MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wfr2aOLD Structured version   Visualization version   GIF version

Theorem wfr2aOLD 8204
Description: Obsolete proof of wfr2a 8212 as of 18-Nov-2024. (New usage is discouraged.) (Proof modification is discouraged.) (Contributed by Scott Fenton, 30-Jul-2020.)
Hypotheses
Ref Expression
wfr2aOLD.1 𝑅 We 𝐴
wfr2aOLD.2 𝑅 Se 𝐴
wfr2aOLD.3 𝐹 = wrecs(𝑅, 𝐴, 𝐺)
Assertion
Ref Expression
wfr2aOLD (𝑋 ∈ dom 𝐹 → (𝐹𝑋) = (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑋))))

Proof of Theorem wfr2aOLD
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6811 . . 3 (𝑥 = 𝑋 → (𝐹𝑥) = (𝐹𝑋))
2 predeq3 6228 . . . . 5 (𝑥 = 𝑋 → Pred(𝑅, 𝐴, 𝑥) = Pred(𝑅, 𝐴, 𝑋))
32reseq2d 5910 . . . 4 (𝑥 = 𝑋 → (𝐹 ↾ Pred(𝑅, 𝐴, 𝑥)) = (𝐹 ↾ Pred(𝑅, 𝐴, 𝑋)))
43fveq2d 6815 . . 3 (𝑥 = 𝑋 → (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑥))) = (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑋))))
51, 4eqeq12d 2753 . 2 (𝑥 = 𝑋 → ((𝐹𝑥) = (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑥))) ↔ (𝐹𝑋) = (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑋)))))
6 wfr2aOLD.1 . . 3 𝑅 We 𝐴
7 wfr2aOLD.2 . . 3 𝑅 Se 𝐴
8 wfr2aOLD.3 . . 3 𝐹 = wrecs(𝑅, 𝐴, 𝐺)
96, 7, 8wfrlem12OLD 8198 . 2 (𝑥 ∈ dom 𝐹 → (𝐹𝑥) = (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑥))))
105, 9vtoclga 3522 1 (𝑋 ∈ dom 𝐹 → (𝐹𝑋) = (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑋))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2105   Se wse 5560   We wwe 5561  dom cdm 5607  cres 5609  Predcpred 6223  cfv 6465  wrecscwrecs 8174
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2708  ax-sep 5238  ax-nul 5245  ax-pr 5367  ax-un 7628
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3405  df-v 3443  df-sbc 3727  df-csb 3843  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4268  df-if 4472  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4851  df-iun 4939  df-br 5088  df-opab 5150  df-mpt 5171  df-id 5507  df-po 5521  df-so 5522  df-fr 5562  df-se 5563  df-we 5564  df-xp 5613  df-rel 5614  df-cnv 5615  df-co 5616  df-dm 5617  df-rn 5618  df-res 5619  df-ima 5620  df-pred 6224  df-iota 6417  df-fun 6467  df-fn 6468  df-f 6469  df-fo 6471  df-fv 6473  df-ov 7318  df-2nd 7877  df-frecs 8144  df-wrecs 8175
This theorem is referenced by:  wfr2OLD  8206
  Copyright terms: Public domain W3C validator