MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmbr2 Structured version   Visualization version   GIF version

Theorem lmbr2 23162
Description: Express the binary relation "sequence 𝐹 converges to point 𝑃 " in a metric space using an arbitrary upper set of integers. (Contributed by Mario Carneiro, 14-Nov-2013.)
Hypotheses
Ref Expression
lmbr.2 (𝜑𝐽 ∈ (TopOn‘𝑋))
lmbr2.4 𝑍 = (ℤ𝑀)
lmbr2.5 (𝜑𝑀 ∈ ℤ)
Assertion
Ref Expression
lmbr2 (𝜑 → (𝐹(⇝𝑡𝐽)𝑃 ↔ (𝐹 ∈ (𝑋pm ℂ) ∧ 𝑃𝑋 ∧ ∀𝑢𝐽 (𝑃𝑢 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)))))
Distinct variable groups:   𝑗,𝑘,𝑢,𝐹   𝑗,𝐽,𝑘,𝑢   𝜑,𝑗,𝑘,𝑢   𝑗,𝑍,𝑘,𝑢   𝑗,𝑀   𝑃,𝑗,𝑘,𝑢   𝑗,𝑋,𝑘,𝑢
Allowed substitution hints:   𝑀(𝑢,𝑘)

Proof of Theorem lmbr2
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 lmbr.2 . . 3 (𝜑𝐽 ∈ (TopOn‘𝑋))
21lmbr 23161 . 2 (𝜑 → (𝐹(⇝𝑡𝐽)𝑃 ↔ (𝐹 ∈ (𝑋pm ℂ) ∧ 𝑃𝑋 ∧ ∀𝑢𝐽 (𝑃𝑢 → ∃𝑧 ∈ ran ℤ(𝐹𝑧):𝑧𝑢))))
3 uzf 12756 . . . . . . . 8 :ℤ⟶𝒫 ℤ
4 ffn 6656 . . . . . . . 8 (ℤ:ℤ⟶𝒫 ℤ → ℤ Fn ℤ)
5 reseq2 5929 . . . . . . . . . 10 (𝑧 = (ℤ𝑗) → (𝐹𝑧) = (𝐹 ↾ (ℤ𝑗)))
6 id 22 . . . . . . . . . 10 (𝑧 = (ℤ𝑗) → 𝑧 = (ℤ𝑗))
75, 6feq12d 6644 . . . . . . . . 9 (𝑧 = (ℤ𝑗) → ((𝐹𝑧):𝑧𝑢 ↔ (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶𝑢))
87rexrn 7025 . . . . . . . 8 (ℤ Fn ℤ → (∃𝑧 ∈ ran ℤ(𝐹𝑧):𝑧𝑢 ↔ ∃𝑗 ∈ ℤ (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶𝑢))
93, 4, 8mp2b 10 . . . . . . 7 (∃𝑧 ∈ ran ℤ(𝐹𝑧):𝑧𝑢 ↔ ∃𝑗 ∈ ℤ (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶𝑢)
10 pmfun 8781 . . . . . . . . . . 11 (𝐹 ∈ (𝑋pm ℂ) → Fun 𝐹)
1110ad2antrl 728 . . . . . . . . . 10 ((𝜑 ∧ (𝐹 ∈ (𝑋pm ℂ) ∧ 𝑃𝑋)) → Fun 𝐹)
12 ffvresb 7063 . . . . . . . . . 10 (Fun 𝐹 → ((𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶𝑢 ↔ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)))
1311, 12syl 17 . . . . . . . . 9 ((𝜑 ∧ (𝐹 ∈ (𝑋pm ℂ) ∧ 𝑃𝑋)) → ((𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶𝑢 ↔ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)))
1413rexbidv 3153 . . . . . . . 8 ((𝜑 ∧ (𝐹 ∈ (𝑋pm ℂ) ∧ 𝑃𝑋)) → (∃𝑗 ∈ ℤ (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶𝑢 ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)))
15 lmbr2.5 . . . . . . . . . 10 (𝜑𝑀 ∈ ℤ)
1615adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝐹 ∈ (𝑋pm ℂ) ∧ 𝑃𝑋)) → 𝑀 ∈ ℤ)
17 lmbr2.4 . . . . . . . . . 10 𝑍 = (ℤ𝑀)
1817rexuz3 15274 . . . . . . . . 9 (𝑀 ∈ ℤ → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢) ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)))
1916, 18syl 17 . . . . . . . 8 ((𝜑 ∧ (𝐹 ∈ (𝑋pm ℂ) ∧ 𝑃𝑋)) → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢) ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)))
2014, 19bitr4d 282 . . . . . . 7 ((𝜑 ∧ (𝐹 ∈ (𝑋pm ℂ) ∧ 𝑃𝑋)) → (∃𝑗 ∈ ℤ (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶𝑢 ↔ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)))
219, 20bitrid 283 . . . . . 6 ((𝜑 ∧ (𝐹 ∈ (𝑋pm ℂ) ∧ 𝑃𝑋)) → (∃𝑧 ∈ ran ℤ(𝐹𝑧):𝑧𝑢 ↔ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)))
2221imbi2d 340 . . . . 5 ((𝜑 ∧ (𝐹 ∈ (𝑋pm ℂ) ∧ 𝑃𝑋)) → ((𝑃𝑢 → ∃𝑧 ∈ ran ℤ(𝐹𝑧):𝑧𝑢) ↔ (𝑃𝑢 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢))))
2322ralbidv 3152 . . . 4 ((𝜑 ∧ (𝐹 ∈ (𝑋pm ℂ) ∧ 𝑃𝑋)) → (∀𝑢𝐽 (𝑃𝑢 → ∃𝑧 ∈ ran ℤ(𝐹𝑧):𝑧𝑢) ↔ ∀𝑢𝐽 (𝑃𝑢 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢))))
2423pm5.32da 579 . . 3 (𝜑 → (((𝐹 ∈ (𝑋pm ℂ) ∧ 𝑃𝑋) ∧ ∀𝑢𝐽 (𝑃𝑢 → ∃𝑧 ∈ ran ℤ(𝐹𝑧):𝑧𝑢)) ↔ ((𝐹 ∈ (𝑋pm ℂ) ∧ 𝑃𝑋) ∧ ∀𝑢𝐽 (𝑃𝑢 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)))))
25 df-3an 1088 . . 3 ((𝐹 ∈ (𝑋pm ℂ) ∧ 𝑃𝑋 ∧ ∀𝑢𝐽 (𝑃𝑢 → ∃𝑧 ∈ ran ℤ(𝐹𝑧):𝑧𝑢)) ↔ ((𝐹 ∈ (𝑋pm ℂ) ∧ 𝑃𝑋) ∧ ∀𝑢𝐽 (𝑃𝑢 → ∃𝑧 ∈ ran ℤ(𝐹𝑧):𝑧𝑢)))
26 df-3an 1088 . . 3 ((𝐹 ∈ (𝑋pm ℂ) ∧ 𝑃𝑋 ∧ ∀𝑢𝐽 (𝑃𝑢 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢))) ↔ ((𝐹 ∈ (𝑋pm ℂ) ∧ 𝑃𝑋) ∧ ∀𝑢𝐽 (𝑃𝑢 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢))))
2724, 25, 263bitr4g 314 . 2 (𝜑 → ((𝐹 ∈ (𝑋pm ℂ) ∧ 𝑃𝑋 ∧ ∀𝑢𝐽 (𝑃𝑢 → ∃𝑧 ∈ ran ℤ(𝐹𝑧):𝑧𝑢)) ↔ (𝐹 ∈ (𝑋pm ℂ) ∧ 𝑃𝑋 ∧ ∀𝑢𝐽 (𝑃𝑢 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)))))
282, 27bitrd 279 1 (𝜑 → (𝐹(⇝𝑡𝐽)𝑃 ↔ (𝐹 ∈ (𝑋pm ℂ) ∧ 𝑃𝑋 ∧ ∀𝑢𝐽 (𝑃𝑢 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  wrex 3053  𝒫 cpw 4553   class class class wbr 5095  dom cdm 5623  ran crn 5624  cres 5625  Fun wfun 6480   Fn wfn 6481  wf 6482  cfv 6486  (class class class)co 7353  pm cpm 8761  cc 11026  cz 12489  cuz 12753  TopOnctopon 22813  𝑡clm 23129
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-pre-lttri 11102  ax-pre-lttrn 11103
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-po 5531  df-so 5532  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7356  df-oprab 7357  df-mpo 7358  df-1st 7931  df-2nd 7932  df-er 8632  df-pm 8763  df-en 8880  df-dom 8881  df-sdom 8882  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-neg 11368  df-z 12490  df-uz 12754  df-top 22797  df-topon 22814  df-lm 23132
This theorem is referenced by:  lmbrf  23163  lmcvg  23165  lmres  23203  lmcls  23205  lmcnp  23207  lmbr3v  45727
  Copyright terms: Public domain W3C validator