![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > wfr2aOLD | Structured version Visualization version GIF version |
Description: Obsolete version of wfr2a 8373 as of 18-Nov-2024. (New usage is discouraged.) (Proof modification is discouraged.) (Contributed by Scott Fenton, 30-Jul-2020.) |
Ref | Expression |
---|---|
wfr2aOLD.1 | ⊢ 𝑅 We 𝐴 |
wfr2aOLD.2 | ⊢ 𝑅 Se 𝐴 |
wfr2aOLD.3 | ⊢ 𝐹 = wrecs(𝑅, 𝐴, 𝐺) |
Ref | Expression |
---|---|
wfr2aOLD | ⊢ (𝑋 ∈ dom 𝐹 → (𝐹‘𝑋) = (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑋)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6907 | . . 3 ⊢ (𝑥 = 𝑋 → (𝐹‘𝑥) = (𝐹‘𝑋)) | |
2 | predeq3 6327 | . . . . 5 ⊢ (𝑥 = 𝑋 → Pred(𝑅, 𝐴, 𝑥) = Pred(𝑅, 𝐴, 𝑋)) | |
3 | 2 | reseq2d 6000 | . . . 4 ⊢ (𝑥 = 𝑋 → (𝐹 ↾ Pred(𝑅, 𝐴, 𝑥)) = (𝐹 ↾ Pred(𝑅, 𝐴, 𝑋))) |
4 | 3 | fveq2d 6911 | . . 3 ⊢ (𝑥 = 𝑋 → (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑥))) = (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑋)))) |
5 | 1, 4 | eqeq12d 2751 | . 2 ⊢ (𝑥 = 𝑋 → ((𝐹‘𝑥) = (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑥))) ↔ (𝐹‘𝑋) = (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑋))))) |
6 | wfr2aOLD.1 | . . 3 ⊢ 𝑅 We 𝐴 | |
7 | wfr2aOLD.2 | . . 3 ⊢ 𝑅 Se 𝐴 | |
8 | wfr2aOLD.3 | . . 3 ⊢ 𝐹 = wrecs(𝑅, 𝐴, 𝐺) | |
9 | 6, 7, 8 | wfrlem12OLD 8359 | . 2 ⊢ (𝑥 ∈ dom 𝐹 → (𝐹‘𝑥) = (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑥)))) |
10 | 5, 9 | vtoclga 3577 | 1 ⊢ (𝑋 ∈ dom 𝐹 → (𝐹‘𝑋) = (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑋)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2106 Se wse 5639 We wwe 5640 dom cdm 5689 ↾ cres 5691 Predcpred 6322 ‘cfv 6563 wrecscwrecs 8335 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-po 5597 df-so 5598 df-fr 5641 df-se 5642 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-fo 6569 df-fv 6571 df-ov 7434 df-2nd 8014 df-frecs 8305 df-wrecs 8336 |
This theorem is referenced by: wfr2OLD 8367 |
Copyright terms: Public domain | W3C validator |