MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmbr2 Structured version   Visualization version   GIF version

Theorem lmbr2 22633
Description: Express the binary relation "sequence 𝐹 converges to point 𝑃 " in a metric space using an arbitrary upper set of integers. (Contributed by Mario Carneiro, 14-Nov-2013.)
Hypotheses
Ref Expression
lmbr.2 (πœ‘ β†’ 𝐽 ∈ (TopOnβ€˜π‘‹))
lmbr2.4 𝑍 = (β„€β‰₯β€˜π‘€)
lmbr2.5 (πœ‘ β†’ 𝑀 ∈ β„€)
Assertion
Ref Expression
lmbr2 (πœ‘ β†’ (𝐹(β‡π‘‘β€˜π½)𝑃 ↔ (𝐹 ∈ (𝑋 ↑pm β„‚) ∧ 𝑃 ∈ 𝑋 ∧ βˆ€π‘’ ∈ 𝐽 (𝑃 ∈ 𝑒 β†’ βˆƒπ‘— ∈ 𝑍 βˆ€π‘˜ ∈ (β„€β‰₯β€˜π‘—)(π‘˜ ∈ dom 𝐹 ∧ (πΉβ€˜π‘˜) ∈ 𝑒)))))
Distinct variable groups:   𝑗,π‘˜,𝑒,𝐹   𝑗,𝐽,π‘˜,𝑒   πœ‘,𝑗,π‘˜,𝑒   𝑗,𝑍,π‘˜,𝑒   𝑗,𝑀   𝑃,𝑗,π‘˜,𝑒   𝑗,𝑋,π‘˜,𝑒
Allowed substitution hints:   𝑀(𝑒,π‘˜)

Proof of Theorem lmbr2
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 lmbr.2 . . 3 (πœ‘ β†’ 𝐽 ∈ (TopOnβ€˜π‘‹))
21lmbr 22632 . 2 (πœ‘ β†’ (𝐹(β‡π‘‘β€˜π½)𝑃 ↔ (𝐹 ∈ (𝑋 ↑pm β„‚) ∧ 𝑃 ∈ 𝑋 ∧ βˆ€π‘’ ∈ 𝐽 (𝑃 ∈ 𝑒 β†’ βˆƒπ‘§ ∈ ran β„€β‰₯(𝐹 β†Ύ 𝑧):π‘§βŸΆπ‘’))))
3 uzf 12774 . . . . . . . 8 β„€β‰₯:β„€βŸΆπ’« β„€
4 ffn 6672 . . . . . . . 8 (β„€β‰₯:β„€βŸΆπ’« β„€ β†’ β„€β‰₯ Fn β„€)
5 reseq2 5936 . . . . . . . . . 10 (𝑧 = (β„€β‰₯β€˜π‘—) β†’ (𝐹 β†Ύ 𝑧) = (𝐹 β†Ύ (β„€β‰₯β€˜π‘—)))
6 id 22 . . . . . . . . . 10 (𝑧 = (β„€β‰₯β€˜π‘—) β†’ 𝑧 = (β„€β‰₯β€˜π‘—))
75, 6feq12d 6660 . . . . . . . . 9 (𝑧 = (β„€β‰₯β€˜π‘—) β†’ ((𝐹 β†Ύ 𝑧):π‘§βŸΆπ‘’ ↔ (𝐹 β†Ύ (β„€β‰₯β€˜π‘—)):(β„€β‰₯β€˜π‘—)βŸΆπ‘’))
87rexrn 7041 . . . . . . . 8 (β„€β‰₯ Fn β„€ β†’ (βˆƒπ‘§ ∈ ran β„€β‰₯(𝐹 β†Ύ 𝑧):π‘§βŸΆπ‘’ ↔ βˆƒπ‘— ∈ β„€ (𝐹 β†Ύ (β„€β‰₯β€˜π‘—)):(β„€β‰₯β€˜π‘—)βŸΆπ‘’))
93, 4, 8mp2b 10 . . . . . . 7 (βˆƒπ‘§ ∈ ran β„€β‰₯(𝐹 β†Ύ 𝑧):π‘§βŸΆπ‘’ ↔ βˆƒπ‘— ∈ β„€ (𝐹 β†Ύ (β„€β‰₯β€˜π‘—)):(β„€β‰₯β€˜π‘—)βŸΆπ‘’)
10 pmfun 8791 . . . . . . . . . . 11 (𝐹 ∈ (𝑋 ↑pm β„‚) β†’ Fun 𝐹)
1110ad2antrl 727 . . . . . . . . . 10 ((πœ‘ ∧ (𝐹 ∈ (𝑋 ↑pm β„‚) ∧ 𝑃 ∈ 𝑋)) β†’ Fun 𝐹)
12 ffvresb 7076 . . . . . . . . . 10 (Fun 𝐹 β†’ ((𝐹 β†Ύ (β„€β‰₯β€˜π‘—)):(β„€β‰₯β€˜π‘—)βŸΆπ‘’ ↔ βˆ€π‘˜ ∈ (β„€β‰₯β€˜π‘—)(π‘˜ ∈ dom 𝐹 ∧ (πΉβ€˜π‘˜) ∈ 𝑒)))
1311, 12syl 17 . . . . . . . . 9 ((πœ‘ ∧ (𝐹 ∈ (𝑋 ↑pm β„‚) ∧ 𝑃 ∈ 𝑋)) β†’ ((𝐹 β†Ύ (β„€β‰₯β€˜π‘—)):(β„€β‰₯β€˜π‘—)βŸΆπ‘’ ↔ βˆ€π‘˜ ∈ (β„€β‰₯β€˜π‘—)(π‘˜ ∈ dom 𝐹 ∧ (πΉβ€˜π‘˜) ∈ 𝑒)))
1413rexbidv 3172 . . . . . . . 8 ((πœ‘ ∧ (𝐹 ∈ (𝑋 ↑pm β„‚) ∧ 𝑃 ∈ 𝑋)) β†’ (βˆƒπ‘— ∈ β„€ (𝐹 β†Ύ (β„€β‰₯β€˜π‘—)):(β„€β‰₯β€˜π‘—)βŸΆπ‘’ ↔ βˆƒπ‘— ∈ β„€ βˆ€π‘˜ ∈ (β„€β‰₯β€˜π‘—)(π‘˜ ∈ dom 𝐹 ∧ (πΉβ€˜π‘˜) ∈ 𝑒)))
15 lmbr2.5 . . . . . . . . . 10 (πœ‘ β†’ 𝑀 ∈ β„€)
1615adantr 482 . . . . . . . . 9 ((πœ‘ ∧ (𝐹 ∈ (𝑋 ↑pm β„‚) ∧ 𝑃 ∈ 𝑋)) β†’ 𝑀 ∈ β„€)
17 lmbr2.4 . . . . . . . . . 10 𝑍 = (β„€β‰₯β€˜π‘€)
1817rexuz3 15242 . . . . . . . . 9 (𝑀 ∈ β„€ β†’ (βˆƒπ‘— ∈ 𝑍 βˆ€π‘˜ ∈ (β„€β‰₯β€˜π‘—)(π‘˜ ∈ dom 𝐹 ∧ (πΉβ€˜π‘˜) ∈ 𝑒) ↔ βˆƒπ‘— ∈ β„€ βˆ€π‘˜ ∈ (β„€β‰₯β€˜π‘—)(π‘˜ ∈ dom 𝐹 ∧ (πΉβ€˜π‘˜) ∈ 𝑒)))
1916, 18syl 17 . . . . . . . 8 ((πœ‘ ∧ (𝐹 ∈ (𝑋 ↑pm β„‚) ∧ 𝑃 ∈ 𝑋)) β†’ (βˆƒπ‘— ∈ 𝑍 βˆ€π‘˜ ∈ (β„€β‰₯β€˜π‘—)(π‘˜ ∈ dom 𝐹 ∧ (πΉβ€˜π‘˜) ∈ 𝑒) ↔ βˆƒπ‘— ∈ β„€ βˆ€π‘˜ ∈ (β„€β‰₯β€˜π‘—)(π‘˜ ∈ dom 𝐹 ∧ (πΉβ€˜π‘˜) ∈ 𝑒)))
2014, 19bitr4d 282 . . . . . . 7 ((πœ‘ ∧ (𝐹 ∈ (𝑋 ↑pm β„‚) ∧ 𝑃 ∈ 𝑋)) β†’ (βˆƒπ‘— ∈ β„€ (𝐹 β†Ύ (β„€β‰₯β€˜π‘—)):(β„€β‰₯β€˜π‘—)βŸΆπ‘’ ↔ βˆƒπ‘— ∈ 𝑍 βˆ€π‘˜ ∈ (β„€β‰₯β€˜π‘—)(π‘˜ ∈ dom 𝐹 ∧ (πΉβ€˜π‘˜) ∈ 𝑒)))
219, 20bitrid 283 . . . . . 6 ((πœ‘ ∧ (𝐹 ∈ (𝑋 ↑pm β„‚) ∧ 𝑃 ∈ 𝑋)) β†’ (βˆƒπ‘§ ∈ ran β„€β‰₯(𝐹 β†Ύ 𝑧):π‘§βŸΆπ‘’ ↔ βˆƒπ‘— ∈ 𝑍 βˆ€π‘˜ ∈ (β„€β‰₯β€˜π‘—)(π‘˜ ∈ dom 𝐹 ∧ (πΉβ€˜π‘˜) ∈ 𝑒)))
2221imbi2d 341 . . . . 5 ((πœ‘ ∧ (𝐹 ∈ (𝑋 ↑pm β„‚) ∧ 𝑃 ∈ 𝑋)) β†’ ((𝑃 ∈ 𝑒 β†’ βˆƒπ‘§ ∈ ran β„€β‰₯(𝐹 β†Ύ 𝑧):π‘§βŸΆπ‘’) ↔ (𝑃 ∈ 𝑒 β†’ βˆƒπ‘— ∈ 𝑍 βˆ€π‘˜ ∈ (β„€β‰₯β€˜π‘—)(π‘˜ ∈ dom 𝐹 ∧ (πΉβ€˜π‘˜) ∈ 𝑒))))
2322ralbidv 3171 . . . 4 ((πœ‘ ∧ (𝐹 ∈ (𝑋 ↑pm β„‚) ∧ 𝑃 ∈ 𝑋)) β†’ (βˆ€π‘’ ∈ 𝐽 (𝑃 ∈ 𝑒 β†’ βˆƒπ‘§ ∈ ran β„€β‰₯(𝐹 β†Ύ 𝑧):π‘§βŸΆπ‘’) ↔ βˆ€π‘’ ∈ 𝐽 (𝑃 ∈ 𝑒 β†’ βˆƒπ‘— ∈ 𝑍 βˆ€π‘˜ ∈ (β„€β‰₯β€˜π‘—)(π‘˜ ∈ dom 𝐹 ∧ (πΉβ€˜π‘˜) ∈ 𝑒))))
2423pm5.32da 580 . . 3 (πœ‘ β†’ (((𝐹 ∈ (𝑋 ↑pm β„‚) ∧ 𝑃 ∈ 𝑋) ∧ βˆ€π‘’ ∈ 𝐽 (𝑃 ∈ 𝑒 β†’ βˆƒπ‘§ ∈ ran β„€β‰₯(𝐹 β†Ύ 𝑧):π‘§βŸΆπ‘’)) ↔ ((𝐹 ∈ (𝑋 ↑pm β„‚) ∧ 𝑃 ∈ 𝑋) ∧ βˆ€π‘’ ∈ 𝐽 (𝑃 ∈ 𝑒 β†’ βˆƒπ‘— ∈ 𝑍 βˆ€π‘˜ ∈ (β„€β‰₯β€˜π‘—)(π‘˜ ∈ dom 𝐹 ∧ (πΉβ€˜π‘˜) ∈ 𝑒)))))
25 df-3an 1090 . . 3 ((𝐹 ∈ (𝑋 ↑pm β„‚) ∧ 𝑃 ∈ 𝑋 ∧ βˆ€π‘’ ∈ 𝐽 (𝑃 ∈ 𝑒 β†’ βˆƒπ‘§ ∈ ran β„€β‰₯(𝐹 β†Ύ 𝑧):π‘§βŸΆπ‘’)) ↔ ((𝐹 ∈ (𝑋 ↑pm β„‚) ∧ 𝑃 ∈ 𝑋) ∧ βˆ€π‘’ ∈ 𝐽 (𝑃 ∈ 𝑒 β†’ βˆƒπ‘§ ∈ ran β„€β‰₯(𝐹 β†Ύ 𝑧):π‘§βŸΆπ‘’)))
26 df-3an 1090 . . 3 ((𝐹 ∈ (𝑋 ↑pm β„‚) ∧ 𝑃 ∈ 𝑋 ∧ βˆ€π‘’ ∈ 𝐽 (𝑃 ∈ 𝑒 β†’ βˆƒπ‘— ∈ 𝑍 βˆ€π‘˜ ∈ (β„€β‰₯β€˜π‘—)(π‘˜ ∈ dom 𝐹 ∧ (πΉβ€˜π‘˜) ∈ 𝑒))) ↔ ((𝐹 ∈ (𝑋 ↑pm β„‚) ∧ 𝑃 ∈ 𝑋) ∧ βˆ€π‘’ ∈ 𝐽 (𝑃 ∈ 𝑒 β†’ βˆƒπ‘— ∈ 𝑍 βˆ€π‘˜ ∈ (β„€β‰₯β€˜π‘—)(π‘˜ ∈ dom 𝐹 ∧ (πΉβ€˜π‘˜) ∈ 𝑒))))
2724, 25, 263bitr4g 314 . 2 (πœ‘ β†’ ((𝐹 ∈ (𝑋 ↑pm β„‚) ∧ 𝑃 ∈ 𝑋 ∧ βˆ€π‘’ ∈ 𝐽 (𝑃 ∈ 𝑒 β†’ βˆƒπ‘§ ∈ ran β„€β‰₯(𝐹 β†Ύ 𝑧):π‘§βŸΆπ‘’)) ↔ (𝐹 ∈ (𝑋 ↑pm β„‚) ∧ 𝑃 ∈ 𝑋 ∧ βˆ€π‘’ ∈ 𝐽 (𝑃 ∈ 𝑒 β†’ βˆƒπ‘— ∈ 𝑍 βˆ€π‘˜ ∈ (β„€β‰₯β€˜π‘—)(π‘˜ ∈ dom 𝐹 ∧ (πΉβ€˜π‘˜) ∈ 𝑒)))))
282, 27bitrd 279 1 (πœ‘ β†’ (𝐹(β‡π‘‘β€˜π½)𝑃 ↔ (𝐹 ∈ (𝑋 ↑pm β„‚) ∧ 𝑃 ∈ 𝑋 ∧ βˆ€π‘’ ∈ 𝐽 (𝑃 ∈ 𝑒 β†’ βˆƒπ‘— ∈ 𝑍 βˆ€π‘˜ ∈ (β„€β‰₯β€˜π‘—)(π‘˜ ∈ dom 𝐹 ∧ (πΉβ€˜π‘˜) ∈ 𝑒)))))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 397   ∧ w3a 1088   = wceq 1542   ∈ wcel 2107  βˆ€wral 3061  βˆƒwrex 3070  π’« cpw 4564   class class class wbr 5109  dom cdm 5637  ran crn 5638   β†Ύ cres 5639  Fun wfun 6494   Fn wfn 6495  βŸΆwf 6496  β€˜cfv 6500  (class class class)co 7361   ↑pm cpm 8772  β„‚cc 11057  β„€cz 12507  β„€β‰₯cuz 12771  TopOnctopon 22282  β‡π‘‘clm 22600
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5260  ax-nul 5267  ax-pow 5324  ax-pr 5388  ax-un 7676  ax-cnex 11115  ax-resscn 11116  ax-pre-lttri 11133  ax-pre-lttrn 11134
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rab 3407  df-v 3449  df-sbc 3744  df-csb 3860  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4287  df-if 4491  df-pw 4566  df-sn 4591  df-pr 4593  df-op 4597  df-uni 4870  df-iun 4960  df-br 5110  df-opab 5172  df-mpt 5193  df-id 5535  df-po 5549  df-so 5550  df-xp 5643  df-rel 5644  df-cnv 5645  df-co 5646  df-dm 5647  df-rn 5648  df-res 5649  df-ima 5650  df-iota 6452  df-fun 6502  df-fn 6503  df-f 6504  df-f1 6505  df-fo 6506  df-f1o 6507  df-fv 6508  df-ov 7364  df-oprab 7365  df-mpo 7366  df-1st 7925  df-2nd 7926  df-er 8654  df-pm 8774  df-en 8890  df-dom 8891  df-sdom 8892  df-pnf 11199  df-mnf 11200  df-xr 11201  df-ltxr 11202  df-le 11203  df-neg 11396  df-z 12508  df-uz 12772  df-top 22266  df-topon 22283  df-lm 22603
This theorem is referenced by:  lmbrf  22634  lmcvg  22636  lmres  22674  lmcls  22676  lmcnp  22678  lmbr3v  44076
  Copyright terms: Public domain W3C validator