MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmbr2 Structured version   Visualization version   GIF version

Theorem lmbr2 23153
Description: Express the binary relation "sequence 𝐹 converges to point 𝑃 " in a metric space using an arbitrary upper set of integers. (Contributed by Mario Carneiro, 14-Nov-2013.)
Hypotheses
Ref Expression
lmbr.2 (𝜑𝐽 ∈ (TopOn‘𝑋))
lmbr2.4 𝑍 = (ℤ𝑀)
lmbr2.5 (𝜑𝑀 ∈ ℤ)
Assertion
Ref Expression
lmbr2 (𝜑 → (𝐹(⇝𝑡𝐽)𝑃 ↔ (𝐹 ∈ (𝑋pm ℂ) ∧ 𝑃𝑋 ∧ ∀𝑢𝐽 (𝑃𝑢 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)))))
Distinct variable groups:   𝑗,𝑘,𝑢,𝐹   𝑗,𝐽,𝑘,𝑢   𝜑,𝑗,𝑘,𝑢   𝑗,𝑍,𝑘,𝑢   𝑗,𝑀   𝑃,𝑗,𝑘,𝑢   𝑗,𝑋,𝑘,𝑢
Allowed substitution hints:   𝑀(𝑢,𝑘)

Proof of Theorem lmbr2
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 lmbr.2 . . 3 (𝜑𝐽 ∈ (TopOn‘𝑋))
21lmbr 23152 . 2 (𝜑 → (𝐹(⇝𝑡𝐽)𝑃 ↔ (𝐹 ∈ (𝑋pm ℂ) ∧ 𝑃𝑋 ∧ ∀𝑢𝐽 (𝑃𝑢 → ∃𝑧 ∈ ran ℤ(𝐹𝑧):𝑧𝑢))))
3 uzf 12803 . . . . . . . 8 :ℤ⟶𝒫 ℤ
4 ffn 6691 . . . . . . . 8 (ℤ:ℤ⟶𝒫 ℤ → ℤ Fn ℤ)
5 reseq2 5948 . . . . . . . . . 10 (𝑧 = (ℤ𝑗) → (𝐹𝑧) = (𝐹 ↾ (ℤ𝑗)))
6 id 22 . . . . . . . . . 10 (𝑧 = (ℤ𝑗) → 𝑧 = (ℤ𝑗))
75, 6feq12d 6679 . . . . . . . . 9 (𝑧 = (ℤ𝑗) → ((𝐹𝑧):𝑧𝑢 ↔ (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶𝑢))
87rexrn 7062 . . . . . . . 8 (ℤ Fn ℤ → (∃𝑧 ∈ ran ℤ(𝐹𝑧):𝑧𝑢 ↔ ∃𝑗 ∈ ℤ (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶𝑢))
93, 4, 8mp2b 10 . . . . . . 7 (∃𝑧 ∈ ran ℤ(𝐹𝑧):𝑧𝑢 ↔ ∃𝑗 ∈ ℤ (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶𝑢)
10 pmfun 8823 . . . . . . . . . . 11 (𝐹 ∈ (𝑋pm ℂ) → Fun 𝐹)
1110ad2antrl 728 . . . . . . . . . 10 ((𝜑 ∧ (𝐹 ∈ (𝑋pm ℂ) ∧ 𝑃𝑋)) → Fun 𝐹)
12 ffvresb 7100 . . . . . . . . . 10 (Fun 𝐹 → ((𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶𝑢 ↔ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)))
1311, 12syl 17 . . . . . . . . 9 ((𝜑 ∧ (𝐹 ∈ (𝑋pm ℂ) ∧ 𝑃𝑋)) → ((𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶𝑢 ↔ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)))
1413rexbidv 3158 . . . . . . . 8 ((𝜑 ∧ (𝐹 ∈ (𝑋pm ℂ) ∧ 𝑃𝑋)) → (∃𝑗 ∈ ℤ (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶𝑢 ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)))
15 lmbr2.5 . . . . . . . . . 10 (𝜑𝑀 ∈ ℤ)
1615adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝐹 ∈ (𝑋pm ℂ) ∧ 𝑃𝑋)) → 𝑀 ∈ ℤ)
17 lmbr2.4 . . . . . . . . . 10 𝑍 = (ℤ𝑀)
1817rexuz3 15322 . . . . . . . . 9 (𝑀 ∈ ℤ → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢) ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)))
1916, 18syl 17 . . . . . . . 8 ((𝜑 ∧ (𝐹 ∈ (𝑋pm ℂ) ∧ 𝑃𝑋)) → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢) ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)))
2014, 19bitr4d 282 . . . . . . 7 ((𝜑 ∧ (𝐹 ∈ (𝑋pm ℂ) ∧ 𝑃𝑋)) → (∃𝑗 ∈ ℤ (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶𝑢 ↔ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)))
219, 20bitrid 283 . . . . . 6 ((𝜑 ∧ (𝐹 ∈ (𝑋pm ℂ) ∧ 𝑃𝑋)) → (∃𝑧 ∈ ran ℤ(𝐹𝑧):𝑧𝑢 ↔ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)))
2221imbi2d 340 . . . . 5 ((𝜑 ∧ (𝐹 ∈ (𝑋pm ℂ) ∧ 𝑃𝑋)) → ((𝑃𝑢 → ∃𝑧 ∈ ran ℤ(𝐹𝑧):𝑧𝑢) ↔ (𝑃𝑢 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢))))
2322ralbidv 3157 . . . 4 ((𝜑 ∧ (𝐹 ∈ (𝑋pm ℂ) ∧ 𝑃𝑋)) → (∀𝑢𝐽 (𝑃𝑢 → ∃𝑧 ∈ ran ℤ(𝐹𝑧):𝑧𝑢) ↔ ∀𝑢𝐽 (𝑃𝑢 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢))))
2423pm5.32da 579 . . 3 (𝜑 → (((𝐹 ∈ (𝑋pm ℂ) ∧ 𝑃𝑋) ∧ ∀𝑢𝐽 (𝑃𝑢 → ∃𝑧 ∈ ran ℤ(𝐹𝑧):𝑧𝑢)) ↔ ((𝐹 ∈ (𝑋pm ℂ) ∧ 𝑃𝑋) ∧ ∀𝑢𝐽 (𝑃𝑢 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)))))
25 df-3an 1088 . . 3 ((𝐹 ∈ (𝑋pm ℂ) ∧ 𝑃𝑋 ∧ ∀𝑢𝐽 (𝑃𝑢 → ∃𝑧 ∈ ran ℤ(𝐹𝑧):𝑧𝑢)) ↔ ((𝐹 ∈ (𝑋pm ℂ) ∧ 𝑃𝑋) ∧ ∀𝑢𝐽 (𝑃𝑢 → ∃𝑧 ∈ ran ℤ(𝐹𝑧):𝑧𝑢)))
26 df-3an 1088 . . 3 ((𝐹 ∈ (𝑋pm ℂ) ∧ 𝑃𝑋 ∧ ∀𝑢𝐽 (𝑃𝑢 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢))) ↔ ((𝐹 ∈ (𝑋pm ℂ) ∧ 𝑃𝑋) ∧ ∀𝑢𝐽 (𝑃𝑢 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢))))
2724, 25, 263bitr4g 314 . 2 (𝜑 → ((𝐹 ∈ (𝑋pm ℂ) ∧ 𝑃𝑋 ∧ ∀𝑢𝐽 (𝑃𝑢 → ∃𝑧 ∈ ran ℤ(𝐹𝑧):𝑧𝑢)) ↔ (𝐹 ∈ (𝑋pm ℂ) ∧ 𝑃𝑋 ∧ ∀𝑢𝐽 (𝑃𝑢 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)))))
282, 27bitrd 279 1 (𝜑 → (𝐹(⇝𝑡𝐽)𝑃 ↔ (𝐹 ∈ (𝑋pm ℂ) ∧ 𝑃𝑋 ∧ ∀𝑢𝐽 (𝑃𝑢 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3045  wrex 3054  𝒫 cpw 4566   class class class wbr 5110  dom cdm 5641  ran crn 5642  cres 5643  Fun wfun 6508   Fn wfn 6509  wf 6510  cfv 6514  (class class class)co 7390  pm cpm 8803  cc 11073  cz 12536  cuz 12800  TopOnctopon 22804  𝑡clm 23120
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-pre-lttri 11149  ax-pre-lttrn 11150
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-po 5549  df-so 5550  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-1st 7971  df-2nd 7972  df-er 8674  df-pm 8805  df-en 8922  df-dom 8923  df-sdom 8924  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-neg 11415  df-z 12537  df-uz 12801  df-top 22788  df-topon 22805  df-lm 23123
This theorem is referenced by:  lmbrf  23154  lmcvg  23156  lmres  23194  lmcls  23196  lmcnp  23198  lmbr3v  45750
  Copyright terms: Public domain W3C validator