![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > wfr2aOLD | Structured version Visualization version GIF version |
Description: Obsolete version of wfr2a 8363 as of 18-Nov-2024. (New usage is discouraged.) (Proof modification is discouraged.) (Contributed by Scott Fenton, 30-Jul-2020.) |
Ref | Expression |
---|---|
wfr2aOLD.1 | ⊢ 𝑅 We 𝐴 |
wfr2aOLD.2 | ⊢ 𝑅 Se 𝐴 |
wfr2aOLD.3 | ⊢ 𝐹 = wrecs(𝑅, 𝐴, 𝐺) |
Ref | Expression |
---|---|
wfr2aOLD | ⊢ (𝑋 ∈ dom 𝐹 → (𝐹‘𝑋) = (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑋)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6902 | . . 3 ⊢ (𝑥 = 𝑋 → (𝐹‘𝑥) = (𝐹‘𝑋)) | |
2 | predeq3 6314 | . . . . 5 ⊢ (𝑥 = 𝑋 → Pred(𝑅, 𝐴, 𝑥) = Pred(𝑅, 𝐴, 𝑋)) | |
3 | 2 | reseq2d 5989 | . . . 4 ⊢ (𝑥 = 𝑋 → (𝐹 ↾ Pred(𝑅, 𝐴, 𝑥)) = (𝐹 ↾ Pred(𝑅, 𝐴, 𝑋))) |
4 | 3 | fveq2d 6906 | . . 3 ⊢ (𝑥 = 𝑋 → (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑥))) = (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑋)))) |
5 | 1, 4 | eqeq12d 2744 | . 2 ⊢ (𝑥 = 𝑋 → ((𝐹‘𝑥) = (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑥))) ↔ (𝐹‘𝑋) = (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑋))))) |
6 | wfr2aOLD.1 | . . 3 ⊢ 𝑅 We 𝐴 | |
7 | wfr2aOLD.2 | . . 3 ⊢ 𝑅 Se 𝐴 | |
8 | wfr2aOLD.3 | . . 3 ⊢ 𝐹 = wrecs(𝑅, 𝐴, 𝐺) | |
9 | 6, 7, 8 | wfrlem12OLD 8349 | . 2 ⊢ (𝑥 ∈ dom 𝐹 → (𝐹‘𝑥) = (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑥)))) |
10 | 5, 9 | vtoclga 3565 | 1 ⊢ (𝑋 ∈ dom 𝐹 → (𝐹‘𝑋) = (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑋)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1533 ∈ wcel 2098 Se wse 5635 We wwe 5636 dom cdm 5682 ↾ cres 5684 Predcpred 6309 ‘cfv 6553 wrecscwrecs 8325 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-sep 5303 ax-nul 5310 ax-pr 5433 ax-un 7748 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-ral 3059 df-rex 3068 df-rab 3431 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4327 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-iun 5002 df-br 5153 df-opab 5215 df-mpt 5236 df-id 5580 df-po 5594 df-so 5595 df-fr 5637 df-se 5638 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-pred 6310 df-iota 6505 df-fun 6555 df-fn 6556 df-f 6557 df-fo 6559 df-fv 6561 df-ov 7429 df-2nd 8002 df-frecs 8295 df-wrecs 8326 |
This theorem is referenced by: wfr2OLD 8357 |
Copyright terms: Public domain | W3C validator |