| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > psdval | Structured version Visualization version GIF version | ||
| Description: Evaluate the partial derivative of a power series 𝐹 with respect to 𝑋. (Contributed by SN, 11-Apr-2025.) |
| Ref | Expression |
|---|---|
| psdval.s | ⊢ 𝑆 = (𝐼 mPwSer 𝑅) |
| psdval.b | ⊢ 𝐵 = (Base‘𝑆) |
| psdval.d | ⊢ 𝐷 = {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} |
| psdval.x | ⊢ (𝜑 → 𝑋 ∈ 𝐼) |
| psdval.f | ⊢ (𝜑 → 𝐹 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| psdval | ⊢ (𝜑 → (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹) = (𝑘 ∈ 𝐷 ↦ (((𝑘‘𝑋) + 1)(.g‘𝑅)(𝐹‘(𝑘 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq1 6857 | . . . 4 ⊢ (𝑓 = 𝐹 → (𝑓‘(𝑘 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) = (𝐹‘(𝑘 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))) | |
| 2 | 1 | oveq2d 7403 | . . 3 ⊢ (𝑓 = 𝐹 → (((𝑘‘𝑋) + 1)(.g‘𝑅)(𝑓‘(𝑘 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))) = (((𝑘‘𝑋) + 1)(.g‘𝑅)(𝐹‘(𝑘 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))) |
| 3 | 2 | mpteq2dv 5201 | . 2 ⊢ (𝑓 = 𝐹 → (𝑘 ∈ 𝐷 ↦ (((𝑘‘𝑋) + 1)(.g‘𝑅)(𝑓‘(𝑘 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))) = (𝑘 ∈ 𝐷 ↦ (((𝑘‘𝑋) + 1)(.g‘𝑅)(𝐹‘(𝑘 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))))) |
| 4 | psdval.s | . . 3 ⊢ 𝑆 = (𝐼 mPwSer 𝑅) | |
| 5 | psdval.b | . . 3 ⊢ 𝐵 = (Base‘𝑆) | |
| 6 | psdval.d | . . 3 ⊢ 𝐷 = {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} | |
| 7 | psdval.f | . . . . 5 ⊢ (𝜑 → 𝐹 ∈ 𝐵) | |
| 8 | reldmpsr 21823 | . . . . . 6 ⊢ Rel dom mPwSer | |
| 9 | 8, 4, 5 | elbasov 17186 | . . . . 5 ⊢ (𝐹 ∈ 𝐵 → (𝐼 ∈ V ∧ 𝑅 ∈ V)) |
| 10 | 7, 9 | syl 17 | . . . 4 ⊢ (𝜑 → (𝐼 ∈ V ∧ 𝑅 ∈ V)) |
| 11 | 10 | simpld 494 | . . 3 ⊢ (𝜑 → 𝐼 ∈ V) |
| 12 | 10 | simprd 495 | . . 3 ⊢ (𝜑 → 𝑅 ∈ V) |
| 13 | psdval.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐼) | |
| 14 | 4, 5, 6, 11, 12, 13 | psdfval 22045 | . 2 ⊢ (𝜑 → ((𝐼 mPSDer 𝑅)‘𝑋) = (𝑓 ∈ 𝐵 ↦ (𝑘 ∈ 𝐷 ↦ (((𝑘‘𝑋) + 1)(.g‘𝑅)(𝑓‘(𝑘 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))))) |
| 15 | ovex 7420 | . . . . 5 ⊢ (ℕ0 ↑m 𝐼) ∈ V | |
| 16 | 6, 15 | rabex2 5296 | . . . 4 ⊢ 𝐷 ∈ V |
| 17 | 16 | mptex 7197 | . . 3 ⊢ (𝑘 ∈ 𝐷 ↦ (((𝑘‘𝑋) + 1)(.g‘𝑅)(𝐹‘(𝑘 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))) ∈ V |
| 18 | 17 | a1i 11 | . 2 ⊢ (𝜑 → (𝑘 ∈ 𝐷 ↦ (((𝑘‘𝑋) + 1)(.g‘𝑅)(𝐹‘(𝑘 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))) ∈ V) |
| 19 | 3, 14, 7, 18 | fvmptd4 6992 | 1 ⊢ (𝜑 → (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹) = (𝑘 ∈ 𝐷 ↦ (((𝑘‘𝑋) + 1)(.g‘𝑅)(𝐹‘(𝑘 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {crab 3405 Vcvv 3447 ifcif 4488 ↦ cmpt 5188 ◡ccnv 5637 “ cima 5641 ‘cfv 6511 (class class class)co 7387 ∘f cof 7651 ↑m cmap 8799 Fincfn 8918 0cc0 11068 1c1 11069 + caddc 11071 ℕcn 12186 ℕ0cn0 12442 Basecbs 17179 .gcmg 18999 mPwSer cmps 21813 mPSDer cpsd 22017 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-1cn 11126 ax-addcl 11128 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-nn 12187 df-slot 17152 df-ndx 17164 df-base 17180 df-psr 21818 df-psd 22043 |
| This theorem is referenced by: psdcoef 22047 psdcl 22048 psdmplcl 22049 psdadd 22050 psdmul 22053 psdmvr 22056 |
| Copyright terms: Public domain | W3C validator |