MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wfr2aOLD Structured version   Visualization version   GIF version

Theorem wfr2aOLD 8325
Description: Obsolete proof of wfr2a 8333 as of 18-Nov-2024. (New usage is discouraged.) (Proof modification is discouraged.) (Contributed by Scott Fenton, 30-Jul-2020.)
Hypotheses
Ref Expression
wfr2aOLD.1 𝑅 We 𝐴
wfr2aOLD.2 𝑅 Se 𝐴
wfr2aOLD.3 𝐹 = wrecs(𝑅, 𝐴, 𝐺)
Assertion
Ref Expression
wfr2aOLD (𝑋 ∈ dom 𝐹 → (𝐹𝑋) = (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑋))))

Proof of Theorem wfr2aOLD
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6891 . . 3 (𝑥 = 𝑋 → (𝐹𝑥) = (𝐹𝑋))
2 predeq3 6304 . . . . 5 (𝑥 = 𝑋 → Pred(𝑅, 𝐴, 𝑥) = Pred(𝑅, 𝐴, 𝑋))
32reseq2d 5981 . . . 4 (𝑥 = 𝑋 → (𝐹 ↾ Pred(𝑅, 𝐴, 𝑥)) = (𝐹 ↾ Pred(𝑅, 𝐴, 𝑋)))
43fveq2d 6895 . . 3 (𝑥 = 𝑋 → (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑥))) = (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑋))))
51, 4eqeq12d 2748 . 2 (𝑥 = 𝑋 → ((𝐹𝑥) = (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑥))) ↔ (𝐹𝑋) = (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑋)))))
6 wfr2aOLD.1 . . 3 𝑅 We 𝐴
7 wfr2aOLD.2 . . 3 𝑅 Se 𝐴
8 wfr2aOLD.3 . . 3 𝐹 = wrecs(𝑅, 𝐴, 𝐺)
96, 7, 8wfrlem12OLD 8319 . 2 (𝑥 ∈ dom 𝐹 → (𝐹𝑥) = (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑥))))
105, 9vtoclga 3565 1 (𝑋 ∈ dom 𝐹 → (𝐹𝑋) = (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑋))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2106   Se wse 5629   We wwe 5630  dom cdm 5676  cres 5678  Predcpred 6299  cfv 6543  wrecscwrecs 8295
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pr 5427  ax-un 7724
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-po 5588  df-so 5589  df-fr 5631  df-se 5632  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-fo 6549  df-fv 6551  df-ov 7411  df-2nd 7975  df-frecs 8265  df-wrecs 8296
This theorem is referenced by:  wfr2OLD  8327
  Copyright terms: Public domain W3C validator