![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > psdval | Structured version Visualization version GIF version |
Description: Evaluate the partial derivative of a power series. (Contributed by SN, 11-Apr-2025.) |
Ref | Expression |
---|---|
psdffval.s | ⊢ 𝑆 = (𝐼 mPwSer 𝑅) |
psdffval.b | ⊢ 𝐵 = (Base‘𝑆) |
psdffval.d | ⊢ 𝐷 = {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} |
psdffval.i | ⊢ (𝜑 → 𝐼 ∈ 𝑉) |
psdffval.r | ⊢ (𝜑 → 𝑅 ∈ 𝑊) |
psdfval.x | ⊢ (𝜑 → 𝑋 ∈ 𝐼) |
psdval.f | ⊢ (𝜑 → 𝐹 ∈ 𝐵) |
Ref | Expression |
---|---|
psdval | ⊢ (𝜑 → (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹) = (𝑘 ∈ 𝐷 ↦ (((𝑘‘𝑋) + 1)(.g‘𝑅)(𝐹‘(𝑘 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | psdffval.s | . . 3 ⊢ 𝑆 = (𝐼 mPwSer 𝑅) | |
2 | psdffval.b | . . 3 ⊢ 𝐵 = (Base‘𝑆) | |
3 | psdffval.d | . . 3 ⊢ 𝐷 = {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} | |
4 | psdffval.i | . . 3 ⊢ (𝜑 → 𝐼 ∈ 𝑉) | |
5 | psdffval.r | . . 3 ⊢ (𝜑 → 𝑅 ∈ 𝑊) | |
6 | psdfval.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐼) | |
7 | 1, 2, 3, 4, 5, 6 | psdfval 22105 | . 2 ⊢ (𝜑 → ((𝐼 mPSDer 𝑅)‘𝑋) = (𝑓 ∈ 𝐵 ↦ (𝑘 ∈ 𝐷 ↦ (((𝑘‘𝑋) + 1)(.g‘𝑅)(𝑓‘(𝑘 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))))) |
8 | fveq1 6895 | . . . . 5 ⊢ (𝑓 = 𝐹 → (𝑓‘(𝑘 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) = (𝐹‘(𝑘 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))) | |
9 | 8 | oveq2d 7435 | . . . 4 ⊢ (𝑓 = 𝐹 → (((𝑘‘𝑋) + 1)(.g‘𝑅)(𝑓‘(𝑘 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))) = (((𝑘‘𝑋) + 1)(.g‘𝑅)(𝐹‘(𝑘 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))) |
10 | 9 | mpteq2dv 5251 | . . 3 ⊢ (𝑓 = 𝐹 → (𝑘 ∈ 𝐷 ↦ (((𝑘‘𝑋) + 1)(.g‘𝑅)(𝑓‘(𝑘 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))) = (𝑘 ∈ 𝐷 ↦ (((𝑘‘𝑋) + 1)(.g‘𝑅)(𝐹‘(𝑘 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))))) |
11 | 10 | adantl 480 | . 2 ⊢ ((𝜑 ∧ 𝑓 = 𝐹) → (𝑘 ∈ 𝐷 ↦ (((𝑘‘𝑋) + 1)(.g‘𝑅)(𝑓‘(𝑘 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))) = (𝑘 ∈ 𝐷 ↦ (((𝑘‘𝑋) + 1)(.g‘𝑅)(𝐹‘(𝑘 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))))) |
12 | psdval.f | . 2 ⊢ (𝜑 → 𝐹 ∈ 𝐵) | |
13 | ovex 7452 | . . . . 5 ⊢ (ℕ0 ↑m 𝐼) ∈ V | |
14 | 3, 13 | rabex2 5337 | . . . 4 ⊢ 𝐷 ∈ V |
15 | 14 | a1i 11 | . . 3 ⊢ (𝜑 → 𝐷 ∈ V) |
16 | 15 | mptexd 7236 | . 2 ⊢ (𝜑 → (𝑘 ∈ 𝐷 ↦ (((𝑘‘𝑋) + 1)(.g‘𝑅)(𝐹‘(𝑘 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))) ∈ V) |
17 | 7, 11, 12, 16 | fvmptd 7011 | 1 ⊢ (𝜑 → (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹) = (𝑘 ∈ 𝐷 ↦ (((𝑘‘𝑋) + 1)(.g‘𝑅)(𝐹‘(𝑘 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1533 ∈ wcel 2098 {crab 3418 Vcvv 3461 ifcif 4530 ↦ cmpt 5232 ◡ccnv 5677 “ cima 5681 ‘cfv 6549 (class class class)co 7419 ∘f cof 7683 ↑m cmap 8845 Fincfn 8964 0cc0 11140 1c1 11141 + caddc 11143 ℕcn 12245 ℕ0cn0 12505 Basecbs 17183 .gcmg 19031 mPwSer cmps 21854 mPSDer cpsd 22078 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pr 5429 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4323 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-iun 4999 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5576 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-iota 6501 df-fun 6551 df-fn 6552 df-f 6553 df-f1 6554 df-fo 6555 df-f1o 6556 df-fv 6557 df-ov 7422 df-oprab 7423 df-mpo 7424 df-psd 22103 |
This theorem is referenced by: psdcoef 22107 psdcl 22108 psdmplcl 22109 psdadd 22110 psdmul 22113 |
Copyright terms: Public domain | W3C validator |