![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > wfr2aOLD | Structured version Visualization version GIF version |
Description: Obsolete proof of wfr2a 8333 as of 18-Nov-2024. (New usage is discouraged.) (Proof modification is discouraged.) (Contributed by Scott Fenton, 30-Jul-2020.) |
Ref | Expression |
---|---|
wfr2aOLD.1 | ⊢ 𝑅 We 𝐴 |
wfr2aOLD.2 | ⊢ 𝑅 Se 𝐴 |
wfr2aOLD.3 | ⊢ 𝐹 = wrecs(𝑅, 𝐴, 𝐺) |
Ref | Expression |
---|---|
wfr2aOLD | ⊢ (𝑋 ∈ dom 𝐹 → (𝐹‘𝑋) = (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑋)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6891 | . . 3 ⊢ (𝑥 = 𝑋 → (𝐹‘𝑥) = (𝐹‘𝑋)) | |
2 | predeq3 6304 | . . . . 5 ⊢ (𝑥 = 𝑋 → Pred(𝑅, 𝐴, 𝑥) = Pred(𝑅, 𝐴, 𝑋)) | |
3 | 2 | reseq2d 5981 | . . . 4 ⊢ (𝑥 = 𝑋 → (𝐹 ↾ Pred(𝑅, 𝐴, 𝑥)) = (𝐹 ↾ Pred(𝑅, 𝐴, 𝑋))) |
4 | 3 | fveq2d 6895 | . . 3 ⊢ (𝑥 = 𝑋 → (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑥))) = (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑋)))) |
5 | 1, 4 | eqeq12d 2748 | . 2 ⊢ (𝑥 = 𝑋 → ((𝐹‘𝑥) = (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑥))) ↔ (𝐹‘𝑋) = (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑋))))) |
6 | wfr2aOLD.1 | . . 3 ⊢ 𝑅 We 𝐴 | |
7 | wfr2aOLD.2 | . . 3 ⊢ 𝑅 Se 𝐴 | |
8 | wfr2aOLD.3 | . . 3 ⊢ 𝐹 = wrecs(𝑅, 𝐴, 𝐺) | |
9 | 6, 7, 8 | wfrlem12OLD 8319 | . 2 ⊢ (𝑥 ∈ dom 𝐹 → (𝐹‘𝑥) = (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑥)))) |
10 | 5, 9 | vtoclga 3565 | 1 ⊢ (𝑋 ∈ dom 𝐹 → (𝐹‘𝑋) = (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑋)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2106 Se wse 5629 We wwe 5630 dom cdm 5676 ↾ cres 5678 Predcpred 6299 ‘cfv 6543 wrecscwrecs 8295 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pr 5427 ax-un 7724 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-po 5588 df-so 5589 df-fr 5631 df-se 5632 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-fo 6549 df-fv 6551 df-ov 7411 df-2nd 7975 df-frecs 8265 df-wrecs 8296 |
This theorem is referenced by: wfr2OLD 8327 |
Copyright terms: Public domain | W3C validator |