| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > psdcoef | Structured version Visualization version GIF version | ||
| Description: Coefficient of a term of the derivative of a power series. (Contributed by SN, 12-Apr-2025.) |
| Ref | Expression |
|---|---|
| psdval.s | ⊢ 𝑆 = (𝐼 mPwSer 𝑅) |
| psdval.b | ⊢ 𝐵 = (Base‘𝑆) |
| psdval.d | ⊢ 𝐷 = {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} |
| psdval.x | ⊢ (𝜑 → 𝑋 ∈ 𝐼) |
| psdval.f | ⊢ (𝜑 → 𝐹 ∈ 𝐵) |
| psdcoef.k | ⊢ (𝜑 → 𝐾 ∈ 𝐷) |
| Ref | Expression |
|---|---|
| psdcoef | ⊢ (𝜑 → ((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)‘𝐾) = (((𝐾‘𝑋) + 1)(.g‘𝑅)(𝐹‘(𝐾 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq1 6821 | . . . 4 ⊢ (𝑘 = 𝐾 → (𝑘‘𝑋) = (𝐾‘𝑋)) | |
| 2 | 1 | oveq1d 7364 | . . 3 ⊢ (𝑘 = 𝐾 → ((𝑘‘𝑋) + 1) = ((𝐾‘𝑋) + 1)) |
| 3 | fvoveq1 7372 | . . 3 ⊢ (𝑘 = 𝐾 → (𝐹‘(𝑘 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) = (𝐹‘(𝐾 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))) | |
| 4 | 2, 3 | oveq12d 7367 | . 2 ⊢ (𝑘 = 𝐾 → (((𝑘‘𝑋) + 1)(.g‘𝑅)(𝐹‘(𝑘 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))) = (((𝐾‘𝑋) + 1)(.g‘𝑅)(𝐹‘(𝐾 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))) |
| 5 | psdval.s | . . 3 ⊢ 𝑆 = (𝐼 mPwSer 𝑅) | |
| 6 | psdval.b | . . 3 ⊢ 𝐵 = (Base‘𝑆) | |
| 7 | psdval.d | . . 3 ⊢ 𝐷 = {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} | |
| 8 | psdval.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐼) | |
| 9 | psdval.f | . . 3 ⊢ (𝜑 → 𝐹 ∈ 𝐵) | |
| 10 | 5, 6, 7, 8, 9 | psdval 22044 | . 2 ⊢ (𝜑 → (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹) = (𝑘 ∈ 𝐷 ↦ (((𝑘‘𝑋) + 1)(.g‘𝑅)(𝐹‘(𝑘 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))))) |
| 11 | psdcoef.k | . 2 ⊢ (𝜑 → 𝐾 ∈ 𝐷) | |
| 12 | ovexd 7384 | . 2 ⊢ (𝜑 → (((𝐾‘𝑋) + 1)(.g‘𝑅)(𝐹‘(𝐾 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))) ∈ V) | |
| 13 | 4, 10, 11, 12 | fvmptd4 6954 | 1 ⊢ (𝜑 → ((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)‘𝐾) = (((𝐾‘𝑋) + 1)(.g‘𝑅)(𝐹‘(𝐾 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 {crab 3394 Vcvv 3436 ifcif 4476 ↦ cmpt 5173 ◡ccnv 5618 “ cima 5622 ‘cfv 6482 (class class class)co 7349 ∘f cof 7611 ↑m cmap 8753 Fincfn 8872 0cc0 11009 1c1 11010 + caddc 11012 ℕcn 12128 ℕ0cn0 12384 Basecbs 17120 .gcmg 18946 mPwSer cmps 21811 mPSDer cpsd 22015 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-1cn 11067 ax-addcl 11069 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-nn 12129 df-slot 17093 df-ndx 17105 df-base 17121 df-psr 21816 df-psd 22041 |
| This theorem is referenced by: psdvsca 22049 psdmul 22051 |
| Copyright terms: Public domain | W3C validator |