MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psdcoef Structured version   Visualization version   GIF version

Theorem psdcoef 22165
Description: Coefficient of a term of the derivative of a power series. (Contributed by SN, 12-Apr-2025.)
Hypotheses
Ref Expression
psdval.s 𝑆 = (𝐼 mPwSer 𝑅)
psdval.b 𝐵 = (Base‘𝑆)
psdval.d 𝐷 = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
psdval.x (𝜑𝑋𝐼)
psdval.f (𝜑𝐹𝐵)
psdcoef.k (𝜑𝐾𝐷)
Assertion
Ref Expression
psdcoef (𝜑 → ((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)‘𝐾) = (((𝐾𝑋) + 1)(.g𝑅)(𝐹‘(𝐾f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))))
Distinct variable groups:   ,𝐼,𝑦   𝑦,𝑋
Allowed substitution hints:   𝜑(𝑦,)   𝐵(𝑦,)   𝐷(𝑦,)   𝑅(𝑦,)   𝑆(𝑦,)   𝐹(𝑦,)   𝐾(𝑦,)   𝑋()

Proof of Theorem psdcoef
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 fveq1 6904 . . . 4 (𝑘 = 𝐾 → (𝑘𝑋) = (𝐾𝑋))
21oveq1d 7447 . . 3 (𝑘 = 𝐾 → ((𝑘𝑋) + 1) = ((𝐾𝑋) + 1))
3 fvoveq1 7455 . . 3 (𝑘 = 𝐾 → (𝐹‘(𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) = (𝐹‘(𝐾f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))
42, 3oveq12d 7450 . 2 (𝑘 = 𝐾 → (((𝑘𝑋) + 1)(.g𝑅)(𝐹‘(𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))) = (((𝐾𝑋) + 1)(.g𝑅)(𝐹‘(𝐾f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))))
5 psdval.s . . 3 𝑆 = (𝐼 mPwSer 𝑅)
6 psdval.b . . 3 𝐵 = (Base‘𝑆)
7 psdval.d . . 3 𝐷 = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
8 psdval.x . . 3 (𝜑𝑋𝐼)
9 psdval.f . . 3 (𝜑𝐹𝐵)
105, 6, 7, 8, 9psdval 22164 . 2 (𝜑 → (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹) = (𝑘𝐷 ↦ (((𝑘𝑋) + 1)(.g𝑅)(𝐹‘(𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))))
11 psdcoef.k . 2 (𝜑𝐾𝐷)
12 ovexd 7467 . 2 (𝜑 → (((𝐾𝑋) + 1)(.g𝑅)(𝐹‘(𝐾f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))) ∈ V)
134, 10, 11, 12fvmptd4 7039 1 (𝜑 → ((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)‘𝐾) = (((𝐾𝑋) + 1)(.g𝑅)(𝐹‘(𝐾f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2107  {crab 3435  Vcvv 3479  ifcif 4524  cmpt 5224  ccnv 5683  cima 5687  cfv 6560  (class class class)co 7432  f cof 7696  m cmap 8867  Fincfn 8986  0cc0 11156  1c1 11157   + caddc 11159  cn 12267  0cn0 12528  Basecbs 17248  .gcmg 19086   mPwSer cmps 21925   mPSDer cpsd 22135
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-cnex 11212  ax-1cn 11214  ax-addcl 11216
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-ral 3061  df-rex 3070  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-ov 7435  df-oprab 7436  df-mpo 7437  df-om 7889  df-2nd 8016  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-rdg 8451  df-nn 12268  df-slot 17220  df-ndx 17232  df-base 17249  df-psr 21930  df-psd 22161
This theorem is referenced by:  psdvsca  22169  psdmul  22171
  Copyright terms: Public domain W3C validator