| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > psdval | Structured version Visualization version GIF version | ||
| Description: Evaluate the partial derivative of a power series 𝐹 with respect to 𝑋. (Contributed by SN, 11-Apr-2025.) |
| Ref | Expression |
|---|---|
| psdval.s | ⊢ 𝑆 = (𝐼 mPwSer 𝑅) |
| psdval.b | ⊢ 𝐵 = (Base‘𝑆) |
| psdval.d | ⊢ 𝐷 = {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} |
| psdval.x | ⊢ (𝜑 → 𝑋 ∈ 𝐼) |
| psdval.f | ⊢ (𝜑 → 𝐹 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| psdval | ⊢ (𝜑 → (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹) = (𝑘 ∈ 𝐷 ↦ (((𝑘‘𝑋) + 1)(.g‘𝑅)(𝐹‘(𝑘 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq1 6816 | . . . 4 ⊢ (𝑓 = 𝐹 → (𝑓‘(𝑘 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) = (𝐹‘(𝑘 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))) | |
| 2 | 1 | oveq2d 7357 | . . 3 ⊢ (𝑓 = 𝐹 → (((𝑘‘𝑋) + 1)(.g‘𝑅)(𝑓‘(𝑘 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))) = (((𝑘‘𝑋) + 1)(.g‘𝑅)(𝐹‘(𝑘 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))) |
| 3 | 2 | mpteq2dv 5180 | . 2 ⊢ (𝑓 = 𝐹 → (𝑘 ∈ 𝐷 ↦ (((𝑘‘𝑋) + 1)(.g‘𝑅)(𝑓‘(𝑘 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))) = (𝑘 ∈ 𝐷 ↦ (((𝑘‘𝑋) + 1)(.g‘𝑅)(𝐹‘(𝑘 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))))) |
| 4 | psdval.s | . . 3 ⊢ 𝑆 = (𝐼 mPwSer 𝑅) | |
| 5 | psdval.b | . . 3 ⊢ 𝐵 = (Base‘𝑆) | |
| 6 | psdval.d | . . 3 ⊢ 𝐷 = {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} | |
| 7 | psdval.f | . . . . 5 ⊢ (𝜑 → 𝐹 ∈ 𝐵) | |
| 8 | reldmpsr 21846 | . . . . . 6 ⊢ Rel dom mPwSer | |
| 9 | 8, 4, 5 | elbasov 17122 | . . . . 5 ⊢ (𝐹 ∈ 𝐵 → (𝐼 ∈ V ∧ 𝑅 ∈ V)) |
| 10 | 7, 9 | syl 17 | . . . 4 ⊢ (𝜑 → (𝐼 ∈ V ∧ 𝑅 ∈ V)) |
| 11 | 10 | simpld 494 | . . 3 ⊢ (𝜑 → 𝐼 ∈ V) |
| 12 | 10 | simprd 495 | . . 3 ⊢ (𝜑 → 𝑅 ∈ V) |
| 13 | psdval.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐼) | |
| 14 | 4, 5, 6, 11, 12, 13 | psdfval 22068 | . 2 ⊢ (𝜑 → ((𝐼 mPSDer 𝑅)‘𝑋) = (𝑓 ∈ 𝐵 ↦ (𝑘 ∈ 𝐷 ↦ (((𝑘‘𝑋) + 1)(.g‘𝑅)(𝑓‘(𝑘 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))))) |
| 15 | ovex 7374 | . . . . 5 ⊢ (ℕ0 ↑m 𝐼) ∈ V | |
| 16 | 6, 15 | rabex2 5274 | . . . 4 ⊢ 𝐷 ∈ V |
| 17 | 16 | mptex 7152 | . . 3 ⊢ (𝑘 ∈ 𝐷 ↦ (((𝑘‘𝑋) + 1)(.g‘𝑅)(𝐹‘(𝑘 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))) ∈ V |
| 18 | 17 | a1i 11 | . 2 ⊢ (𝜑 → (𝑘 ∈ 𝐷 ↦ (((𝑘‘𝑋) + 1)(.g‘𝑅)(𝐹‘(𝑘 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))) ∈ V) |
| 19 | 3, 14, 7, 18 | fvmptd4 6948 | 1 ⊢ (𝜑 → (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹) = (𝑘 ∈ 𝐷 ↦ (((𝑘‘𝑋) + 1)(.g‘𝑅)(𝐹‘(𝑘 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 {crab 3395 Vcvv 3436 ifcif 4470 ↦ cmpt 5167 ◡ccnv 5610 “ cima 5614 ‘cfv 6476 (class class class)co 7341 ∘f cof 7603 ↑m cmap 8745 Fincfn 8864 0cc0 11001 1c1 11002 + caddc 11004 ℕcn 12120 ℕ0cn0 12376 Basecbs 17115 .gcmg 18975 mPwSer cmps 21836 mPSDer cpsd 22040 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5212 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-cnex 11057 ax-1cn 11059 ax-addcl 11061 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-nn 12121 df-slot 17088 df-ndx 17100 df-base 17116 df-psr 21841 df-psd 22066 |
| This theorem is referenced by: psdcoef 22070 psdcl 22071 psdmplcl 22072 psdadd 22073 psdmul 22076 psdmvr 22079 |
| Copyright terms: Public domain | W3C validator |