![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > psdval | Structured version Visualization version GIF version |
Description: Evaluate the partial derivative of a power series. (Contributed by SN, 11-Apr-2025.) |
Ref | Expression |
---|---|
psdffval.s | ⊢ 𝑆 = (𝐼 mPwSer 𝑅) |
psdffval.b | ⊢ 𝐵 = (Base‘𝑆) |
psdffval.d | ⊢ 𝐷 = {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} |
psdffval.i | ⊢ (𝜑 → 𝐼 ∈ 𝑉) |
psdffval.r | ⊢ (𝜑 → 𝑅 ∈ 𝑊) |
psdfval.x | ⊢ (𝜑 → 𝑋 ∈ 𝐼) |
psdval.f | ⊢ (𝜑 → 𝐹 ∈ 𝐵) |
Ref | Expression |
---|---|
psdval | ⊢ (𝜑 → (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹) = (𝑘 ∈ 𝐷 ↦ (((𝑘‘𝑋) + 1)(.g‘𝑅)(𝐹‘(𝑘 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | psdffval.s | . . 3 ⊢ 𝑆 = (𝐼 mPwSer 𝑅) | |
2 | psdffval.b | . . 3 ⊢ 𝐵 = (Base‘𝑆) | |
3 | psdffval.d | . . 3 ⊢ 𝐷 = {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} | |
4 | psdffval.i | . . 3 ⊢ (𝜑 → 𝐼 ∈ 𝑉) | |
5 | psdffval.r | . . 3 ⊢ (𝜑 → 𝑅 ∈ 𝑊) | |
6 | psdfval.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐼) | |
7 | 1, 2, 3, 4, 5, 6 | psdfval 22185 | . 2 ⊢ (𝜑 → ((𝐼 mPSDer 𝑅)‘𝑋) = (𝑓 ∈ 𝐵 ↦ (𝑘 ∈ 𝐷 ↦ (((𝑘‘𝑋) + 1)(.g‘𝑅)(𝑓‘(𝑘 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))))) |
8 | fveq1 6919 | . . . . 5 ⊢ (𝑓 = 𝐹 → (𝑓‘(𝑘 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) = (𝐹‘(𝑘 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))) | |
9 | 8 | oveq2d 7464 | . . . 4 ⊢ (𝑓 = 𝐹 → (((𝑘‘𝑋) + 1)(.g‘𝑅)(𝑓‘(𝑘 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))) = (((𝑘‘𝑋) + 1)(.g‘𝑅)(𝐹‘(𝑘 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))) |
10 | 9 | mpteq2dv 5268 | . . 3 ⊢ (𝑓 = 𝐹 → (𝑘 ∈ 𝐷 ↦ (((𝑘‘𝑋) + 1)(.g‘𝑅)(𝑓‘(𝑘 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))) = (𝑘 ∈ 𝐷 ↦ (((𝑘‘𝑋) + 1)(.g‘𝑅)(𝐹‘(𝑘 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))))) |
11 | 10 | adantl 481 | . 2 ⊢ ((𝜑 ∧ 𝑓 = 𝐹) → (𝑘 ∈ 𝐷 ↦ (((𝑘‘𝑋) + 1)(.g‘𝑅)(𝑓‘(𝑘 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))) = (𝑘 ∈ 𝐷 ↦ (((𝑘‘𝑋) + 1)(.g‘𝑅)(𝐹‘(𝑘 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))))) |
12 | psdval.f | . 2 ⊢ (𝜑 → 𝐹 ∈ 𝐵) | |
13 | ovex 7481 | . . . . 5 ⊢ (ℕ0 ↑m 𝐼) ∈ V | |
14 | 3, 13 | rabex2 5359 | . . . 4 ⊢ 𝐷 ∈ V |
15 | 14 | a1i 11 | . . 3 ⊢ (𝜑 → 𝐷 ∈ V) |
16 | 15 | mptexd 7261 | . 2 ⊢ (𝜑 → (𝑘 ∈ 𝐷 ↦ (((𝑘‘𝑋) + 1)(.g‘𝑅)(𝐹‘(𝑘 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))) ∈ V) |
17 | 7, 11, 12, 16 | fvmptd 7036 | 1 ⊢ (𝜑 → (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹) = (𝑘 ∈ 𝐷 ↦ (((𝑘‘𝑋) + 1)(.g‘𝑅)(𝐹‘(𝑘 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 {crab 3443 Vcvv 3488 ifcif 4548 ↦ cmpt 5249 ◡ccnv 5699 “ cima 5703 ‘cfv 6573 (class class class)co 7448 ∘f cof 7712 ↑m cmap 8884 Fincfn 9003 0cc0 11184 1c1 11185 + caddc 11187 ℕcn 12293 ℕ0cn0 12553 Basecbs 17258 .gcmg 19107 mPwSer cmps 21947 mPSDer cpsd 22157 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-psd 22183 |
This theorem is referenced by: psdcoef 22187 psdcl 22188 psdmplcl 22189 psdadd 22190 psdmul 22193 |
Copyright terms: Public domain | W3C validator |