MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psdval Structured version   Visualization version   GIF version

Theorem psdval 22186
Description: Evaluate the partial derivative of a power series. (Contributed by SN, 11-Apr-2025.)
Hypotheses
Ref Expression
psdffval.s 𝑆 = (𝐼 mPwSer 𝑅)
psdffval.b 𝐵 = (Base‘𝑆)
psdffval.d 𝐷 = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
psdffval.i (𝜑𝐼𝑉)
psdffval.r (𝜑𝑅𝑊)
psdfval.x (𝜑𝑋𝐼)
psdval.f (𝜑𝐹𝐵)
Assertion
Ref Expression
psdval (𝜑 → (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹) = (𝑘𝐷 ↦ (((𝑘𝑋) + 1)(.g𝑅)(𝐹‘(𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))))
Distinct variable groups:   ,𝐼,𝑘,𝑦   𝑅,𝑘   𝑘,𝑋,𝑦   𝑘,𝐹   𝐷,𝑘
Allowed substitution hints:   𝜑(𝑦,,𝑘)   𝐵(𝑦,,𝑘)   𝐷(𝑦,)   𝑅(𝑦,)   𝑆(𝑦,,𝑘)   𝐹(𝑦,)   𝑉(𝑦,,𝑘)   𝑊(𝑦,,𝑘)   𝑋()

Proof of Theorem psdval
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 psdffval.s . . 3 𝑆 = (𝐼 mPwSer 𝑅)
2 psdffval.b . . 3 𝐵 = (Base‘𝑆)
3 psdffval.d . . 3 𝐷 = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
4 psdffval.i . . 3 (𝜑𝐼𝑉)
5 psdffval.r . . 3 (𝜑𝑅𝑊)
6 psdfval.x . . 3 (𝜑𝑋𝐼)
71, 2, 3, 4, 5, 6psdfval 22185 . 2 (𝜑 → ((𝐼 mPSDer 𝑅)‘𝑋) = (𝑓𝐵 ↦ (𝑘𝐷 ↦ (((𝑘𝑋) + 1)(.g𝑅)(𝑓‘(𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))))))
8 fveq1 6919 . . . . 5 (𝑓 = 𝐹 → (𝑓‘(𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) = (𝐹‘(𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))
98oveq2d 7464 . . . 4 (𝑓 = 𝐹 → (((𝑘𝑋) + 1)(.g𝑅)(𝑓‘(𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))) = (((𝑘𝑋) + 1)(.g𝑅)(𝐹‘(𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))))
109mpteq2dv 5268 . . 3 (𝑓 = 𝐹 → (𝑘𝐷 ↦ (((𝑘𝑋) + 1)(.g𝑅)(𝑓‘(𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))) = (𝑘𝐷 ↦ (((𝑘𝑋) + 1)(.g𝑅)(𝐹‘(𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))))
1110adantl 481 . 2 ((𝜑𝑓 = 𝐹) → (𝑘𝐷 ↦ (((𝑘𝑋) + 1)(.g𝑅)(𝑓‘(𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))) = (𝑘𝐷 ↦ (((𝑘𝑋) + 1)(.g𝑅)(𝐹‘(𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))))
12 psdval.f . 2 (𝜑𝐹𝐵)
13 ovex 7481 . . . . 5 (ℕ0m 𝐼) ∈ V
143, 13rabex2 5359 . . . 4 𝐷 ∈ V
1514a1i 11 . . 3 (𝜑𝐷 ∈ V)
1615mptexd 7261 . 2 (𝜑 → (𝑘𝐷 ↦ (((𝑘𝑋) + 1)(.g𝑅)(𝐹‘(𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))) ∈ V)
177, 11, 12, 16fvmptd 7036 1 (𝜑 → (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹) = (𝑘𝐷 ↦ (((𝑘𝑋) + 1)(.g𝑅)(𝐹‘(𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2108  {crab 3443  Vcvv 3488  ifcif 4548  cmpt 5249  ccnv 5699  cima 5703  cfv 6573  (class class class)co 7448  f cof 7712  m cmap 8884  Fincfn 9003  0cc0 11184  1c1 11185   + caddc 11187  cn 12293  0cn0 12553  Basecbs 17258  .gcmg 19107   mPwSer cmps 21947   mPSDer cpsd 22157
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-psd 22183
This theorem is referenced by:  psdcoef  22187  psdcl  22188  psdmplcl  22189  psdadd  22190  psdmul  22193
  Copyright terms: Public domain W3C validator