Step | Hyp | Ref
| Expression |
1 | | lmbr.2 |
. . 3
⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) |
2 | 1 | lmbr 22317 |
. 2
⊢ (𝜑 → (𝐹(⇝𝑡‘𝐽)𝑃 ↔ (𝐹 ∈ (𝑋 ↑pm ℂ) ∧ 𝑃 ∈ 𝑋 ∧ ∀𝑢 ∈ 𝐽 (𝑃 ∈ 𝑢 → ∃𝑧 ∈ ran ℤ≥(𝐹 ↾ 𝑧):𝑧⟶𝑢)))) |
3 | | uzf 12514 |
. . . . . . . 8
⊢
ℤ≥:ℤ⟶𝒫 ℤ |
4 | | ffn 6584 |
. . . . . . . 8
⊢
(ℤ≥:ℤ⟶𝒫 ℤ →
ℤ≥ Fn ℤ) |
5 | | reseq2 5875 |
. . . . . . . . . 10
⊢ (𝑧 =
(ℤ≥‘𝑗) → (𝐹 ↾ 𝑧) = (𝐹 ↾ (ℤ≥‘𝑗))) |
6 | | id 22 |
. . . . . . . . . 10
⊢ (𝑧 =
(ℤ≥‘𝑗) → 𝑧 = (ℤ≥‘𝑗)) |
7 | 5, 6 | feq12d 6572 |
. . . . . . . . 9
⊢ (𝑧 =
(ℤ≥‘𝑗) → ((𝐹 ↾ 𝑧):𝑧⟶𝑢 ↔ (𝐹 ↾ (ℤ≥‘𝑗)):(ℤ≥‘𝑗)⟶𝑢)) |
8 | 7 | rexrn 6945 |
. . . . . . . 8
⊢
(ℤ≥ Fn ℤ → (∃𝑧 ∈ ran ℤ≥(𝐹 ↾ 𝑧):𝑧⟶𝑢 ↔ ∃𝑗 ∈ ℤ (𝐹 ↾ (ℤ≥‘𝑗)):(ℤ≥‘𝑗)⟶𝑢)) |
9 | 3, 4, 8 | mp2b 10 |
. . . . . . 7
⊢
(∃𝑧 ∈ ran
ℤ≥(𝐹
↾ 𝑧):𝑧⟶𝑢 ↔ ∃𝑗 ∈ ℤ (𝐹 ↾ (ℤ≥‘𝑗)):(ℤ≥‘𝑗)⟶𝑢) |
10 | | pmfun 8593 |
. . . . . . . . . . 11
⊢ (𝐹 ∈ (𝑋 ↑pm ℂ) → Fun
𝐹) |
11 | 10 | ad2antrl 724 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝐹 ∈ (𝑋 ↑pm ℂ) ∧ 𝑃 ∈ 𝑋)) → Fun 𝐹) |
12 | | ffvresb 6980 |
. . . . . . . . . 10
⊢ (Fun
𝐹 → ((𝐹 ↾
(ℤ≥‘𝑗)):(ℤ≥‘𝑗)⟶𝑢 ↔ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑢))) |
13 | 11, 12 | syl 17 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝐹 ∈ (𝑋 ↑pm ℂ) ∧ 𝑃 ∈ 𝑋)) → ((𝐹 ↾ (ℤ≥‘𝑗)):(ℤ≥‘𝑗)⟶𝑢 ↔ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑢))) |
14 | 13 | rexbidv 3225 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝐹 ∈ (𝑋 ↑pm ℂ) ∧ 𝑃 ∈ 𝑋)) → (∃𝑗 ∈ ℤ (𝐹 ↾ (ℤ≥‘𝑗)):(ℤ≥‘𝑗)⟶𝑢 ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑢))) |
15 | | lmbr2.5 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑀 ∈ ℤ) |
16 | 15 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝐹 ∈ (𝑋 ↑pm ℂ) ∧ 𝑃 ∈ 𝑋)) → 𝑀 ∈ ℤ) |
17 | | lmbr2.4 |
. . . . . . . . . 10
⊢ 𝑍 =
(ℤ≥‘𝑀) |
18 | 17 | rexuz3 14988 |
. . . . . . . . 9
⊢ (𝑀 ∈ ℤ →
(∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑢) ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑢))) |
19 | 16, 18 | syl 17 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝐹 ∈ (𝑋 ↑pm ℂ) ∧ 𝑃 ∈ 𝑋)) → (∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑢) ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑢))) |
20 | 14, 19 | bitr4d 281 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝐹 ∈ (𝑋 ↑pm ℂ) ∧ 𝑃 ∈ 𝑋)) → (∃𝑗 ∈ ℤ (𝐹 ↾ (ℤ≥‘𝑗)):(ℤ≥‘𝑗)⟶𝑢 ↔ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑢))) |
21 | 9, 20 | syl5bb 282 |
. . . . . 6
⊢ ((𝜑 ∧ (𝐹 ∈ (𝑋 ↑pm ℂ) ∧ 𝑃 ∈ 𝑋)) → (∃𝑧 ∈ ran ℤ≥(𝐹 ↾ 𝑧):𝑧⟶𝑢 ↔ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑢))) |
22 | 21 | imbi2d 340 |
. . . . 5
⊢ ((𝜑 ∧ (𝐹 ∈ (𝑋 ↑pm ℂ) ∧ 𝑃 ∈ 𝑋)) → ((𝑃 ∈ 𝑢 → ∃𝑧 ∈ ran ℤ≥(𝐹 ↾ 𝑧):𝑧⟶𝑢) ↔ (𝑃 ∈ 𝑢 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑢)))) |
23 | 22 | ralbidv 3120 |
. . . 4
⊢ ((𝜑 ∧ (𝐹 ∈ (𝑋 ↑pm ℂ) ∧ 𝑃 ∈ 𝑋)) → (∀𝑢 ∈ 𝐽 (𝑃 ∈ 𝑢 → ∃𝑧 ∈ ran ℤ≥(𝐹 ↾ 𝑧):𝑧⟶𝑢) ↔ ∀𝑢 ∈ 𝐽 (𝑃 ∈ 𝑢 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑢)))) |
24 | 23 | pm5.32da 578 |
. . 3
⊢ (𝜑 → (((𝐹 ∈ (𝑋 ↑pm ℂ) ∧ 𝑃 ∈ 𝑋) ∧ ∀𝑢 ∈ 𝐽 (𝑃 ∈ 𝑢 → ∃𝑧 ∈ ran ℤ≥(𝐹 ↾ 𝑧):𝑧⟶𝑢)) ↔ ((𝐹 ∈ (𝑋 ↑pm ℂ) ∧ 𝑃 ∈ 𝑋) ∧ ∀𝑢 ∈ 𝐽 (𝑃 ∈ 𝑢 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑢))))) |
25 | | df-3an 1087 |
. . 3
⊢ ((𝐹 ∈ (𝑋 ↑pm ℂ) ∧ 𝑃 ∈ 𝑋 ∧ ∀𝑢 ∈ 𝐽 (𝑃 ∈ 𝑢 → ∃𝑧 ∈ ran ℤ≥(𝐹 ↾ 𝑧):𝑧⟶𝑢)) ↔ ((𝐹 ∈ (𝑋 ↑pm ℂ) ∧ 𝑃 ∈ 𝑋) ∧ ∀𝑢 ∈ 𝐽 (𝑃 ∈ 𝑢 → ∃𝑧 ∈ ran ℤ≥(𝐹 ↾ 𝑧):𝑧⟶𝑢))) |
26 | | df-3an 1087 |
. . 3
⊢ ((𝐹 ∈ (𝑋 ↑pm ℂ) ∧ 𝑃 ∈ 𝑋 ∧ ∀𝑢 ∈ 𝐽 (𝑃 ∈ 𝑢 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑢))) ↔ ((𝐹 ∈ (𝑋 ↑pm ℂ) ∧ 𝑃 ∈ 𝑋) ∧ ∀𝑢 ∈ 𝐽 (𝑃 ∈ 𝑢 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑢)))) |
27 | 24, 25, 26 | 3bitr4g 313 |
. 2
⊢ (𝜑 → ((𝐹 ∈ (𝑋 ↑pm ℂ) ∧ 𝑃 ∈ 𝑋 ∧ ∀𝑢 ∈ 𝐽 (𝑃 ∈ 𝑢 → ∃𝑧 ∈ ran ℤ≥(𝐹 ↾ 𝑧):𝑧⟶𝑢)) ↔ (𝐹 ∈ (𝑋 ↑pm ℂ) ∧ 𝑃 ∈ 𝑋 ∧ ∀𝑢 ∈ 𝐽 (𝑃 ∈ 𝑢 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑢))))) |
28 | 2, 27 | bitrd 278 |
1
⊢ (𝜑 → (𝐹(⇝𝑡‘𝐽)𝑃 ↔ (𝐹 ∈ (𝑋 ↑pm ℂ) ∧ 𝑃 ∈ 𝑋 ∧ ∀𝑢 ∈ 𝐽 (𝑃 ∈ 𝑢 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑢))))) |