MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvnadd Structured version   Visualization version   GIF version

Theorem dvnadd 25838
Description: The 𝑁-th derivative of the 𝑀-th derivative of 𝐹 is the same as the 𝑀 + 𝑁-th derivative of 𝐹. (Contributed by Mario Carneiro, 11-Feb-2015.)
Assertion
Ref Expression
dvnadd (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → ((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘𝑀))‘𝑁) = ((𝑆 D𝑛 𝐹)‘(𝑀 + 𝑁)))

Proof of Theorem dvnadd
Dummy variables 𝑘 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6861 . . . . . 6 (𝑛 = 0 → ((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘𝑀))‘𝑛) = ((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘𝑀))‘0))
2 oveq2 7398 . . . . . . 7 (𝑛 = 0 → (𝑀 + 𝑛) = (𝑀 + 0))
32fveq2d 6865 . . . . . 6 (𝑛 = 0 → ((𝑆 D𝑛 𝐹)‘(𝑀 + 𝑛)) = ((𝑆 D𝑛 𝐹)‘(𝑀 + 0)))
41, 3eqeq12d 2746 . . . . 5 (𝑛 = 0 → (((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘𝑀))‘𝑛) = ((𝑆 D𝑛 𝐹)‘(𝑀 + 𝑛)) ↔ ((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘𝑀))‘0) = ((𝑆 D𝑛 𝐹)‘(𝑀 + 0))))
54imbi2d 340 . . . 4 (𝑛 = 0 → ((((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ 𝑀 ∈ ℕ0) → ((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘𝑀))‘𝑛) = ((𝑆 D𝑛 𝐹)‘(𝑀 + 𝑛))) ↔ (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ 𝑀 ∈ ℕ0) → ((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘𝑀))‘0) = ((𝑆 D𝑛 𝐹)‘(𝑀 + 0)))))
6 fveq2 6861 . . . . . 6 (𝑛 = 𝑘 → ((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘𝑀))‘𝑛) = ((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘𝑀))‘𝑘))
7 oveq2 7398 . . . . . . 7 (𝑛 = 𝑘 → (𝑀 + 𝑛) = (𝑀 + 𝑘))
87fveq2d 6865 . . . . . 6 (𝑛 = 𝑘 → ((𝑆 D𝑛 𝐹)‘(𝑀 + 𝑛)) = ((𝑆 D𝑛 𝐹)‘(𝑀 + 𝑘)))
96, 8eqeq12d 2746 . . . . 5 (𝑛 = 𝑘 → (((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘𝑀))‘𝑛) = ((𝑆 D𝑛 𝐹)‘(𝑀 + 𝑛)) ↔ ((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘𝑀))‘𝑘) = ((𝑆 D𝑛 𝐹)‘(𝑀 + 𝑘))))
109imbi2d 340 . . . 4 (𝑛 = 𝑘 → ((((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ 𝑀 ∈ ℕ0) → ((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘𝑀))‘𝑛) = ((𝑆 D𝑛 𝐹)‘(𝑀 + 𝑛))) ↔ (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ 𝑀 ∈ ℕ0) → ((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘𝑀))‘𝑘) = ((𝑆 D𝑛 𝐹)‘(𝑀 + 𝑘)))))
11 fveq2 6861 . . . . . 6 (𝑛 = (𝑘 + 1) → ((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘𝑀))‘𝑛) = ((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘𝑀))‘(𝑘 + 1)))
12 oveq2 7398 . . . . . . 7 (𝑛 = (𝑘 + 1) → (𝑀 + 𝑛) = (𝑀 + (𝑘 + 1)))
1312fveq2d 6865 . . . . . 6 (𝑛 = (𝑘 + 1) → ((𝑆 D𝑛 𝐹)‘(𝑀 + 𝑛)) = ((𝑆 D𝑛 𝐹)‘(𝑀 + (𝑘 + 1))))
1411, 13eqeq12d 2746 . . . . 5 (𝑛 = (𝑘 + 1) → (((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘𝑀))‘𝑛) = ((𝑆 D𝑛 𝐹)‘(𝑀 + 𝑛)) ↔ ((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘𝑀))‘(𝑘 + 1)) = ((𝑆 D𝑛 𝐹)‘(𝑀 + (𝑘 + 1)))))
1514imbi2d 340 . . . 4 (𝑛 = (𝑘 + 1) → ((((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ 𝑀 ∈ ℕ0) → ((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘𝑀))‘𝑛) = ((𝑆 D𝑛 𝐹)‘(𝑀 + 𝑛))) ↔ (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ 𝑀 ∈ ℕ0) → ((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘𝑀))‘(𝑘 + 1)) = ((𝑆 D𝑛 𝐹)‘(𝑀 + (𝑘 + 1))))))
16 fveq2 6861 . . . . . 6 (𝑛 = 𝑁 → ((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘𝑀))‘𝑛) = ((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘𝑀))‘𝑁))
17 oveq2 7398 . . . . . . 7 (𝑛 = 𝑁 → (𝑀 + 𝑛) = (𝑀 + 𝑁))
1817fveq2d 6865 . . . . . 6 (𝑛 = 𝑁 → ((𝑆 D𝑛 𝐹)‘(𝑀 + 𝑛)) = ((𝑆 D𝑛 𝐹)‘(𝑀 + 𝑁)))
1916, 18eqeq12d 2746 . . . . 5 (𝑛 = 𝑁 → (((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘𝑀))‘𝑛) = ((𝑆 D𝑛 𝐹)‘(𝑀 + 𝑛)) ↔ ((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘𝑀))‘𝑁) = ((𝑆 D𝑛 𝐹)‘(𝑀 + 𝑁))))
2019imbi2d 340 . . . 4 (𝑛 = 𝑁 → ((((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ 𝑀 ∈ ℕ0) → ((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘𝑀))‘𝑛) = ((𝑆 D𝑛 𝐹)‘(𝑀 + 𝑛))) ↔ (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ 𝑀 ∈ ℕ0) → ((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘𝑀))‘𝑁) = ((𝑆 D𝑛 𝐹)‘(𝑀 + 𝑁)))))
21 recnprss 25812 . . . . . . 7 (𝑆 ∈ {ℝ, ℂ} → 𝑆 ⊆ ℂ)
2221ad2antrr 726 . . . . . 6 (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ 𝑀 ∈ ℕ0) → 𝑆 ⊆ ℂ)
23 ssidd 3973 . . . . . . . . 9 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) → ℂ ⊆ ℂ)
24 cnex 11156 . . . . . . . . . . 11 ℂ ∈ V
25 elpm2g 8820 . . . . . . . . . . 11 ((ℂ ∈ V ∧ 𝑆 ∈ {ℝ, ℂ}) → (𝐹 ∈ (ℂ ↑pm 𝑆) ↔ (𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹𝑆)))
2624, 25mpan 690 . . . . . . . . . 10 (𝑆 ∈ {ℝ, ℂ} → (𝐹 ∈ (ℂ ↑pm 𝑆) ↔ (𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹𝑆)))
2726simplbda 499 . . . . . . . . 9 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) → dom 𝐹𝑆)
2824a1i 11 . . . . . . . . 9 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) → ℂ ∈ V)
29 simpl 482 . . . . . . . . 9 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) → 𝑆 ∈ {ℝ, ℂ})
30 pmss12g 8845 . . . . . . . . 9 (((ℂ ⊆ ℂ ∧ dom 𝐹𝑆) ∧ (ℂ ∈ V ∧ 𝑆 ∈ {ℝ, ℂ})) → (ℂ ↑pm dom 𝐹) ⊆ (ℂ ↑pm 𝑆))
3123, 27, 28, 29, 30syl22anc 838 . . . . . . . 8 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) → (ℂ ↑pm dom 𝐹) ⊆ (ℂ ↑pm 𝑆))
3231adantr 480 . . . . . . 7 (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ 𝑀 ∈ ℕ0) → (ℂ ↑pm dom 𝐹) ⊆ (ℂ ↑pm 𝑆))
33 dvnff 25832 . . . . . . . 8 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) → (𝑆 D𝑛 𝐹):ℕ0⟶(ℂ ↑pm dom 𝐹))
3433ffvelcdmda 7059 . . . . . . 7 (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ 𝑀 ∈ ℕ0) → ((𝑆 D𝑛 𝐹)‘𝑀) ∈ (ℂ ↑pm dom 𝐹))
3532, 34sseldd 3950 . . . . . 6 (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ 𝑀 ∈ ℕ0) → ((𝑆 D𝑛 𝐹)‘𝑀) ∈ (ℂ ↑pm 𝑆))
36 dvn0 25833 . . . . . 6 ((𝑆 ⊆ ℂ ∧ ((𝑆 D𝑛 𝐹)‘𝑀) ∈ (ℂ ↑pm 𝑆)) → ((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘𝑀))‘0) = ((𝑆 D𝑛 𝐹)‘𝑀))
3722, 35, 36syl2anc 584 . . . . 5 (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ 𝑀 ∈ ℕ0) → ((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘𝑀))‘0) = ((𝑆 D𝑛 𝐹)‘𝑀))
38 nn0cn 12459 . . . . . . . 8 (𝑀 ∈ ℕ0𝑀 ∈ ℂ)
3938adantl 481 . . . . . . 7 (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ 𝑀 ∈ ℕ0) → 𝑀 ∈ ℂ)
4039addridd 11381 . . . . . 6 (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ 𝑀 ∈ ℕ0) → (𝑀 + 0) = 𝑀)
4140fveq2d 6865 . . . . 5 (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ 𝑀 ∈ ℕ0) → ((𝑆 D𝑛 𝐹)‘(𝑀 + 0)) = ((𝑆 D𝑛 𝐹)‘𝑀))
4237, 41eqtr4d 2768 . . . 4 (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ 𝑀 ∈ ℕ0) → ((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘𝑀))‘0) = ((𝑆 D𝑛 𝐹)‘(𝑀 + 0)))
43 oveq2 7398 . . . . . . 7 (((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘𝑀))‘𝑘) = ((𝑆 D𝑛 𝐹)‘(𝑀 + 𝑘)) → (𝑆 D ((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘𝑀))‘𝑘)) = (𝑆 D ((𝑆 D𝑛 𝐹)‘(𝑀 + 𝑘))))
4422adantr 480 . . . . . . . . 9 ((((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ 𝑀 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → 𝑆 ⊆ ℂ)
4535adantr 480 . . . . . . . . 9 ((((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ 𝑀 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → ((𝑆 D𝑛 𝐹)‘𝑀) ∈ (ℂ ↑pm 𝑆))
46 simpr 484 . . . . . . . . 9 ((((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ 𝑀 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈ ℕ0)
47 dvnp1 25834 . . . . . . . . 9 ((𝑆 ⊆ ℂ ∧ ((𝑆 D𝑛 𝐹)‘𝑀) ∈ (ℂ ↑pm 𝑆) ∧ 𝑘 ∈ ℕ0) → ((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘𝑀))‘(𝑘 + 1)) = (𝑆 D ((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘𝑀))‘𝑘)))
4844, 45, 46, 47syl3anc 1373 . . . . . . . 8 ((((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ 𝑀 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → ((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘𝑀))‘(𝑘 + 1)) = (𝑆 D ((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘𝑀))‘𝑘)))
4939adantr 480 . . . . . . . . . . 11 ((((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ 𝑀 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → 𝑀 ∈ ℂ)
50 nn0cn 12459 . . . . . . . . . . . 12 (𝑘 ∈ ℕ0𝑘 ∈ ℂ)
5150adantl 481 . . . . . . . . . . 11 ((((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ 𝑀 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈ ℂ)
52 1cnd 11176 . . . . . . . . . . 11 ((((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ 𝑀 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → 1 ∈ ℂ)
5349, 51, 52addassd 11203 . . . . . . . . . 10 ((((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ 𝑀 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → ((𝑀 + 𝑘) + 1) = (𝑀 + (𝑘 + 1)))
5453fveq2d 6865 . . . . . . . . 9 ((((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ 𝑀 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → ((𝑆 D𝑛 𝐹)‘((𝑀 + 𝑘) + 1)) = ((𝑆 D𝑛 𝐹)‘(𝑀 + (𝑘 + 1))))
55 simpllr 775 . . . . . . . . . 10 ((((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ 𝑀 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → 𝐹 ∈ (ℂ ↑pm 𝑆))
56 nn0addcl 12484 . . . . . . . . . . 11 ((𝑀 ∈ ℕ0𝑘 ∈ ℕ0) → (𝑀 + 𝑘) ∈ ℕ0)
5756adantll 714 . . . . . . . . . 10 ((((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ 𝑀 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → (𝑀 + 𝑘) ∈ ℕ0)
58 dvnp1 25834 . . . . . . . . . 10 ((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆) ∧ (𝑀 + 𝑘) ∈ ℕ0) → ((𝑆 D𝑛 𝐹)‘((𝑀 + 𝑘) + 1)) = (𝑆 D ((𝑆 D𝑛 𝐹)‘(𝑀 + 𝑘))))
5944, 55, 57, 58syl3anc 1373 . . . . . . . . 9 ((((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ 𝑀 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → ((𝑆 D𝑛 𝐹)‘((𝑀 + 𝑘) + 1)) = (𝑆 D ((𝑆 D𝑛 𝐹)‘(𝑀 + 𝑘))))
6054, 59eqtr3d 2767 . . . . . . . 8 ((((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ 𝑀 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → ((𝑆 D𝑛 𝐹)‘(𝑀 + (𝑘 + 1))) = (𝑆 D ((𝑆 D𝑛 𝐹)‘(𝑀 + 𝑘))))
6148, 60eqeq12d 2746 . . . . . . 7 ((((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ 𝑀 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → (((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘𝑀))‘(𝑘 + 1)) = ((𝑆 D𝑛 𝐹)‘(𝑀 + (𝑘 + 1))) ↔ (𝑆 D ((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘𝑀))‘𝑘)) = (𝑆 D ((𝑆 D𝑛 𝐹)‘(𝑀 + 𝑘)))))
6243, 61imbitrrid 246 . . . . . 6 ((((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ 𝑀 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → (((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘𝑀))‘𝑘) = ((𝑆 D𝑛 𝐹)‘(𝑀 + 𝑘)) → ((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘𝑀))‘(𝑘 + 1)) = ((𝑆 D𝑛 𝐹)‘(𝑀 + (𝑘 + 1)))))
6362expcom 413 . . . . 5 (𝑘 ∈ ℕ0 → (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ 𝑀 ∈ ℕ0) → (((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘𝑀))‘𝑘) = ((𝑆 D𝑛 𝐹)‘(𝑀 + 𝑘)) → ((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘𝑀))‘(𝑘 + 1)) = ((𝑆 D𝑛 𝐹)‘(𝑀 + (𝑘 + 1))))))
6463a2d 29 . . . 4 (𝑘 ∈ ℕ0 → ((((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ 𝑀 ∈ ℕ0) → ((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘𝑀))‘𝑘) = ((𝑆 D𝑛 𝐹)‘(𝑀 + 𝑘))) → (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ 𝑀 ∈ ℕ0) → ((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘𝑀))‘(𝑘 + 1)) = ((𝑆 D𝑛 𝐹)‘(𝑀 + (𝑘 + 1))))))
655, 10, 15, 20, 42, 64nn0ind 12636 . . 3 (𝑁 ∈ ℕ0 → (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ 𝑀 ∈ ℕ0) → ((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘𝑀))‘𝑁) = ((𝑆 D𝑛 𝐹)‘(𝑀 + 𝑁))))
6665com12 32 . 2 (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ 𝑀 ∈ ℕ0) → (𝑁 ∈ ℕ0 → ((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘𝑀))‘𝑁) = ((𝑆 D𝑛 𝐹)‘(𝑀 + 𝑁))))
6766impr 454 1 (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → ((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘𝑀))‘𝑁) = ((𝑆 D𝑛 𝐹)‘(𝑀 + 𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  Vcvv 3450  wss 3917  {cpr 4594  dom cdm 5641  wf 6510  cfv 6514  (class class class)co 7390  pm cpm 8803  cc 11073  cr 11074  0cc0 11075  1c1 11076   + caddc 11078  0cn0 12449   D cdv 25771   D𝑛 cdvn 25772
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-er 8674  df-map 8804  df-pm 8805  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-fi 9369  df-sup 9400  df-inf 9401  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-z 12537  df-dec 12657  df-uz 12801  df-q 12915  df-rp 12959  df-xneg 13079  df-xadd 13080  df-xmul 13081  df-icc 13320  df-fz 13476  df-seq 13974  df-exp 14034  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-struct 17124  df-slot 17159  df-ndx 17171  df-base 17187  df-plusg 17240  df-mulr 17241  df-starv 17242  df-tset 17246  df-ple 17247  df-ds 17249  df-unif 17250  df-rest 17392  df-topn 17393  df-topgen 17413  df-psmet 21263  df-xmet 21264  df-met 21265  df-bl 21266  df-mopn 21267  df-fbas 21268  df-fg 21269  df-cnfld 21272  df-top 22788  df-topon 22805  df-topsp 22827  df-bases 22840  df-cld 22913  df-ntr 22914  df-cls 22915  df-nei 22992  df-lp 23030  df-perf 23031  df-cnp 23122  df-haus 23209  df-fil 23740  df-fm 23832  df-flim 23833  df-flf 23834  df-xms 24215  df-ms 24216  df-limc 25774  df-dv 25775  df-dvn 25776
This theorem is referenced by:  dvn2bss  25839  dvtaylp  26285  dvntaylp  26286  dvntaylp0  26287
  Copyright terms: Public domain W3C validator