![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > wfr2aOLD | Structured version Visualization version GIF version |
Description: Obsolete version of wfr2a 8390 as of 18-Nov-2024. (New usage is discouraged.) (Proof modification is discouraged.) (Contributed by Scott Fenton, 30-Jul-2020.) |
Ref | Expression |
---|---|
wfr2aOLD.1 | ⊢ 𝑅 We 𝐴 |
wfr2aOLD.2 | ⊢ 𝑅 Se 𝐴 |
wfr2aOLD.3 | ⊢ 𝐹 = wrecs(𝑅, 𝐴, 𝐺) |
Ref | Expression |
---|---|
wfr2aOLD | ⊢ (𝑋 ∈ dom 𝐹 → (𝐹‘𝑋) = (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑋)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6920 | . . 3 ⊢ (𝑥 = 𝑋 → (𝐹‘𝑥) = (𝐹‘𝑋)) | |
2 | predeq3 6336 | . . . . 5 ⊢ (𝑥 = 𝑋 → Pred(𝑅, 𝐴, 𝑥) = Pred(𝑅, 𝐴, 𝑋)) | |
3 | 2 | reseq2d 6009 | . . . 4 ⊢ (𝑥 = 𝑋 → (𝐹 ↾ Pred(𝑅, 𝐴, 𝑥)) = (𝐹 ↾ Pred(𝑅, 𝐴, 𝑋))) |
4 | 3 | fveq2d 6924 | . . 3 ⊢ (𝑥 = 𝑋 → (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑥))) = (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑋)))) |
5 | 1, 4 | eqeq12d 2756 | . 2 ⊢ (𝑥 = 𝑋 → ((𝐹‘𝑥) = (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑥))) ↔ (𝐹‘𝑋) = (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑋))))) |
6 | wfr2aOLD.1 | . . 3 ⊢ 𝑅 We 𝐴 | |
7 | wfr2aOLD.2 | . . 3 ⊢ 𝑅 Se 𝐴 | |
8 | wfr2aOLD.3 | . . 3 ⊢ 𝐹 = wrecs(𝑅, 𝐴, 𝐺) | |
9 | 6, 7, 8 | wfrlem12OLD 8376 | . 2 ⊢ (𝑥 ∈ dom 𝐹 → (𝐹‘𝑥) = (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑥)))) |
10 | 5, 9 | vtoclga 3589 | 1 ⊢ (𝑋 ∈ dom 𝐹 → (𝐹‘𝑋) = (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑋)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 Se wse 5650 We wwe 5651 dom cdm 5700 ↾ cres 5702 Predcpred 6331 ‘cfv 6573 wrecscwrecs 8352 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-po 5607 df-so 5608 df-fr 5652 df-se 5653 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-fo 6579 df-fv 6581 df-ov 7451 df-2nd 8031 df-frecs 8322 df-wrecs 8353 |
This theorem is referenced by: wfr2OLD 8384 |
Copyright terms: Public domain | W3C validator |