df-pm 8067  df-ixp 8118  df-en 8165  df-dom 8166  df-sdom 8167  df-fin 8168  df-fsupp 8487  df-fi 8528  df-sup 8559  df-inf 8560  df-oi 8626  df-card 9020  df-cda 9247  df-pnf 10334  df-mnf 10335  df-xr 10336  df-ltxr 10337  df-le 10338  df-sub 10526  df-neg 10527  df-div 10943  df-nn 11279  df-2 11339  df-3 11340  df-4 11341  df-5 11342  df-6 11343  df-7 11344  df-8 11345  df-9 11346  df-n0 11543  df-z 11629  df-dec 11746  df-uz 11892  df-q 11995  df-rp 12034  df-xneg 12151  df-xadd 12152  df-xmul 12153  df-ioo 12386  df-ico 12388  df-icc 12389  df-fz 12539  df-fzo 12679  df-seq 13014  df-exp 13073  df-hash 13327  df-cj 14138  df-re 14139  df-im 14140  df-sqrt 14274  df-abs 14275  df-struct 16146  df-ndx 16147  df-slot 16148  df-base 16150  df-sets 16151  df-ress 16152  df-plusg 16241  df-mulr 16242  df-starv 16243  df-sca 16244  df-vsca 16245  df-ip 16246  df-tset 16247  df-ple 16248  df-ds 16250  df-unif 16251  df-hom 16252  df-cco 16253  df-rest 16363  df-topn 16364  df-0g 16382  df-gsum 16383  df-topgen 16384  df-pt 16385  df-prds 16388  df-xrs 16442  df-qtop 16447  df-imas 16448  df-xps 16450  df-mre 16526  df-mrc 16527  df-acs 16529  df-mgm 17522  df-sgrp 17564  df-mnd 17575  df-submnd 17616  df-mulg 17822  df-cntz 18027  df-cmn 18475  df-psmet 20025  df-xmet 20026  df-met 20027  df-bl 20028  df-mopn 20029  df-fbas 20030  df-fg 20031  df-cnfld 20034  df-top 20992  df-topon 21009  df-topsp 21031  df-bases 21044  df-cld 21117  df-ntr 21118  df-cls 21119  df-nei 21196  df-lp 21234  df-perf 21235  df-cn 21325  df-cnp 21326  df-haus 21413  df-cmp 21484  df-tx 21659  df-hmeo 21852  df-fil 21943  df-fm 22035  df-flim 22036  df-flf 22037  df-xms 22418  df-ms 22419  df-tms 22420  df-cncf 22974  df-limc 23935  df-dv 23936  df-dvn 23937  df-cpn 23938
This theorem is referenced by:  c1lip3  24067
  Copyright terms: Public domain W3C validator