MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wfr2aOLD Structured version   Visualization version   GIF version

Theorem wfr2aOLD 8355
Description: Obsolete version of wfr2a 8363 as of 18-Nov-2024. (New usage is discouraged.) (Proof modification is discouraged.) (Contributed by Scott Fenton, 30-Jul-2020.)
Hypotheses
Ref Expression
wfr2aOLD.1 𝑅 We 𝐴
wfr2aOLD.2 𝑅 Se 𝐴
wfr2aOLD.3 𝐹 = wrecs(𝑅, 𝐴, 𝐺)
Assertion
Ref Expression
wfr2aOLD (𝑋 ∈ dom 𝐹 → (𝐹𝑋) = (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑋))))

Proof of Theorem wfr2aOLD
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6902 . . 3 (𝑥 = 𝑋 → (𝐹𝑥) = (𝐹𝑋))
2 predeq3 6314 . . . . 5 (𝑥 = 𝑋 → Pred(𝑅, 𝐴, 𝑥) = Pred(𝑅, 𝐴, 𝑋))
32reseq2d 5989 . . . 4 (𝑥 = 𝑋 → (𝐹 ↾ Pred(𝑅, 𝐴, 𝑥)) = (𝐹 ↾ Pred(𝑅, 𝐴, 𝑋)))
43fveq2d 6906 . . 3 (𝑥 = 𝑋 → (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑥))) = (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑋))))
51, 4eqeq12d 2744 . 2 (𝑥 = 𝑋 → ((𝐹𝑥) = (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑥))) ↔ (𝐹𝑋) = (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑋)))))
6 wfr2aOLD.1 . . 3 𝑅 We 𝐴
7 wfr2aOLD.2 . . 3 𝑅 Se 𝐴
8 wfr2aOLD.3 . . 3 𝐹 = wrecs(𝑅, 𝐴, 𝐺)
96, 7, 8wfrlem12OLD 8349 . 2 (𝑥 ∈ dom 𝐹 → (𝐹𝑥) = (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑥))))
105, 9vtoclga 3565 1 (𝑋 ∈ dom 𝐹 → (𝐹𝑋) = (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑋))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1533  wcel 2098   Se wse 5635   We wwe 5636  dom cdm 5682  cres 5684  Predcpred 6309  cfv 6553  wrecscwrecs 8325
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-sep 5303  ax-nul 5310  ax-pr 5433  ax-un 7748
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-ral 3059  df-rex 3068  df-rab 3431  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4327  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-iun 5002  df-br 5153  df-opab 5215  df-mpt 5236  df-id 5580  df-po 5594  df-so 5595  df-fr 5637  df-se 5638  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6310  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-fo 6559  df-fv 6561  df-ov 7429  df-2nd 8002  df-frecs 8295  df-wrecs 8326
This theorem is referenced by:  wfr2OLD  8357
  Copyright terms: Public domain W3C validator