Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > c1lip2 | Structured version Visualization version GIF version |
Description: C^1 functions are Lipschitz continuous on closed intervals. (Contributed by Stefan O'Rear, 16-Nov-2014.) (Revised by Stefan O'Rear, 6-May-2015.) |
Ref | Expression |
---|---|
c1lip2.a | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
c1lip2.b | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
c1lip2.f | ⊢ (𝜑 → 𝐹 ∈ ((𝓑C𝑛‘ℝ)‘1)) |
c1lip2.rn | ⊢ (𝜑 → ran 𝐹 ⊆ ℝ) |
c1lip2.dm | ⊢ (𝜑 → (𝐴[,]𝐵) ⊆ dom 𝐹) |
Ref | Expression |
---|---|
c1lip2 | ⊢ (𝜑 → ∃𝑘 ∈ ℝ ∀𝑥 ∈ (𝐴[,]𝐵)∀𝑦 ∈ (𝐴[,]𝐵)(abs‘((𝐹‘𝑦) − (𝐹‘𝑥))) ≤ (𝑘 · (abs‘(𝑦 − 𝑥)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | c1lip2.a | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
2 | c1lip2.b | . 2 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
3 | c1lip2.f | . . 3 ⊢ (𝜑 → 𝐹 ∈ ((𝓑C𝑛‘ℝ)‘1)) | |
4 | ax-resscn 10786 | . . . . 5 ⊢ ℝ ⊆ ℂ | |
5 | 1nn0 12106 | . . . . 5 ⊢ 1 ∈ ℕ0 | |
6 | elcpn 24831 | . . . . 5 ⊢ ((ℝ ⊆ ℂ ∧ 1 ∈ ℕ0) → (𝐹 ∈ ((𝓑C𝑛‘ℝ)‘1) ↔ (𝐹 ∈ (ℂ ↑pm ℝ) ∧ ((ℝ D𝑛 𝐹)‘1) ∈ (dom 𝐹–cn→ℂ)))) | |
7 | 4, 5, 6 | mp2an 692 | . . . 4 ⊢ (𝐹 ∈ ((𝓑C𝑛‘ℝ)‘1) ↔ (𝐹 ∈ (ℂ ↑pm ℝ) ∧ ((ℝ D𝑛 𝐹)‘1) ∈ (dom 𝐹–cn→ℂ))) |
8 | 7 | simplbi 501 | . . 3 ⊢ (𝐹 ∈ ((𝓑C𝑛‘ℝ)‘1) → 𝐹 ∈ (ℂ ↑pm ℝ)) |
9 | 3, 8 | syl 17 | . 2 ⊢ (𝜑 → 𝐹 ∈ (ℂ ↑pm ℝ)) |
10 | c1lip2.dm | . . 3 ⊢ (𝜑 → (𝐴[,]𝐵) ⊆ dom 𝐹) | |
11 | pmfun 8528 | . . . . . . . . 9 ⊢ (𝐹 ∈ (ℂ ↑pm ℝ) → Fun 𝐹) | |
12 | 9, 11 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → Fun 𝐹) |
13 | 12 | funfnd 6411 | . . . . . . 7 ⊢ (𝜑 → 𝐹 Fn dom 𝐹) |
14 | c1lip2.rn | . . . . . . 7 ⊢ (𝜑 → ran 𝐹 ⊆ ℝ) | |
15 | df-f 6384 | . . . . . . 7 ⊢ (𝐹:dom 𝐹⟶ℝ ↔ (𝐹 Fn dom 𝐹 ∧ ran 𝐹 ⊆ ℝ)) | |
16 | 13, 14, 15 | sylanbrc 586 | . . . . . 6 ⊢ (𝜑 → 𝐹:dom 𝐹⟶ℝ) |
17 | cnex 10810 | . . . . . . . . 9 ⊢ ℂ ∈ V | |
18 | reex 10820 | . . . . . . . . 9 ⊢ ℝ ∈ V | |
19 | 17, 18 | elpm2 8555 | . . . . . . . 8 ⊢ (𝐹 ∈ (ℂ ↑pm ℝ) ↔ (𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ ℝ)) |
20 | 19 | simprbi 500 | . . . . . . 7 ⊢ (𝐹 ∈ (ℂ ↑pm ℝ) → dom 𝐹 ⊆ ℝ) |
21 | 9, 20 | syl 17 | . . . . . 6 ⊢ (𝜑 → dom 𝐹 ⊆ ℝ) |
22 | dvfre 24848 | . . . . . 6 ⊢ ((𝐹:dom 𝐹⟶ℝ ∧ dom 𝐹 ⊆ ℝ) → (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℝ) | |
23 | 16, 21, 22 | syl2anc 587 | . . . . 5 ⊢ (𝜑 → (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℝ) |
24 | 0p1e1 11952 | . . . . . . . . . . 11 ⊢ (0 + 1) = 1 | |
25 | 24 | fveq2i 6720 | . . . . . . . . . 10 ⊢ ((ℝ D𝑛 𝐹)‘(0 + 1)) = ((ℝ D𝑛 𝐹)‘1) |
26 | 0nn0 12105 | . . . . . . . . . . . 12 ⊢ 0 ∈ ℕ0 | |
27 | dvnp1 24822 | . . . . . . . . . . . 12 ⊢ ((ℝ ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm ℝ) ∧ 0 ∈ ℕ0) → ((ℝ D𝑛 𝐹)‘(0 + 1)) = (ℝ D ((ℝ D𝑛 𝐹)‘0))) | |
28 | 4, 26, 27 | mp3an13 1454 | . . . . . . . . . . 11 ⊢ (𝐹 ∈ (ℂ ↑pm ℝ) → ((ℝ D𝑛 𝐹)‘(0 + 1)) = (ℝ D ((ℝ D𝑛 𝐹)‘0))) |
29 | 9, 28 | syl 17 | . . . . . . . . . 10 ⊢ (𝜑 → ((ℝ D𝑛 𝐹)‘(0 + 1)) = (ℝ D ((ℝ D𝑛 𝐹)‘0))) |
30 | 25, 29 | eqtr3id 2792 | . . . . . . . . 9 ⊢ (𝜑 → ((ℝ D𝑛 𝐹)‘1) = (ℝ D ((ℝ D𝑛 𝐹)‘0))) |
31 | dvn0 24821 | . . . . . . . . . . 11 ⊢ ((ℝ ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm ℝ)) → ((ℝ D𝑛 𝐹)‘0) = 𝐹) | |
32 | 4, 9, 31 | sylancr 590 | . . . . . . . . . 10 ⊢ (𝜑 → ((ℝ D𝑛 𝐹)‘0) = 𝐹) |
33 | 32 | oveq2d 7229 | . . . . . . . . 9 ⊢ (𝜑 → (ℝ D ((ℝ D𝑛 𝐹)‘0)) = (ℝ D 𝐹)) |
34 | 30, 33 | eqtrd 2777 | . . . . . . . 8 ⊢ (𝜑 → ((ℝ D𝑛 𝐹)‘1) = (ℝ D 𝐹)) |
35 | 7 | simprbi 500 | . . . . . . . . 9 ⊢ (𝐹 ∈ ((𝓑C𝑛‘ℝ)‘1) → ((ℝ D𝑛 𝐹)‘1) ∈ (dom 𝐹–cn→ℂ)) |
36 | 3, 35 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → ((ℝ D𝑛 𝐹)‘1) ∈ (dom 𝐹–cn→ℂ)) |
37 | 34, 36 | eqeltrrd 2839 | . . . . . . 7 ⊢ (𝜑 → (ℝ D 𝐹) ∈ (dom 𝐹–cn→ℂ)) |
38 | cncff 23790 | . . . . . . 7 ⊢ ((ℝ D 𝐹) ∈ (dom 𝐹–cn→ℂ) → (ℝ D 𝐹):dom 𝐹⟶ℂ) | |
39 | fdm 6554 | . . . . . . 7 ⊢ ((ℝ D 𝐹):dom 𝐹⟶ℂ → dom (ℝ D 𝐹) = dom 𝐹) | |
40 | 37, 38, 39 | 3syl 18 | . . . . . 6 ⊢ (𝜑 → dom (ℝ D 𝐹) = dom 𝐹) |
41 | 40 | feq2d 6531 | . . . . 5 ⊢ (𝜑 → ((ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℝ ↔ (ℝ D 𝐹):dom 𝐹⟶ℝ)) |
42 | 23, 41 | mpbid 235 | . . . 4 ⊢ (𝜑 → (ℝ D 𝐹):dom 𝐹⟶ℝ) |
43 | cncffvrn 23795 | . . . . 5 ⊢ ((ℝ ⊆ ℂ ∧ (ℝ D 𝐹) ∈ (dom 𝐹–cn→ℂ)) → ((ℝ D 𝐹) ∈ (dom 𝐹–cn→ℝ) ↔ (ℝ D 𝐹):dom 𝐹⟶ℝ)) | |
44 | 4, 37, 43 | sylancr 590 | . . . 4 ⊢ (𝜑 → ((ℝ D 𝐹) ∈ (dom 𝐹–cn→ℝ) ↔ (ℝ D 𝐹):dom 𝐹⟶ℝ)) |
45 | 42, 44 | mpbird 260 | . . 3 ⊢ (𝜑 → (ℝ D 𝐹) ∈ (dom 𝐹–cn→ℝ)) |
46 | rescncf 23794 | . . 3 ⊢ ((𝐴[,]𝐵) ⊆ dom 𝐹 → ((ℝ D 𝐹) ∈ (dom 𝐹–cn→ℝ) → ((ℝ D 𝐹) ↾ (𝐴[,]𝐵)) ∈ ((𝐴[,]𝐵)–cn→ℝ))) | |
47 | 10, 45, 46 | sylc 65 | . 2 ⊢ (𝜑 → ((ℝ D 𝐹) ↾ (𝐴[,]𝐵)) ∈ ((𝐴[,]𝐵)–cn→ℝ)) |
48 | 18 | prid1 4678 | . . . . . . . . 9 ⊢ ℝ ∈ {ℝ, ℂ} |
49 | 1eluzge0 12488 | . . . . . . . . 9 ⊢ 1 ∈ (ℤ≥‘0) | |
50 | cpnord 24832 | . . . . . . . . 9 ⊢ ((ℝ ∈ {ℝ, ℂ} ∧ 0 ∈ ℕ0 ∧ 1 ∈ (ℤ≥‘0)) → ((𝓑C𝑛‘ℝ)‘1) ⊆ ((𝓑C𝑛‘ℝ)‘0)) | |
51 | 48, 26, 49, 50 | mp3an 1463 | . . . . . . . 8 ⊢ ((𝓑C𝑛‘ℝ)‘1) ⊆ ((𝓑C𝑛‘ℝ)‘0) |
52 | 51, 3 | sseldi 3899 | . . . . . . 7 ⊢ (𝜑 → 𝐹 ∈ ((𝓑C𝑛‘ℝ)‘0)) |
53 | elcpn 24831 | . . . . . . . . 9 ⊢ ((ℝ ⊆ ℂ ∧ 0 ∈ ℕ0) → (𝐹 ∈ ((𝓑C𝑛‘ℝ)‘0) ↔ (𝐹 ∈ (ℂ ↑pm ℝ) ∧ ((ℝ D𝑛 𝐹)‘0) ∈ (dom 𝐹–cn→ℂ)))) | |
54 | 4, 26, 53 | mp2an 692 | . . . . . . . 8 ⊢ (𝐹 ∈ ((𝓑C𝑛‘ℝ)‘0) ↔ (𝐹 ∈ (ℂ ↑pm ℝ) ∧ ((ℝ D𝑛 𝐹)‘0) ∈ (dom 𝐹–cn→ℂ))) |
55 | 54 | simprbi 500 | . . . . . . 7 ⊢ (𝐹 ∈ ((𝓑C𝑛‘ℝ)‘0) → ((ℝ D𝑛 𝐹)‘0) ∈ (dom 𝐹–cn→ℂ)) |
56 | 52, 55 | syl 17 | . . . . . 6 ⊢ (𝜑 → ((ℝ D𝑛 𝐹)‘0) ∈ (dom 𝐹–cn→ℂ)) |
57 | 32, 56 | eqeltrrd 2839 | . . . . 5 ⊢ (𝜑 → 𝐹 ∈ (dom 𝐹–cn→ℂ)) |
58 | cncffvrn 23795 | . . . . 5 ⊢ ((ℝ ⊆ ℂ ∧ 𝐹 ∈ (dom 𝐹–cn→ℂ)) → (𝐹 ∈ (dom 𝐹–cn→ℝ) ↔ 𝐹:dom 𝐹⟶ℝ)) | |
59 | 4, 57, 58 | sylancr 590 | . . . 4 ⊢ (𝜑 → (𝐹 ∈ (dom 𝐹–cn→ℝ) ↔ 𝐹:dom 𝐹⟶ℝ)) |
60 | 16, 59 | mpbird 260 | . . 3 ⊢ (𝜑 → 𝐹 ∈ (dom 𝐹–cn→ℝ)) |
61 | rescncf 23794 | . . 3 ⊢ ((𝐴[,]𝐵) ⊆ dom 𝐹 → (𝐹 ∈ (dom 𝐹–cn→ℝ) → (𝐹 ↾ (𝐴[,]𝐵)) ∈ ((𝐴[,]𝐵)–cn→ℝ))) | |
62 | 10, 60, 61 | sylc 65 | . 2 ⊢ (𝜑 → (𝐹 ↾ (𝐴[,]𝐵)) ∈ ((𝐴[,]𝐵)–cn→ℝ)) |
63 | 1, 2, 9, 47, 62 | c1lip1 24894 | 1 ⊢ (𝜑 → ∃𝑘 ∈ ℝ ∀𝑥 ∈ (𝐴[,]𝐵)∀𝑦 ∈ (𝐴[,]𝐵)(abs‘((𝐹‘𝑦) − (𝐹‘𝑥))) ≤ (𝑘 · (abs‘(𝑦 − 𝑥)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 = wceq 1543 ∈ wcel 2110 ∀wral 3061 ∃wrex 3062 ⊆ wss 3866 {cpr 4543 class class class wbr 5053 dom cdm 5551 ran crn 5552 ↾ cres 5553 Fun wfun 6374 Fn wfn 6375 ⟶wf 6376 ‘cfv 6380 (class class class)co 7213 ↑pm cpm 8509 ℂcc 10727 ℝcr 10728 0cc0 10729 1c1 10730 + caddc 10732 · cmul 10734 ≤ cle 10868 − cmin 11062 ℕ0cn0 12090 ℤ≥cuz 12438 [,]cicc 12938 abscabs 14797 –cn→ccncf 23773 D cdv 24760 D𝑛 cdvn 24761 𝓑C𝑛ccpn 24762 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-rep 5179 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 ax-inf2 9256 ax-cnex 10785 ax-resscn 10786 ax-1cn 10787 ax-icn 10788 ax-addcl 10789 ax-addrcl 10790 ax-mulcl 10791 ax-mulrcl 10792 ax-mulcom 10793 ax-addass 10794 ax-mulass 10795 ax-distr 10796 ax-i2m1 10797 ax-1ne0 10798 ax-1rid 10799 ax-rnegex 10800 ax-rrecex 10801 ax-cnre 10802 ax-pre-lttri 10803 ax-pre-lttrn 10804 ax-pre-ltadd 10805 ax-pre-mulgt0 10806 ax-pre-sup 10807 ax-addf 10808 ax-mulf 10809 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-pss 3885 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-tp 4546 df-op 4548 df-uni 4820 df-int 4860 df-iun 4906 df-iin 4907 df-br 5054 df-opab 5116 df-mpt 5136 df-tr 5162 df-id 5455 df-eprel 5460 df-po 5468 df-so 5469 df-fr 5509 df-se 5510 df-we 5511 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-pred 6160 df-ord 6216 df-on 6217 df-lim 6218 df-suc 6219 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-isom 6389 df-riota 7170 df-ov 7216 df-oprab 7217 df-mpo 7218 df-of 7469 df-om 7645 df-1st 7761 df-2nd 7762 df-supp 7904 df-wrecs 8047 df-recs 8108 df-rdg 8146 df-1o 8202 df-2o 8203 df-er 8391 df-map 8510 df-pm 8511 df-ixp 8579 df-en 8627 df-dom 8628 df-sdom 8629 df-fin 8630 df-fsupp 8986 df-fi 9027 df-sup 9058 df-inf 9059 df-oi 9126 df-card 9555 df-pnf 10869 df-mnf 10870 df-xr 10871 df-ltxr 10872 df-le 10873 df-sub 11064 df-neg 11065 df-div 11490 df-nn 11831 df-2 11893 df-3 11894 df-4 11895 df-5 11896 df-6 11897 df-7 11898 df-8 11899 df-9 11900 df-n0 12091 df-z 12177 df-dec 12294 df-uz 12439 df-q 12545 df-rp 12587 df-xneg 12704 df-xadd 12705 df-xmul 12706 df-ioo 12939 df-ico 12941 df-icc 12942 df-fz 13096 df-fzo 13239 df-seq 13575 df-exp 13636 df-hash 13897 df-cj 14662 df-re 14663 df-im 14664 df-sqrt 14798 df-abs 14799 df-struct 16700 df-sets 16717 df-slot 16735 df-ndx 16745 df-base 16761 df-ress 16785 df-plusg 16815 df-mulr 16816 df-starv 16817 df-sca 16818 df-vsca 16819 df-ip 16820 df-tset 16821 df-ple 16822 df-ds 16824 df-unif 16825 df-hom 16826 df-cco 16827 df-rest 16927 df-topn 16928 df-0g 16946 df-gsum 16947 df-topgen 16948 df-pt 16949 df-prds 16952 df-xrs 17007 df-qtop 17012 df-imas 17013 df-xps 17015 df-mre 17089 df-mrc 17090 df-acs 17092 df-mgm 18114 df-sgrp 18163 df-mnd 18174 df-submnd 18219 df-mulg 18489 df-cntz 18711 df-cmn 19172 df-psmet 20355 df-xmet 20356 df-met 20357 df-bl 20358 df-mopn 20359 df-fbas 20360 df-fg 20361 df-cnfld 20364 df-top 21791 df-topon 21808 df-topsp 21830 df-bases 21843 df-cld 21916 df-ntr 21917 df-cls 21918 df-nei 21995 df-lp 22033 df-perf 22034 df-cn 22124 df-cnp 22125 df-haus 22212 df-cmp 22284 df-tx 22459 df-hmeo 22652 df-fil 22743 df-fm 22835 df-flim 22836 df-flf 22837 df-xms 23218 df-ms 23219 df-tms 23220 df-cncf 23775 df-limc 24763 df-dv 24764 df-dvn 24765 df-cpn 24766 |
This theorem is referenced by: c1lip3 24896 |
Copyright terms: Public domain | W3C validator |