| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > psdcoef | Structured version Visualization version GIF version | ||
| Description: Coefficient of a term of the derivative of a power series. (Contributed by SN, 12-Apr-2025.) |
| Ref | Expression |
|---|---|
| psdval.s | ⊢ 𝑆 = (𝐼 mPwSer 𝑅) |
| psdval.b | ⊢ 𝐵 = (Base‘𝑆) |
| psdval.d | ⊢ 𝐷 = {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} |
| psdval.x | ⊢ (𝜑 → 𝑋 ∈ 𝐼) |
| psdval.f | ⊢ (𝜑 → 𝐹 ∈ 𝐵) |
| psdcoef.k | ⊢ (𝜑 → 𝐾 ∈ 𝐷) |
| Ref | Expression |
|---|---|
| psdcoef | ⊢ (𝜑 → ((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)‘𝐾) = (((𝐾‘𝑋) + 1)(.g‘𝑅)(𝐹‘(𝐾 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq1 6839 | . . . 4 ⊢ (𝑘 = 𝐾 → (𝑘‘𝑋) = (𝐾‘𝑋)) | |
| 2 | 1 | oveq1d 7384 | . . 3 ⊢ (𝑘 = 𝐾 → ((𝑘‘𝑋) + 1) = ((𝐾‘𝑋) + 1)) |
| 3 | fvoveq1 7392 | . . 3 ⊢ (𝑘 = 𝐾 → (𝐹‘(𝑘 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) = (𝐹‘(𝐾 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))) | |
| 4 | 2, 3 | oveq12d 7387 | . 2 ⊢ (𝑘 = 𝐾 → (((𝑘‘𝑋) + 1)(.g‘𝑅)(𝐹‘(𝑘 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))) = (((𝐾‘𝑋) + 1)(.g‘𝑅)(𝐹‘(𝐾 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))) |
| 5 | psdval.s | . . 3 ⊢ 𝑆 = (𝐼 mPwSer 𝑅) | |
| 6 | psdval.b | . . 3 ⊢ 𝐵 = (Base‘𝑆) | |
| 7 | psdval.d | . . 3 ⊢ 𝐷 = {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} | |
| 8 | psdval.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐼) | |
| 9 | psdval.f | . . 3 ⊢ (𝜑 → 𝐹 ∈ 𝐵) | |
| 10 | 5, 6, 7, 8, 9 | psdval 22079 | . 2 ⊢ (𝜑 → (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹) = (𝑘 ∈ 𝐷 ↦ (((𝑘‘𝑋) + 1)(.g‘𝑅)(𝐹‘(𝑘 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))))) |
| 11 | psdcoef.k | . 2 ⊢ (𝜑 → 𝐾 ∈ 𝐷) | |
| 12 | ovexd 7404 | . 2 ⊢ (𝜑 → (((𝐾‘𝑋) + 1)(.g‘𝑅)(𝐹‘(𝐾 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))) ∈ V) | |
| 13 | 4, 10, 11, 12 | fvmptd4 6974 | 1 ⊢ (𝜑 → ((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)‘𝐾) = (((𝐾‘𝑋) + 1)(.g‘𝑅)(𝐹‘(𝐾 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 {crab 3402 Vcvv 3444 ifcif 4484 ↦ cmpt 5183 ◡ccnv 5630 “ cima 5634 ‘cfv 6499 (class class class)co 7369 ∘f cof 7631 ↑m cmap 8776 Fincfn 8895 0cc0 11044 1c1 11045 + caddc 11047 ℕcn 12162 ℕ0cn0 12418 Basecbs 17155 .gcmg 18981 mPwSer cmps 21846 mPSDer cpsd 22050 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-1cn 11102 ax-addcl 11104 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-nn 12163 df-slot 17128 df-ndx 17140 df-base 17156 df-psr 21851 df-psd 22076 |
| This theorem is referenced by: psdvsca 22084 psdmul 22086 |
| Copyright terms: Public domain | W3C validator |