MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wfr2aOLD Structured version   Visualization version   GIF version

Theorem wfr2aOLD 8273
Description: Obsolete proof of wfr2a 8281 as of 18-Nov-2024. (New usage is discouraged.) (Proof modification is discouraged.) (Contributed by Scott Fenton, 30-Jul-2020.)
Hypotheses
Ref Expression
wfr2aOLD.1 𝑅 We 𝐴
wfr2aOLD.2 𝑅 Se 𝐴
wfr2aOLD.3 𝐹 = wrecs(𝑅, 𝐴, 𝐺)
Assertion
Ref Expression
wfr2aOLD (𝑋 ∈ dom 𝐹 → (𝐹𝑋) = (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑋))))

Proof of Theorem wfr2aOLD
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6843 . . 3 (𝑥 = 𝑋 → (𝐹𝑥) = (𝐹𝑋))
2 predeq3 6258 . . . . 5 (𝑥 = 𝑋 → Pred(𝑅, 𝐴, 𝑥) = Pred(𝑅, 𝐴, 𝑋))
32reseq2d 5938 . . . 4 (𝑥 = 𝑋 → (𝐹 ↾ Pred(𝑅, 𝐴, 𝑥)) = (𝐹 ↾ Pred(𝑅, 𝐴, 𝑋)))
43fveq2d 6847 . . 3 (𝑥 = 𝑋 → (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑥))) = (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑋))))
51, 4eqeq12d 2749 . 2 (𝑥 = 𝑋 → ((𝐹𝑥) = (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑥))) ↔ (𝐹𝑋) = (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑋)))))
6 wfr2aOLD.1 . . 3 𝑅 We 𝐴
7 wfr2aOLD.2 . . 3 𝑅 Se 𝐴
8 wfr2aOLD.3 . . 3 𝐹 = wrecs(𝑅, 𝐴, 𝐺)
96, 7, 8wfrlem12OLD 8267 . 2 (𝑥 ∈ dom 𝐹 → (𝐹𝑥) = (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑥))))
105, 9vtoclga 3533 1 (𝑋 ∈ dom 𝐹 → (𝐹𝑋) = (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑋))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1542  wcel 2107   Se wse 5587   We wwe 5588  dom cdm 5634  cres 5636  Predcpred 6253  cfv 6497  wrecscwrecs 8243
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5257  ax-nul 5264  ax-pr 5385  ax-un 7673
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3407  df-v 3446  df-sbc 3741  df-csb 3857  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4284  df-if 4488  df-pw 4563  df-sn 4588  df-pr 4590  df-op 4594  df-uni 4867  df-iun 4957  df-br 5107  df-opab 5169  df-mpt 5190  df-id 5532  df-po 5546  df-so 5547  df-fr 5589  df-se 5590  df-we 5591  df-xp 5640  df-rel 5641  df-cnv 5642  df-co 5643  df-dm 5644  df-rn 5645  df-res 5646  df-ima 5647  df-pred 6254  df-iota 6449  df-fun 6499  df-fn 6500  df-f 6501  df-fo 6503  df-fv 6505  df-ov 7361  df-2nd 7923  df-frecs 8213  df-wrecs 8244
This theorem is referenced by:  wfr2OLD  8275
  Copyright terms: Public domain W3C validator