| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > c1lip2 | Structured version Visualization version GIF version | ||
| Description: C^1 functions are Lipschitz continuous on closed intervals. (Contributed by Stefan O'Rear, 16-Nov-2014.) (Revised by Stefan O'Rear, 6-May-2015.) |
| Ref | Expression |
|---|---|
| c1lip2.a | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| c1lip2.b | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
| c1lip2.f | ⊢ (𝜑 → 𝐹 ∈ ((𝓑C𝑛‘ℝ)‘1)) |
| c1lip2.rn | ⊢ (𝜑 → ran 𝐹 ⊆ ℝ) |
| c1lip2.dm | ⊢ (𝜑 → (𝐴[,]𝐵) ⊆ dom 𝐹) |
| Ref | Expression |
|---|---|
| c1lip2 | ⊢ (𝜑 → ∃𝑘 ∈ ℝ ∀𝑥 ∈ (𝐴[,]𝐵)∀𝑦 ∈ (𝐴[,]𝐵)(abs‘((𝐹‘𝑦) − (𝐹‘𝑥))) ≤ (𝑘 · (abs‘(𝑦 − 𝑥)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | c1lip2.a | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 2 | c1lip2.b | . 2 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
| 3 | c1lip2.f | . . 3 ⊢ (𝜑 → 𝐹 ∈ ((𝓑C𝑛‘ℝ)‘1)) | |
| 4 | ax-resscn 11085 | . . . . 5 ⊢ ℝ ⊆ ℂ | |
| 5 | 1nn0 12418 | . . . . 5 ⊢ 1 ∈ ℕ0 | |
| 6 | elcpn 25852 | . . . . 5 ⊢ ((ℝ ⊆ ℂ ∧ 1 ∈ ℕ0) → (𝐹 ∈ ((𝓑C𝑛‘ℝ)‘1) ↔ (𝐹 ∈ (ℂ ↑pm ℝ) ∧ ((ℝ D𝑛 𝐹)‘1) ∈ (dom 𝐹–cn→ℂ)))) | |
| 7 | 4, 5, 6 | mp2an 692 | . . . 4 ⊢ (𝐹 ∈ ((𝓑C𝑛‘ℝ)‘1) ↔ (𝐹 ∈ (ℂ ↑pm ℝ) ∧ ((ℝ D𝑛 𝐹)‘1) ∈ (dom 𝐹–cn→ℂ))) |
| 8 | 7 | simplbi 497 | . . 3 ⊢ (𝐹 ∈ ((𝓑C𝑛‘ℝ)‘1) → 𝐹 ∈ (ℂ ↑pm ℝ)) |
| 9 | 3, 8 | syl 17 | . 2 ⊢ (𝜑 → 𝐹 ∈ (ℂ ↑pm ℝ)) |
| 10 | c1lip2.dm | . . 3 ⊢ (𝜑 → (𝐴[,]𝐵) ⊆ dom 𝐹) | |
| 11 | pmfun 8781 | . . . . . . . . 9 ⊢ (𝐹 ∈ (ℂ ↑pm ℝ) → Fun 𝐹) | |
| 12 | 9, 11 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → Fun 𝐹) |
| 13 | 12 | funfnd 6517 | . . . . . . 7 ⊢ (𝜑 → 𝐹 Fn dom 𝐹) |
| 14 | c1lip2.rn | . . . . . . 7 ⊢ (𝜑 → ran 𝐹 ⊆ ℝ) | |
| 15 | df-f 6490 | . . . . . . 7 ⊢ (𝐹:dom 𝐹⟶ℝ ↔ (𝐹 Fn dom 𝐹 ∧ ran 𝐹 ⊆ ℝ)) | |
| 16 | 13, 14, 15 | sylanbrc 583 | . . . . . 6 ⊢ (𝜑 → 𝐹:dom 𝐹⟶ℝ) |
| 17 | cnex 11109 | . . . . . . . . 9 ⊢ ℂ ∈ V | |
| 18 | reex 11119 | . . . . . . . . 9 ⊢ ℝ ∈ V | |
| 19 | 17, 18 | elpm2 8808 | . . . . . . . 8 ⊢ (𝐹 ∈ (ℂ ↑pm ℝ) ↔ (𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ ℝ)) |
| 20 | 19 | simprbi 496 | . . . . . . 7 ⊢ (𝐹 ∈ (ℂ ↑pm ℝ) → dom 𝐹 ⊆ ℝ) |
| 21 | 9, 20 | syl 17 | . . . . . 6 ⊢ (𝜑 → dom 𝐹 ⊆ ℝ) |
| 22 | dvfre 25871 | . . . . . 6 ⊢ ((𝐹:dom 𝐹⟶ℝ ∧ dom 𝐹 ⊆ ℝ) → (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℝ) | |
| 23 | 16, 21, 22 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℝ) |
| 24 | 0p1e1 12263 | . . . . . . . . . . 11 ⊢ (0 + 1) = 1 | |
| 25 | 24 | fveq2i 6829 | . . . . . . . . . 10 ⊢ ((ℝ D𝑛 𝐹)‘(0 + 1)) = ((ℝ D𝑛 𝐹)‘1) |
| 26 | 0nn0 12417 | . . . . . . . . . . . 12 ⊢ 0 ∈ ℕ0 | |
| 27 | dvnp1 25843 | . . . . . . . . . . . 12 ⊢ ((ℝ ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm ℝ) ∧ 0 ∈ ℕ0) → ((ℝ D𝑛 𝐹)‘(0 + 1)) = (ℝ D ((ℝ D𝑛 𝐹)‘0))) | |
| 28 | 4, 26, 27 | mp3an13 1454 | . . . . . . . . . . 11 ⊢ (𝐹 ∈ (ℂ ↑pm ℝ) → ((ℝ D𝑛 𝐹)‘(0 + 1)) = (ℝ D ((ℝ D𝑛 𝐹)‘0))) |
| 29 | 9, 28 | syl 17 | . . . . . . . . . 10 ⊢ (𝜑 → ((ℝ D𝑛 𝐹)‘(0 + 1)) = (ℝ D ((ℝ D𝑛 𝐹)‘0))) |
| 30 | 25, 29 | eqtr3id 2778 | . . . . . . . . 9 ⊢ (𝜑 → ((ℝ D𝑛 𝐹)‘1) = (ℝ D ((ℝ D𝑛 𝐹)‘0))) |
| 31 | dvn0 25842 | . . . . . . . . . . 11 ⊢ ((ℝ ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm ℝ)) → ((ℝ D𝑛 𝐹)‘0) = 𝐹) | |
| 32 | 4, 9, 31 | sylancr 587 | . . . . . . . . . 10 ⊢ (𝜑 → ((ℝ D𝑛 𝐹)‘0) = 𝐹) |
| 33 | 32 | oveq2d 7369 | . . . . . . . . 9 ⊢ (𝜑 → (ℝ D ((ℝ D𝑛 𝐹)‘0)) = (ℝ D 𝐹)) |
| 34 | 30, 33 | eqtrd 2764 | . . . . . . . 8 ⊢ (𝜑 → ((ℝ D𝑛 𝐹)‘1) = (ℝ D 𝐹)) |
| 35 | 7 | simprbi 496 | . . . . . . . . 9 ⊢ (𝐹 ∈ ((𝓑C𝑛‘ℝ)‘1) → ((ℝ D𝑛 𝐹)‘1) ∈ (dom 𝐹–cn→ℂ)) |
| 36 | 3, 35 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → ((ℝ D𝑛 𝐹)‘1) ∈ (dom 𝐹–cn→ℂ)) |
| 37 | 34, 36 | eqeltrrd 2829 | . . . . . . 7 ⊢ (𝜑 → (ℝ D 𝐹) ∈ (dom 𝐹–cn→ℂ)) |
| 38 | cncff 24802 | . . . . . . 7 ⊢ ((ℝ D 𝐹) ∈ (dom 𝐹–cn→ℂ) → (ℝ D 𝐹):dom 𝐹⟶ℂ) | |
| 39 | fdm 6665 | . . . . . . 7 ⊢ ((ℝ D 𝐹):dom 𝐹⟶ℂ → dom (ℝ D 𝐹) = dom 𝐹) | |
| 40 | 37, 38, 39 | 3syl 18 | . . . . . 6 ⊢ (𝜑 → dom (ℝ D 𝐹) = dom 𝐹) |
| 41 | 40 | feq2d 6640 | . . . . 5 ⊢ (𝜑 → ((ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℝ ↔ (ℝ D 𝐹):dom 𝐹⟶ℝ)) |
| 42 | 23, 41 | mpbid 232 | . . . 4 ⊢ (𝜑 → (ℝ D 𝐹):dom 𝐹⟶ℝ) |
| 43 | cncfcdm 24807 | . . . . 5 ⊢ ((ℝ ⊆ ℂ ∧ (ℝ D 𝐹) ∈ (dom 𝐹–cn→ℂ)) → ((ℝ D 𝐹) ∈ (dom 𝐹–cn→ℝ) ↔ (ℝ D 𝐹):dom 𝐹⟶ℝ)) | |
| 44 | 4, 37, 43 | sylancr 587 | . . . 4 ⊢ (𝜑 → ((ℝ D 𝐹) ∈ (dom 𝐹–cn→ℝ) ↔ (ℝ D 𝐹):dom 𝐹⟶ℝ)) |
| 45 | 42, 44 | mpbird 257 | . . 3 ⊢ (𝜑 → (ℝ D 𝐹) ∈ (dom 𝐹–cn→ℝ)) |
| 46 | rescncf 24806 | . . 3 ⊢ ((𝐴[,]𝐵) ⊆ dom 𝐹 → ((ℝ D 𝐹) ∈ (dom 𝐹–cn→ℝ) → ((ℝ D 𝐹) ↾ (𝐴[,]𝐵)) ∈ ((𝐴[,]𝐵)–cn→ℝ))) | |
| 47 | 10, 45, 46 | sylc 65 | . 2 ⊢ (𝜑 → ((ℝ D 𝐹) ↾ (𝐴[,]𝐵)) ∈ ((𝐴[,]𝐵)–cn→ℝ)) |
| 48 | 18 | prid1 4716 | . . . . . . . . 9 ⊢ ℝ ∈ {ℝ, ℂ} |
| 49 | 1eluzge0 12799 | . . . . . . . . 9 ⊢ 1 ∈ (ℤ≥‘0) | |
| 50 | cpnord 25853 | . . . . . . . . 9 ⊢ ((ℝ ∈ {ℝ, ℂ} ∧ 0 ∈ ℕ0 ∧ 1 ∈ (ℤ≥‘0)) → ((𝓑C𝑛‘ℝ)‘1) ⊆ ((𝓑C𝑛‘ℝ)‘0)) | |
| 51 | 48, 26, 49, 50 | mp3an 1463 | . . . . . . . 8 ⊢ ((𝓑C𝑛‘ℝ)‘1) ⊆ ((𝓑C𝑛‘ℝ)‘0) |
| 52 | 51, 3 | sselid 3935 | . . . . . . 7 ⊢ (𝜑 → 𝐹 ∈ ((𝓑C𝑛‘ℝ)‘0)) |
| 53 | elcpn 25852 | . . . . . . . . 9 ⊢ ((ℝ ⊆ ℂ ∧ 0 ∈ ℕ0) → (𝐹 ∈ ((𝓑C𝑛‘ℝ)‘0) ↔ (𝐹 ∈ (ℂ ↑pm ℝ) ∧ ((ℝ D𝑛 𝐹)‘0) ∈ (dom 𝐹–cn→ℂ)))) | |
| 54 | 4, 26, 53 | mp2an 692 | . . . . . . . 8 ⊢ (𝐹 ∈ ((𝓑C𝑛‘ℝ)‘0) ↔ (𝐹 ∈ (ℂ ↑pm ℝ) ∧ ((ℝ D𝑛 𝐹)‘0) ∈ (dom 𝐹–cn→ℂ))) |
| 55 | 54 | simprbi 496 | . . . . . . 7 ⊢ (𝐹 ∈ ((𝓑C𝑛‘ℝ)‘0) → ((ℝ D𝑛 𝐹)‘0) ∈ (dom 𝐹–cn→ℂ)) |
| 56 | 52, 55 | syl 17 | . . . . . 6 ⊢ (𝜑 → ((ℝ D𝑛 𝐹)‘0) ∈ (dom 𝐹–cn→ℂ)) |
| 57 | 32, 56 | eqeltrrd 2829 | . . . . 5 ⊢ (𝜑 → 𝐹 ∈ (dom 𝐹–cn→ℂ)) |
| 58 | cncfcdm 24807 | . . . . 5 ⊢ ((ℝ ⊆ ℂ ∧ 𝐹 ∈ (dom 𝐹–cn→ℂ)) → (𝐹 ∈ (dom 𝐹–cn→ℝ) ↔ 𝐹:dom 𝐹⟶ℝ)) | |
| 59 | 4, 57, 58 | sylancr 587 | . . . 4 ⊢ (𝜑 → (𝐹 ∈ (dom 𝐹–cn→ℝ) ↔ 𝐹:dom 𝐹⟶ℝ)) |
| 60 | 16, 59 | mpbird 257 | . . 3 ⊢ (𝜑 → 𝐹 ∈ (dom 𝐹–cn→ℝ)) |
| 61 | rescncf 24806 | . . 3 ⊢ ((𝐴[,]𝐵) ⊆ dom 𝐹 → (𝐹 ∈ (dom 𝐹–cn→ℝ) → (𝐹 ↾ (𝐴[,]𝐵)) ∈ ((𝐴[,]𝐵)–cn→ℝ))) | |
| 62 | 10, 60, 61 | sylc 65 | . 2 ⊢ (𝜑 → (𝐹 ↾ (𝐴[,]𝐵)) ∈ ((𝐴[,]𝐵)–cn→ℝ)) |
| 63 | 1, 2, 9, 47, 62 | c1lip1 25918 | 1 ⊢ (𝜑 → ∃𝑘 ∈ ℝ ∀𝑥 ∈ (𝐴[,]𝐵)∀𝑦 ∈ (𝐴[,]𝐵)(abs‘((𝐹‘𝑦) − (𝐹‘𝑥))) ≤ (𝑘 · (abs‘(𝑦 − 𝑥)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ∃wrex 3053 ⊆ wss 3905 {cpr 4581 class class class wbr 5095 dom cdm 5623 ran crn 5624 ↾ cres 5625 Fun wfun 6480 Fn wfn 6481 ⟶wf 6482 ‘cfv 6486 (class class class)co 7353 ↑pm cpm 8761 ℂcc 11026 ℝcr 11027 0cc0 11028 1c1 11029 + caddc 11031 · cmul 11033 ≤ cle 11169 − cmin 11365 ℕ0cn0 12402 ℤ≥cuz 12753 [,]cicc 13269 abscabs 15159 –cn→ccncf 24785 D cdv 25780 D𝑛 cdvn 25781 𝓑C𝑛ccpn 25782 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-inf2 9556 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 ax-pre-sup 11106 ax-addf 11107 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-tp 4584 df-op 4586 df-uni 4862 df-int 4900 df-iun 4946 df-iin 4947 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-se 5577 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-isom 6495 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-of 7617 df-om 7807 df-1st 7931 df-2nd 7932 df-supp 8101 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-2o 8396 df-er 8632 df-map 8762 df-pm 8763 df-ixp 8832 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-fsupp 9271 df-fi 9320 df-sup 9351 df-inf 9352 df-oi 9421 df-card 9854 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-div 11796 df-nn 12147 df-2 12209 df-3 12210 df-4 12211 df-5 12212 df-6 12213 df-7 12214 df-8 12215 df-9 12216 df-n0 12403 df-z 12490 df-dec 12610 df-uz 12754 df-q 12868 df-rp 12912 df-xneg 13032 df-xadd 13033 df-xmul 13034 df-ioo 13270 df-ico 13272 df-icc 13273 df-fz 13429 df-fzo 13576 df-seq 13927 df-exp 13987 df-hash 14256 df-cj 15024 df-re 15025 df-im 15026 df-sqrt 15160 df-abs 15161 df-struct 17076 df-sets 17093 df-slot 17111 df-ndx 17123 df-base 17139 df-ress 17160 df-plusg 17192 df-mulr 17193 df-starv 17194 df-sca 17195 df-vsca 17196 df-ip 17197 df-tset 17198 df-ple 17199 df-ds 17201 df-unif 17202 df-hom 17203 df-cco 17204 df-rest 17344 df-topn 17345 df-0g 17363 df-gsum 17364 df-topgen 17365 df-pt 17366 df-prds 17369 df-xrs 17424 df-qtop 17429 df-imas 17430 df-xps 17432 df-mre 17506 df-mrc 17507 df-acs 17509 df-mgm 18532 df-sgrp 18611 df-mnd 18627 df-submnd 18676 df-mulg 18965 df-cntz 19214 df-cmn 19679 df-psmet 21271 df-xmet 21272 df-met 21273 df-bl 21274 df-mopn 21275 df-fbas 21276 df-fg 21277 df-cnfld 21280 df-top 22797 df-topon 22814 df-topsp 22836 df-bases 22849 df-cld 22922 df-ntr 22923 df-cls 22924 df-nei 23001 df-lp 23039 df-perf 23040 df-cn 23130 df-cnp 23131 df-haus 23218 df-cmp 23290 df-tx 23465 df-hmeo 23658 df-fil 23749 df-fm 23841 df-flim 23842 df-flf 23843 df-xms 24224 df-ms 24225 df-tms 24226 df-cncf 24787 df-limc 25783 df-dv 25784 df-dvn 25785 df-cpn 25786 |
| This theorem is referenced by: c1lip3 25920 |
| Copyright terms: Public domain | W3C validator |