MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvnadd Structured version   Visualization version   GIF version

Theorem dvnadd 24998
Description: The 𝑁-th derivative of the 𝑀-th derivative of 𝐹 is the same as the 𝑀 + 𝑁-th derivative of 𝐹. (Contributed by Mario Carneiro, 11-Feb-2015.)
Assertion
Ref Expression
dvnadd (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → ((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘𝑀))‘𝑁) = ((𝑆 D𝑛 𝐹)‘(𝑀 + 𝑁)))

Proof of Theorem dvnadd
Dummy variables 𝑘 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6756 . . . . . 6 (𝑛 = 0 → ((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘𝑀))‘𝑛) = ((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘𝑀))‘0))
2 oveq2 7263 . . . . . . 7 (𝑛 = 0 → (𝑀 + 𝑛) = (𝑀 + 0))
32fveq2d 6760 . . . . . 6 (𝑛 = 0 → ((𝑆 D𝑛 𝐹)‘(𝑀 + 𝑛)) = ((𝑆 D𝑛 𝐹)‘(𝑀 + 0)))
41, 3eqeq12d 2754 . . . . 5 (𝑛 = 0 → (((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘𝑀))‘𝑛) = ((𝑆 D𝑛 𝐹)‘(𝑀 + 𝑛)) ↔ ((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘𝑀))‘0) = ((𝑆 D𝑛 𝐹)‘(𝑀 + 0))))
54imbi2d 340 . . . 4 (𝑛 = 0 → ((((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ 𝑀 ∈ ℕ0) → ((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘𝑀))‘𝑛) = ((𝑆 D𝑛 𝐹)‘(𝑀 + 𝑛))) ↔ (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ 𝑀 ∈ ℕ0) → ((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘𝑀))‘0) = ((𝑆 D𝑛 𝐹)‘(𝑀 + 0)))))
6 fveq2 6756 . . . . . 6 (𝑛 = 𝑘 → ((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘𝑀))‘𝑛) = ((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘𝑀))‘𝑘))
7 oveq2 7263 . . . . . . 7 (𝑛 = 𝑘 → (𝑀 + 𝑛) = (𝑀 + 𝑘))
87fveq2d 6760 . . . . . 6 (𝑛 = 𝑘 → ((𝑆 D𝑛 𝐹)‘(𝑀 + 𝑛)) = ((𝑆 D𝑛 𝐹)‘(𝑀 + 𝑘)))
96, 8eqeq12d 2754 . . . . 5 (𝑛 = 𝑘 → (((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘𝑀))‘𝑛) = ((𝑆 D𝑛 𝐹)‘(𝑀 + 𝑛)) ↔ ((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘𝑀))‘𝑘) = ((𝑆 D𝑛 𝐹)‘(𝑀 + 𝑘))))
109imbi2d 340 . . . 4 (𝑛 = 𝑘 → ((((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ 𝑀 ∈ ℕ0) → ((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘𝑀))‘𝑛) = ((𝑆 D𝑛 𝐹)‘(𝑀 + 𝑛))) ↔ (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ 𝑀 ∈ ℕ0) → ((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘𝑀))‘𝑘) = ((𝑆 D𝑛 𝐹)‘(𝑀 + 𝑘)))))
11 fveq2 6756 . . . . . 6 (𝑛 = (𝑘 + 1) → ((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘𝑀))‘𝑛) = ((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘𝑀))‘(𝑘 + 1)))
12 oveq2 7263 . . . . . . 7 (𝑛 = (𝑘 + 1) → (𝑀 + 𝑛) = (𝑀 + (𝑘 + 1)))
1312fveq2d 6760 . . . . . 6 (𝑛 = (𝑘 + 1) → ((𝑆 D𝑛 𝐹)‘(𝑀 + 𝑛)) = ((𝑆 D𝑛 𝐹)‘(𝑀 + (𝑘 + 1))))
1411, 13eqeq12d 2754 . . . . 5 (𝑛 = (𝑘 + 1) → (((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘𝑀))‘𝑛) = ((𝑆 D𝑛 𝐹)‘(𝑀 + 𝑛)) ↔ ((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘𝑀))‘(𝑘 + 1)) = ((𝑆 D𝑛 𝐹)‘(𝑀 + (𝑘 + 1)))))
1514imbi2d 340 . . . 4 (𝑛 = (𝑘 + 1) → ((((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ 𝑀 ∈ ℕ0) → ((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘𝑀))‘𝑛) = ((𝑆 D𝑛 𝐹)‘(𝑀 + 𝑛))) ↔ (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ 𝑀 ∈ ℕ0) → ((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘𝑀))‘(𝑘 + 1)) = ((𝑆 D𝑛 𝐹)‘(𝑀 + (𝑘 + 1))))))
16 fveq2 6756 . . . . . 6 (𝑛 = 𝑁 → ((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘𝑀))‘𝑛) = ((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘𝑀))‘𝑁))
17 oveq2 7263 . . . . . . 7 (𝑛 = 𝑁 → (𝑀 + 𝑛) = (𝑀 + 𝑁))
1817fveq2d 6760 . . . . . 6 (𝑛 = 𝑁 → ((𝑆 D𝑛 𝐹)‘(𝑀 + 𝑛)) = ((𝑆 D𝑛 𝐹)‘(𝑀 + 𝑁)))
1916, 18eqeq12d 2754 . . . . 5 (𝑛 = 𝑁 → (((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘𝑀))‘𝑛) = ((𝑆 D𝑛 𝐹)‘(𝑀 + 𝑛)) ↔ ((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘𝑀))‘𝑁) = ((𝑆 D𝑛 𝐹)‘(𝑀 + 𝑁))))
2019imbi2d 340 . . . 4 (𝑛 = 𝑁 → ((((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ 𝑀 ∈ ℕ0) → ((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘𝑀))‘𝑛) = ((𝑆 D𝑛 𝐹)‘(𝑀 + 𝑛))) ↔ (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ 𝑀 ∈ ℕ0) → ((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘𝑀))‘𝑁) = ((𝑆 D𝑛 𝐹)‘(𝑀 + 𝑁)))))
21 recnprss 24973 . . . . . . 7 (𝑆 ∈ {ℝ, ℂ} → 𝑆 ⊆ ℂ)
2221ad2antrr 722 . . . . . 6 (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ 𝑀 ∈ ℕ0) → 𝑆 ⊆ ℂ)
23 ssidd 3940 . . . . . . . . 9 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) → ℂ ⊆ ℂ)
24 cnex 10883 . . . . . . . . . . 11 ℂ ∈ V
25 elpm2g 8590 . . . . . . . . . . 11 ((ℂ ∈ V ∧ 𝑆 ∈ {ℝ, ℂ}) → (𝐹 ∈ (ℂ ↑pm 𝑆) ↔ (𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹𝑆)))
2624, 25mpan 686 . . . . . . . . . 10 (𝑆 ∈ {ℝ, ℂ} → (𝐹 ∈ (ℂ ↑pm 𝑆) ↔ (𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹𝑆)))
2726simplbda 499 . . . . . . . . 9 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) → dom 𝐹𝑆)
2824a1i 11 . . . . . . . . 9 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) → ℂ ∈ V)
29 simpl 482 . . . . . . . . 9 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) → 𝑆 ∈ {ℝ, ℂ})
30 pmss12g 8615 . . . . . . . . 9 (((ℂ ⊆ ℂ ∧ dom 𝐹𝑆) ∧ (ℂ ∈ V ∧ 𝑆 ∈ {ℝ, ℂ})) → (ℂ ↑pm dom 𝐹) ⊆ (ℂ ↑pm 𝑆))
3123, 27, 28, 29, 30syl22anc 835 . . . . . . . 8 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) → (ℂ ↑pm dom 𝐹) ⊆ (ℂ ↑pm 𝑆))
3231adantr 480 . . . . . . 7 (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ 𝑀 ∈ ℕ0) → (ℂ ↑pm dom 𝐹) ⊆ (ℂ ↑pm 𝑆))
33 dvnff 24992 . . . . . . . 8 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) → (𝑆 D𝑛 𝐹):ℕ0⟶(ℂ ↑pm dom 𝐹))
3433ffvelrnda 6943 . . . . . . 7 (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ 𝑀 ∈ ℕ0) → ((𝑆 D𝑛 𝐹)‘𝑀) ∈ (ℂ ↑pm dom 𝐹))
3532, 34sseldd 3918 . . . . . 6 (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ 𝑀 ∈ ℕ0) → ((𝑆 D𝑛 𝐹)‘𝑀) ∈ (ℂ ↑pm 𝑆))
36 dvn0 24993 . . . . . 6 ((𝑆 ⊆ ℂ ∧ ((𝑆 D𝑛 𝐹)‘𝑀) ∈ (ℂ ↑pm 𝑆)) → ((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘𝑀))‘0) = ((𝑆 D𝑛 𝐹)‘𝑀))
3722, 35, 36syl2anc 583 . . . . 5 (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ 𝑀 ∈ ℕ0) → ((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘𝑀))‘0) = ((𝑆 D𝑛 𝐹)‘𝑀))
38 nn0cn 12173 . . . . . . . 8 (𝑀 ∈ ℕ0𝑀 ∈ ℂ)
3938adantl 481 . . . . . . 7 (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ 𝑀 ∈ ℕ0) → 𝑀 ∈ ℂ)
4039addid1d 11105 . . . . . 6 (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ 𝑀 ∈ ℕ0) → (𝑀 + 0) = 𝑀)
4140fveq2d 6760 . . . . 5 (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ 𝑀 ∈ ℕ0) → ((𝑆 D𝑛 𝐹)‘(𝑀 + 0)) = ((𝑆 D𝑛 𝐹)‘𝑀))
4237, 41eqtr4d 2781 . . . 4 (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ 𝑀 ∈ ℕ0) → ((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘𝑀))‘0) = ((𝑆 D𝑛 𝐹)‘(𝑀 + 0)))
43 oveq2 7263 . . . . . . 7 (((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘𝑀))‘𝑘) = ((𝑆 D𝑛 𝐹)‘(𝑀 + 𝑘)) → (𝑆 D ((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘𝑀))‘𝑘)) = (𝑆 D ((𝑆 D𝑛 𝐹)‘(𝑀 + 𝑘))))
4422adantr 480 . . . . . . . . 9 ((((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ 𝑀 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → 𝑆 ⊆ ℂ)
4535adantr 480 . . . . . . . . 9 ((((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ 𝑀 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → ((𝑆 D𝑛 𝐹)‘𝑀) ∈ (ℂ ↑pm 𝑆))
46 simpr 484 . . . . . . . . 9 ((((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ 𝑀 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈ ℕ0)
47 dvnp1 24994 . . . . . . . . 9 ((𝑆 ⊆ ℂ ∧ ((𝑆 D𝑛 𝐹)‘𝑀) ∈ (ℂ ↑pm 𝑆) ∧ 𝑘 ∈ ℕ0) → ((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘𝑀))‘(𝑘 + 1)) = (𝑆 D ((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘𝑀))‘𝑘)))
4844, 45, 46, 47syl3anc 1369 . . . . . . . 8 ((((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ 𝑀 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → ((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘𝑀))‘(𝑘 + 1)) = (𝑆 D ((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘𝑀))‘𝑘)))
4939adantr 480 . . . . . . . . . . 11 ((((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ 𝑀 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → 𝑀 ∈ ℂ)
50 nn0cn 12173 . . . . . . . . . . . 12 (𝑘 ∈ ℕ0𝑘 ∈ ℂ)
5150adantl 481 . . . . . . . . . . 11 ((((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ 𝑀 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈ ℂ)
52 1cnd 10901 . . . . . . . . . . 11 ((((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ 𝑀 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → 1 ∈ ℂ)
5349, 51, 52addassd 10928 . . . . . . . . . 10 ((((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ 𝑀 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → ((𝑀 + 𝑘) + 1) = (𝑀 + (𝑘 + 1)))
5453fveq2d 6760 . . . . . . . . 9 ((((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ 𝑀 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → ((𝑆 D𝑛 𝐹)‘((𝑀 + 𝑘) + 1)) = ((𝑆 D𝑛 𝐹)‘(𝑀 + (𝑘 + 1))))
55 simpllr 772 . . . . . . . . . 10 ((((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ 𝑀 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → 𝐹 ∈ (ℂ ↑pm 𝑆))
56 nn0addcl 12198 . . . . . . . . . . 11 ((𝑀 ∈ ℕ0𝑘 ∈ ℕ0) → (𝑀 + 𝑘) ∈ ℕ0)
5756adantll 710 . . . . . . . . . 10 ((((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ 𝑀 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → (𝑀 + 𝑘) ∈ ℕ0)
58 dvnp1 24994 . . . . . . . . . 10 ((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆) ∧ (𝑀 + 𝑘) ∈ ℕ0) → ((𝑆 D𝑛 𝐹)‘((𝑀 + 𝑘) + 1)) = (𝑆 D ((𝑆 D𝑛 𝐹)‘(𝑀 + 𝑘))))
5944, 55, 57, 58syl3anc 1369 . . . . . . . . 9 ((((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ 𝑀 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → ((𝑆 D𝑛 𝐹)‘((𝑀 + 𝑘) + 1)) = (𝑆 D ((𝑆 D𝑛 𝐹)‘(𝑀 + 𝑘))))
6054, 59eqtr3d 2780 . . . . . . . 8 ((((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ 𝑀 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → ((𝑆 D𝑛 𝐹)‘(𝑀 + (𝑘 + 1))) = (𝑆 D ((𝑆 D𝑛 𝐹)‘(𝑀 + 𝑘))))
6148, 60eqeq12d 2754 . . . . . . 7 ((((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ 𝑀 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → (((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘𝑀))‘(𝑘 + 1)) = ((𝑆 D𝑛 𝐹)‘(𝑀 + (𝑘 + 1))) ↔ (𝑆 D ((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘𝑀))‘𝑘)) = (𝑆 D ((𝑆 D𝑛 𝐹)‘(𝑀 + 𝑘)))))
6243, 61syl5ibr 245 . . . . . 6 ((((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ 𝑀 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → (((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘𝑀))‘𝑘) = ((𝑆 D𝑛 𝐹)‘(𝑀 + 𝑘)) → ((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘𝑀))‘(𝑘 + 1)) = ((𝑆 D𝑛 𝐹)‘(𝑀 + (𝑘 + 1)))))
6362expcom 413 . . . . 5 (𝑘 ∈ ℕ0 → (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ 𝑀 ∈ ℕ0) → (((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘𝑀))‘𝑘) = ((𝑆 D𝑛 𝐹)‘(𝑀 + 𝑘)) → ((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘𝑀))‘(𝑘 + 1)) = ((𝑆 D𝑛 𝐹)‘(𝑀 + (𝑘 + 1))))))
6463a2d 29 . . . 4 (𝑘 ∈ ℕ0 → ((((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ 𝑀 ∈ ℕ0) → ((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘𝑀))‘𝑘) = ((𝑆 D𝑛 𝐹)‘(𝑀 + 𝑘))) → (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ 𝑀 ∈ ℕ0) → ((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘𝑀))‘(𝑘 + 1)) = ((𝑆 D𝑛 𝐹)‘(𝑀 + (𝑘 + 1))))))
655, 10, 15, 20, 42, 64nn0ind 12345 . . 3 (𝑁 ∈ ℕ0 → (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ 𝑀 ∈ ℕ0) → ((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘𝑀))‘𝑁) = ((𝑆 D𝑛 𝐹)‘(𝑀 + 𝑁))))
6665com12 32 . 2 (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ 𝑀 ∈ ℕ0) → (𝑁 ∈ ℕ0 → ((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘𝑀))‘𝑁) = ((𝑆 D𝑛 𝐹)‘(𝑀 + 𝑁))))
6766impr 454 1 (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → ((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘𝑀))‘𝑁) = ((𝑆 D𝑛 𝐹)‘(𝑀 + 𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  Vcvv 3422  wss 3883  {cpr 4560  dom cdm 5580  wf 6414  cfv 6418  (class class class)co 7255  pm cpm 8574  cc 10800  cr 10801  0cc0 10802  1c1 10803   + caddc 10805  0cn0 12163   D cdv 24932   D𝑛 cdvn 24933
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-map 8575  df-pm 8576  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fi 9100  df-sup 9131  df-inf 9132  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-dec 12367  df-uz 12512  df-q 12618  df-rp 12660  df-xneg 12777  df-xadd 12778  df-xmul 12779  df-icc 13015  df-fz 13169  df-seq 13650  df-exp 13711  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-struct 16776  df-slot 16811  df-ndx 16823  df-base 16841  df-plusg 16901  df-mulr 16902  df-starv 16903  df-tset 16907  df-ple 16908  df-ds 16910  df-unif 16911  df-rest 17050  df-topn 17051  df-topgen 17071  df-psmet 20502  df-xmet 20503  df-met 20504  df-bl 20505  df-mopn 20506  df-fbas 20507  df-fg 20508  df-cnfld 20511  df-top 21951  df-topon 21968  df-topsp 21990  df-bases 22004  df-cld 22078  df-ntr 22079  df-cls 22080  df-nei 22157  df-lp 22195  df-perf 22196  df-cnp 22287  df-haus 22374  df-fil 22905  df-fm 22997  df-flim 22998  df-flf 22999  df-xms 23381  df-ms 23382  df-limc 24935  df-dv 24936  df-dvn 24937
This theorem is referenced by:  dvn2bss  24999  dvtaylp  25434  dvntaylp  25435  dvntaylp0  25436
  Copyright terms: Public domain W3C validator