| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > c1lip2 | Structured version Visualization version GIF version | ||
| Description: C^1 functions are Lipschitz continuous on closed intervals. (Contributed by Stefan O'Rear, 16-Nov-2014.) (Revised by Stefan O'Rear, 6-May-2015.) |
| Ref | Expression |
|---|---|
| c1lip2.a | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| c1lip2.b | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
| c1lip2.f | ⊢ (𝜑 → 𝐹 ∈ ((𝓑C𝑛‘ℝ)‘1)) |
| c1lip2.rn | ⊢ (𝜑 → ran 𝐹 ⊆ ℝ) |
| c1lip2.dm | ⊢ (𝜑 → (𝐴[,]𝐵) ⊆ dom 𝐹) |
| Ref | Expression |
|---|---|
| c1lip2 | ⊢ (𝜑 → ∃𝑘 ∈ ℝ ∀𝑥 ∈ (𝐴[,]𝐵)∀𝑦 ∈ (𝐴[,]𝐵)(abs‘((𝐹‘𝑦) − (𝐹‘𝑥))) ≤ (𝑘 · (abs‘(𝑦 − 𝑥)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | c1lip2.a | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 2 | c1lip2.b | . 2 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
| 3 | c1lip2.f | . . 3 ⊢ (𝜑 → 𝐹 ∈ ((𝓑C𝑛‘ℝ)‘1)) | |
| 4 | ax-resscn 11074 | . . . . 5 ⊢ ℝ ⊆ ℂ | |
| 5 | 1nn0 12408 | . . . . 5 ⊢ 1 ∈ ℕ0 | |
| 6 | elcpn 25883 | . . . . 5 ⊢ ((ℝ ⊆ ℂ ∧ 1 ∈ ℕ0) → (𝐹 ∈ ((𝓑C𝑛‘ℝ)‘1) ↔ (𝐹 ∈ (ℂ ↑pm ℝ) ∧ ((ℝ D𝑛 𝐹)‘1) ∈ (dom 𝐹–cn→ℂ)))) | |
| 7 | 4, 5, 6 | mp2an 692 | . . . 4 ⊢ (𝐹 ∈ ((𝓑C𝑛‘ℝ)‘1) ↔ (𝐹 ∈ (ℂ ↑pm ℝ) ∧ ((ℝ D𝑛 𝐹)‘1) ∈ (dom 𝐹–cn→ℂ))) |
| 8 | 7 | simplbi 497 | . . 3 ⊢ (𝐹 ∈ ((𝓑C𝑛‘ℝ)‘1) → 𝐹 ∈ (ℂ ↑pm ℝ)) |
| 9 | 3, 8 | syl 17 | . 2 ⊢ (𝜑 → 𝐹 ∈ (ℂ ↑pm ℝ)) |
| 10 | c1lip2.dm | . . 3 ⊢ (𝜑 → (𝐴[,]𝐵) ⊆ dom 𝐹) | |
| 11 | pmfun 8780 | . . . . . . . . 9 ⊢ (𝐹 ∈ (ℂ ↑pm ℝ) → Fun 𝐹) | |
| 12 | 9, 11 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → Fun 𝐹) |
| 13 | 12 | funfnd 6520 | . . . . . . 7 ⊢ (𝜑 → 𝐹 Fn dom 𝐹) |
| 14 | c1lip2.rn | . . . . . . 7 ⊢ (𝜑 → ran 𝐹 ⊆ ℝ) | |
| 15 | df-f 6493 | . . . . . . 7 ⊢ (𝐹:dom 𝐹⟶ℝ ↔ (𝐹 Fn dom 𝐹 ∧ ran 𝐹 ⊆ ℝ)) | |
| 16 | 13, 14, 15 | sylanbrc 583 | . . . . . 6 ⊢ (𝜑 → 𝐹:dom 𝐹⟶ℝ) |
| 17 | cnex 11098 | . . . . . . . . 9 ⊢ ℂ ∈ V | |
| 18 | reex 11108 | . . . . . . . . 9 ⊢ ℝ ∈ V | |
| 19 | 17, 18 | elpm2 8808 | . . . . . . . 8 ⊢ (𝐹 ∈ (ℂ ↑pm ℝ) ↔ (𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ ℝ)) |
| 20 | 19 | simprbi 496 | . . . . . . 7 ⊢ (𝐹 ∈ (ℂ ↑pm ℝ) → dom 𝐹 ⊆ ℝ) |
| 21 | 9, 20 | syl 17 | . . . . . 6 ⊢ (𝜑 → dom 𝐹 ⊆ ℝ) |
| 22 | dvfre 25902 | . . . . . 6 ⊢ ((𝐹:dom 𝐹⟶ℝ ∧ dom 𝐹 ⊆ ℝ) → (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℝ) | |
| 23 | 16, 21, 22 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℝ) |
| 24 | 0p1e1 12253 | . . . . . . . . . . 11 ⊢ (0 + 1) = 1 | |
| 25 | 24 | fveq2i 6834 | . . . . . . . . . 10 ⊢ ((ℝ D𝑛 𝐹)‘(0 + 1)) = ((ℝ D𝑛 𝐹)‘1) |
| 26 | 0nn0 12407 | . . . . . . . . . . . 12 ⊢ 0 ∈ ℕ0 | |
| 27 | dvnp1 25874 | . . . . . . . . . . . 12 ⊢ ((ℝ ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm ℝ) ∧ 0 ∈ ℕ0) → ((ℝ D𝑛 𝐹)‘(0 + 1)) = (ℝ D ((ℝ D𝑛 𝐹)‘0))) | |
| 28 | 4, 26, 27 | mp3an13 1454 | . . . . . . . . . . 11 ⊢ (𝐹 ∈ (ℂ ↑pm ℝ) → ((ℝ D𝑛 𝐹)‘(0 + 1)) = (ℝ D ((ℝ D𝑛 𝐹)‘0))) |
| 29 | 9, 28 | syl 17 | . . . . . . . . . 10 ⊢ (𝜑 → ((ℝ D𝑛 𝐹)‘(0 + 1)) = (ℝ D ((ℝ D𝑛 𝐹)‘0))) |
| 30 | 25, 29 | eqtr3id 2782 | . . . . . . . . 9 ⊢ (𝜑 → ((ℝ D𝑛 𝐹)‘1) = (ℝ D ((ℝ D𝑛 𝐹)‘0))) |
| 31 | dvn0 25873 | . . . . . . . . . . 11 ⊢ ((ℝ ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm ℝ)) → ((ℝ D𝑛 𝐹)‘0) = 𝐹) | |
| 32 | 4, 9, 31 | sylancr 587 | . . . . . . . . . 10 ⊢ (𝜑 → ((ℝ D𝑛 𝐹)‘0) = 𝐹) |
| 33 | 32 | oveq2d 7371 | . . . . . . . . 9 ⊢ (𝜑 → (ℝ D ((ℝ D𝑛 𝐹)‘0)) = (ℝ D 𝐹)) |
| 34 | 30, 33 | eqtrd 2768 | . . . . . . . 8 ⊢ (𝜑 → ((ℝ D𝑛 𝐹)‘1) = (ℝ D 𝐹)) |
| 35 | 7 | simprbi 496 | . . . . . . . . 9 ⊢ (𝐹 ∈ ((𝓑C𝑛‘ℝ)‘1) → ((ℝ D𝑛 𝐹)‘1) ∈ (dom 𝐹–cn→ℂ)) |
| 36 | 3, 35 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → ((ℝ D𝑛 𝐹)‘1) ∈ (dom 𝐹–cn→ℂ)) |
| 37 | 34, 36 | eqeltrrd 2834 | . . . . . . 7 ⊢ (𝜑 → (ℝ D 𝐹) ∈ (dom 𝐹–cn→ℂ)) |
| 38 | cncff 24833 | . . . . . . 7 ⊢ ((ℝ D 𝐹) ∈ (dom 𝐹–cn→ℂ) → (ℝ D 𝐹):dom 𝐹⟶ℂ) | |
| 39 | fdm 6668 | . . . . . . 7 ⊢ ((ℝ D 𝐹):dom 𝐹⟶ℂ → dom (ℝ D 𝐹) = dom 𝐹) | |
| 40 | 37, 38, 39 | 3syl 18 | . . . . . 6 ⊢ (𝜑 → dom (ℝ D 𝐹) = dom 𝐹) |
| 41 | 40 | feq2d 6643 | . . . . 5 ⊢ (𝜑 → ((ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℝ ↔ (ℝ D 𝐹):dom 𝐹⟶ℝ)) |
| 42 | 23, 41 | mpbid 232 | . . . 4 ⊢ (𝜑 → (ℝ D 𝐹):dom 𝐹⟶ℝ) |
| 43 | cncfcdm 24838 | . . . . 5 ⊢ ((ℝ ⊆ ℂ ∧ (ℝ D 𝐹) ∈ (dom 𝐹–cn→ℂ)) → ((ℝ D 𝐹) ∈ (dom 𝐹–cn→ℝ) ↔ (ℝ D 𝐹):dom 𝐹⟶ℝ)) | |
| 44 | 4, 37, 43 | sylancr 587 | . . . 4 ⊢ (𝜑 → ((ℝ D 𝐹) ∈ (dom 𝐹–cn→ℝ) ↔ (ℝ D 𝐹):dom 𝐹⟶ℝ)) |
| 45 | 42, 44 | mpbird 257 | . . 3 ⊢ (𝜑 → (ℝ D 𝐹) ∈ (dom 𝐹–cn→ℝ)) |
| 46 | rescncf 24837 | . . 3 ⊢ ((𝐴[,]𝐵) ⊆ dom 𝐹 → ((ℝ D 𝐹) ∈ (dom 𝐹–cn→ℝ) → ((ℝ D 𝐹) ↾ (𝐴[,]𝐵)) ∈ ((𝐴[,]𝐵)–cn→ℝ))) | |
| 47 | 10, 45, 46 | sylc 65 | . 2 ⊢ (𝜑 → ((ℝ D 𝐹) ↾ (𝐴[,]𝐵)) ∈ ((𝐴[,]𝐵)–cn→ℝ)) |
| 48 | 18 | prid1 4716 | . . . . . . . . 9 ⊢ ℝ ∈ {ℝ, ℂ} |
| 49 | 1eluzge0 12784 | . . . . . . . . 9 ⊢ 1 ∈ (ℤ≥‘0) | |
| 50 | cpnord 25884 | . . . . . . . . 9 ⊢ ((ℝ ∈ {ℝ, ℂ} ∧ 0 ∈ ℕ0 ∧ 1 ∈ (ℤ≥‘0)) → ((𝓑C𝑛‘ℝ)‘1) ⊆ ((𝓑C𝑛‘ℝ)‘0)) | |
| 51 | 48, 26, 49, 50 | mp3an 1463 | . . . . . . . 8 ⊢ ((𝓑C𝑛‘ℝ)‘1) ⊆ ((𝓑C𝑛‘ℝ)‘0) |
| 52 | 51, 3 | sselid 3928 | . . . . . . 7 ⊢ (𝜑 → 𝐹 ∈ ((𝓑C𝑛‘ℝ)‘0)) |
| 53 | elcpn 25883 | . . . . . . . . 9 ⊢ ((ℝ ⊆ ℂ ∧ 0 ∈ ℕ0) → (𝐹 ∈ ((𝓑C𝑛‘ℝ)‘0) ↔ (𝐹 ∈ (ℂ ↑pm ℝ) ∧ ((ℝ D𝑛 𝐹)‘0) ∈ (dom 𝐹–cn→ℂ)))) | |
| 54 | 4, 26, 53 | mp2an 692 | . . . . . . . 8 ⊢ (𝐹 ∈ ((𝓑C𝑛‘ℝ)‘0) ↔ (𝐹 ∈ (ℂ ↑pm ℝ) ∧ ((ℝ D𝑛 𝐹)‘0) ∈ (dom 𝐹–cn→ℂ))) |
| 55 | 54 | simprbi 496 | . . . . . . 7 ⊢ (𝐹 ∈ ((𝓑C𝑛‘ℝ)‘0) → ((ℝ D𝑛 𝐹)‘0) ∈ (dom 𝐹–cn→ℂ)) |
| 56 | 52, 55 | syl 17 | . . . . . 6 ⊢ (𝜑 → ((ℝ D𝑛 𝐹)‘0) ∈ (dom 𝐹–cn→ℂ)) |
| 57 | 32, 56 | eqeltrrd 2834 | . . . . 5 ⊢ (𝜑 → 𝐹 ∈ (dom 𝐹–cn→ℂ)) |
| 58 | cncfcdm 24838 | . . . . 5 ⊢ ((ℝ ⊆ ℂ ∧ 𝐹 ∈ (dom 𝐹–cn→ℂ)) → (𝐹 ∈ (dom 𝐹–cn→ℝ) ↔ 𝐹:dom 𝐹⟶ℝ)) | |
| 59 | 4, 57, 58 | sylancr 587 | . . . 4 ⊢ (𝜑 → (𝐹 ∈ (dom 𝐹–cn→ℝ) ↔ 𝐹:dom 𝐹⟶ℝ)) |
| 60 | 16, 59 | mpbird 257 | . . 3 ⊢ (𝜑 → 𝐹 ∈ (dom 𝐹–cn→ℝ)) |
| 61 | rescncf 24837 | . . 3 ⊢ ((𝐴[,]𝐵) ⊆ dom 𝐹 → (𝐹 ∈ (dom 𝐹–cn→ℝ) → (𝐹 ↾ (𝐴[,]𝐵)) ∈ ((𝐴[,]𝐵)–cn→ℝ))) | |
| 62 | 10, 60, 61 | sylc 65 | . 2 ⊢ (𝜑 → (𝐹 ↾ (𝐴[,]𝐵)) ∈ ((𝐴[,]𝐵)–cn→ℝ)) |
| 63 | 1, 2, 9, 47, 62 | c1lip1 25949 | 1 ⊢ (𝜑 → ∃𝑘 ∈ ℝ ∀𝑥 ∈ (𝐴[,]𝐵)∀𝑦 ∈ (𝐴[,]𝐵)(abs‘((𝐹‘𝑦) − (𝐹‘𝑥))) ≤ (𝑘 · (abs‘(𝑦 − 𝑥)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ∀wral 3048 ∃wrex 3057 ⊆ wss 3898 {cpr 4579 class class class wbr 5095 dom cdm 5621 ran crn 5622 ↾ cres 5623 Fun wfun 6483 Fn wfn 6484 ⟶wf 6485 ‘cfv 6489 (class class class)co 7355 ↑pm cpm 8760 ℂcc 11015 ℝcr 11016 0cc0 11017 1c1 11018 + caddc 11020 · cmul 11022 ≤ cle 11158 − cmin 11355 ℕ0cn0 12392 ℤ≥cuz 12742 [,]cicc 13255 abscabs 15148 –cn→ccncf 24816 D cdv 25811 D𝑛 cdvn 25812 𝓑C𝑛ccpn 25813 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-inf2 9542 ax-cnex 11073 ax-resscn 11074 ax-1cn 11075 ax-icn 11076 ax-addcl 11077 ax-addrcl 11078 ax-mulcl 11079 ax-mulrcl 11080 ax-mulcom 11081 ax-addass 11082 ax-mulass 11083 ax-distr 11084 ax-i2m1 11085 ax-1ne0 11086 ax-1rid 11087 ax-rnegex 11088 ax-rrecex 11089 ax-cnre 11090 ax-pre-lttri 11091 ax-pre-lttrn 11092 ax-pre-ltadd 11093 ax-pre-mulgt0 11094 ax-pre-sup 11095 ax-addf 11096 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4861 df-int 4900 df-iun 4945 df-iin 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-se 5575 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-isom 6498 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-of 7619 df-om 7806 df-1st 7930 df-2nd 7931 df-supp 8100 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-1o 8394 df-2o 8395 df-er 8631 df-map 8761 df-pm 8762 df-ixp 8832 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-fsupp 9257 df-fi 9306 df-sup 9337 df-inf 9338 df-oi 9407 df-card 9843 df-pnf 11159 df-mnf 11160 df-xr 11161 df-ltxr 11162 df-le 11163 df-sub 11357 df-neg 11358 df-div 11786 df-nn 12137 df-2 12199 df-3 12200 df-4 12201 df-5 12202 df-6 12203 df-7 12204 df-8 12205 df-9 12206 df-n0 12393 df-z 12480 df-dec 12599 df-uz 12743 df-q 12853 df-rp 12897 df-xneg 13017 df-xadd 13018 df-xmul 13019 df-ioo 13256 df-ico 13258 df-icc 13259 df-fz 13415 df-fzo 13562 df-seq 13916 df-exp 13976 df-hash 14245 df-cj 15013 df-re 15014 df-im 15015 df-sqrt 15149 df-abs 15150 df-struct 17065 df-sets 17082 df-slot 17100 df-ndx 17112 df-base 17128 df-ress 17149 df-plusg 17181 df-mulr 17182 df-starv 17183 df-sca 17184 df-vsca 17185 df-ip 17186 df-tset 17187 df-ple 17188 df-ds 17190 df-unif 17191 df-hom 17192 df-cco 17193 df-rest 17333 df-topn 17334 df-0g 17352 df-gsum 17353 df-topgen 17354 df-pt 17355 df-prds 17358 df-xrs 17414 df-qtop 17419 df-imas 17420 df-xps 17422 df-mre 17496 df-mrc 17497 df-acs 17499 df-mgm 18556 df-sgrp 18635 df-mnd 18651 df-submnd 18700 df-mulg 18989 df-cntz 19237 df-cmn 19702 df-psmet 21292 df-xmet 21293 df-met 21294 df-bl 21295 df-mopn 21296 df-fbas 21297 df-fg 21298 df-cnfld 21301 df-top 22829 df-topon 22846 df-topsp 22868 df-bases 22881 df-cld 22954 df-ntr 22955 df-cls 22956 df-nei 23033 df-lp 23071 df-perf 23072 df-cn 23162 df-cnp 23163 df-haus 23250 df-cmp 23322 df-tx 23497 df-hmeo 23690 df-fil 23781 df-fm 23873 df-flim 23874 df-flf 23875 df-xms 24255 df-ms 24256 df-tms 24257 df-cncf 24818 df-limc 25814 df-dv 25815 df-dvn 25816 df-cpn 25817 |
| This theorem is referenced by: c1lip3 25951 |
| Copyright terms: Public domain | W3C validator |