| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > psdcoef | Structured version Visualization version GIF version | ||
| Description: Coefficient of a term of the derivative of a power series. (Contributed by SN, 12-Apr-2025.) |
| Ref | Expression |
|---|---|
| psdval.s | ⊢ 𝑆 = (𝐼 mPwSer 𝑅) |
| psdval.b | ⊢ 𝐵 = (Base‘𝑆) |
| psdval.d | ⊢ 𝐷 = {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} |
| psdval.x | ⊢ (𝜑 → 𝑋 ∈ 𝐼) |
| psdval.f | ⊢ (𝜑 → 𝐹 ∈ 𝐵) |
| psdcoef.k | ⊢ (𝜑 → 𝐾 ∈ 𝐷) |
| Ref | Expression |
|---|---|
| psdcoef | ⊢ (𝜑 → ((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)‘𝐾) = (((𝐾‘𝑋) + 1)(.g‘𝑅)(𝐹‘(𝐾 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq1 6880 | . . . 4 ⊢ (𝑘 = 𝐾 → (𝑘‘𝑋) = (𝐾‘𝑋)) | |
| 2 | 1 | oveq1d 7425 | . . 3 ⊢ (𝑘 = 𝐾 → ((𝑘‘𝑋) + 1) = ((𝐾‘𝑋) + 1)) |
| 3 | fvoveq1 7433 | . . 3 ⊢ (𝑘 = 𝐾 → (𝐹‘(𝑘 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) = (𝐹‘(𝐾 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))) | |
| 4 | 2, 3 | oveq12d 7428 | . 2 ⊢ (𝑘 = 𝐾 → (((𝑘‘𝑋) + 1)(.g‘𝑅)(𝐹‘(𝑘 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))) = (((𝐾‘𝑋) + 1)(.g‘𝑅)(𝐹‘(𝐾 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))) |
| 5 | psdval.s | . . 3 ⊢ 𝑆 = (𝐼 mPwSer 𝑅) | |
| 6 | psdval.b | . . 3 ⊢ 𝐵 = (Base‘𝑆) | |
| 7 | psdval.d | . . 3 ⊢ 𝐷 = {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} | |
| 8 | psdval.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐼) | |
| 9 | psdval.f | . . 3 ⊢ (𝜑 → 𝐹 ∈ 𝐵) | |
| 10 | 5, 6, 7, 8, 9 | psdval 22102 | . 2 ⊢ (𝜑 → (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹) = (𝑘 ∈ 𝐷 ↦ (((𝑘‘𝑋) + 1)(.g‘𝑅)(𝐹‘(𝑘 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))))) |
| 11 | psdcoef.k | . 2 ⊢ (𝜑 → 𝐾 ∈ 𝐷) | |
| 12 | ovexd 7445 | . 2 ⊢ (𝜑 → (((𝐾‘𝑋) + 1)(.g‘𝑅)(𝐹‘(𝐾 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))) ∈ V) | |
| 13 | 4, 10, 11, 12 | fvmptd4 7015 | 1 ⊢ (𝜑 → ((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)‘𝐾) = (((𝐾‘𝑋) + 1)(.g‘𝑅)(𝐹‘(𝐾 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 {crab 3420 Vcvv 3464 ifcif 4505 ↦ cmpt 5206 ◡ccnv 5658 “ cima 5662 ‘cfv 6536 (class class class)co 7410 ∘f cof 7674 ↑m cmap 8845 Fincfn 8964 0cc0 11134 1c1 11135 + caddc 11137 ℕcn 12245 ℕ0cn0 12506 Basecbs 17233 .gcmg 19055 mPwSer cmps 21869 mPSDer cpsd 22073 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-1cn 11192 ax-addcl 11194 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-nn 12246 df-slot 17206 df-ndx 17218 df-base 17234 df-psr 21874 df-psd 22099 |
| This theorem is referenced by: psdvsca 22107 psdmul 22109 |
| Copyright terms: Public domain | W3C validator |