MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psdcoef Structured version   Visualization version   GIF version

Theorem psdcoef 22045
Description: Coefficient of a term of the derivative of a power series. (Contributed by SN, 12-Apr-2025.)
Hypotheses
Ref Expression
psdval.s 𝑆 = (𝐼 mPwSer 𝑅)
psdval.b 𝐵 = (Base‘𝑆)
psdval.d 𝐷 = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
psdval.x (𝜑𝑋𝐼)
psdval.f (𝜑𝐹𝐵)
psdcoef.k (𝜑𝐾𝐷)
Assertion
Ref Expression
psdcoef (𝜑 → ((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)‘𝐾) = (((𝐾𝑋) + 1)(.g𝑅)(𝐹‘(𝐾f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))))
Distinct variable groups:   ,𝐼,𝑦   𝑦,𝑋
Allowed substitution hints:   𝜑(𝑦,)   𝐵(𝑦,)   𝐷(𝑦,)   𝑅(𝑦,)   𝑆(𝑦,)   𝐹(𝑦,)   𝐾(𝑦,)   𝑋()

Proof of Theorem psdcoef
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 fveq1 6821 . . . 4 (𝑘 = 𝐾 → (𝑘𝑋) = (𝐾𝑋))
21oveq1d 7364 . . 3 (𝑘 = 𝐾 → ((𝑘𝑋) + 1) = ((𝐾𝑋) + 1))
3 fvoveq1 7372 . . 3 (𝑘 = 𝐾 → (𝐹‘(𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) = (𝐹‘(𝐾f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))
42, 3oveq12d 7367 . 2 (𝑘 = 𝐾 → (((𝑘𝑋) + 1)(.g𝑅)(𝐹‘(𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))) = (((𝐾𝑋) + 1)(.g𝑅)(𝐹‘(𝐾f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))))
5 psdval.s . . 3 𝑆 = (𝐼 mPwSer 𝑅)
6 psdval.b . . 3 𝐵 = (Base‘𝑆)
7 psdval.d . . 3 𝐷 = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
8 psdval.x . . 3 (𝜑𝑋𝐼)
9 psdval.f . . 3 (𝜑𝐹𝐵)
105, 6, 7, 8, 9psdval 22044 . 2 (𝜑 → (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹) = (𝑘𝐷 ↦ (((𝑘𝑋) + 1)(.g𝑅)(𝐹‘(𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))))
11 psdcoef.k . 2 (𝜑𝐾𝐷)
12 ovexd 7384 . 2 (𝜑 → (((𝐾𝑋) + 1)(.g𝑅)(𝐹‘(𝐾f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))) ∈ V)
134, 10, 11, 12fvmptd4 6954 1 (𝜑 → ((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)‘𝐾) = (((𝐾𝑋) + 1)(.g𝑅)(𝐹‘(𝐾f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  {crab 3394  Vcvv 3436  ifcif 4476  cmpt 5173  ccnv 5618  cima 5622  cfv 6482  (class class class)co 7349  f cof 7611  m cmap 8753  Fincfn 8872  0cc0 11009  1c1 11010   + caddc 11012  cn 12128  0cn0 12384  Basecbs 17120  .gcmg 18946   mPwSer cmps 21811   mPSDer cpsd 22015
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-1cn 11067  ax-addcl 11069
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-nn 12129  df-slot 17093  df-ndx 17105  df-base 17121  df-psr 21816  df-psd 22041
This theorem is referenced by:  psdvsca  22049  psdmul  22051
  Copyright terms: Public domain W3C validator