MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psdval Structured version   Visualization version   GIF version

Theorem psdval 22062
Description: Evaluate the partial derivative of a power series 𝐹 with respect to 𝑋. (Contributed by SN, 11-Apr-2025.)
Hypotheses
Ref Expression
psdval.s 𝑆 = (𝐼 mPwSer 𝑅)
psdval.b 𝐵 = (Base‘𝑆)
psdval.d 𝐷 = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
psdval.x (𝜑𝑋𝐼)
psdval.f (𝜑𝐹𝐵)
Assertion
Ref Expression
psdval (𝜑 → (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹) = (𝑘𝐷 ↦ (((𝑘𝑋) + 1)(.g𝑅)(𝐹‘(𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))))
Distinct variable groups:   ,𝐼,𝑘,𝑦   𝑅,𝑘   𝑘,𝑋,𝑦   𝑘,𝐹   𝐷,𝑘
Allowed substitution hints:   𝜑(𝑦,,𝑘)   𝐵(𝑦,,𝑘)   𝐷(𝑦,)   𝑅(𝑦,)   𝑆(𝑦,,𝑘)   𝐹(𝑦,)   𝑋()

Proof of Theorem psdval
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 fveq1 6825 . . . 4 (𝑓 = 𝐹 → (𝑓‘(𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) = (𝐹‘(𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))
21oveq2d 7369 . . 3 (𝑓 = 𝐹 → (((𝑘𝑋) + 1)(.g𝑅)(𝑓‘(𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))) = (((𝑘𝑋) + 1)(.g𝑅)(𝐹‘(𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))))
32mpteq2dv 5189 . 2 (𝑓 = 𝐹 → (𝑘𝐷 ↦ (((𝑘𝑋) + 1)(.g𝑅)(𝑓‘(𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))) = (𝑘𝐷 ↦ (((𝑘𝑋) + 1)(.g𝑅)(𝐹‘(𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))))
4 psdval.s . . 3 𝑆 = (𝐼 mPwSer 𝑅)
5 psdval.b . . 3 𝐵 = (Base‘𝑆)
6 psdval.d . . 3 𝐷 = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
7 psdval.f . . . . 5 (𝜑𝐹𝐵)
8 reldmpsr 21839 . . . . . 6 Rel dom mPwSer
98, 4, 5elbasov 17145 . . . . 5 (𝐹𝐵 → (𝐼 ∈ V ∧ 𝑅 ∈ V))
107, 9syl 17 . . . 4 (𝜑 → (𝐼 ∈ V ∧ 𝑅 ∈ V))
1110simpld 494 . . 3 (𝜑𝐼 ∈ V)
1210simprd 495 . . 3 (𝜑𝑅 ∈ V)
13 psdval.x . . 3 (𝜑𝑋𝐼)
144, 5, 6, 11, 12, 13psdfval 22061 . 2 (𝜑 → ((𝐼 mPSDer 𝑅)‘𝑋) = (𝑓𝐵 ↦ (𝑘𝐷 ↦ (((𝑘𝑋) + 1)(.g𝑅)(𝑓‘(𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))))))
15 ovex 7386 . . . . 5 (ℕ0m 𝐼) ∈ V
166, 15rabex2 5283 . . . 4 𝐷 ∈ V
1716mptex 7163 . . 3 (𝑘𝐷 ↦ (((𝑘𝑋) + 1)(.g𝑅)(𝐹‘(𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))) ∈ V
1817a1i 11 . 2 (𝜑 → (𝑘𝐷 ↦ (((𝑘𝑋) + 1)(.g𝑅)(𝐹‘(𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))) ∈ V)
193, 14, 7, 18fvmptd4 6958 1 (𝜑 → (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹) = (𝑘𝐷 ↦ (((𝑘𝑋) + 1)(.g𝑅)(𝐹‘(𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  {crab 3396  Vcvv 3438  ifcif 4478  cmpt 5176  ccnv 5622  cima 5626  cfv 6486  (class class class)co 7353  f cof 7615  m cmap 8760  Fincfn 8879  0cc0 11028  1c1 11029   + caddc 11031  cn 12146  0cn0 12402  Basecbs 17138  .gcmg 18964   mPwSer cmps 21829   mPSDer cpsd 22033
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-1cn 11086  ax-addcl 11088
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-nn 12147  df-slot 17111  df-ndx 17123  df-base 17139  df-psr 21834  df-psd 22059
This theorem is referenced by:  psdcoef  22063  psdcl  22064  psdmplcl  22065  psdadd  22066  psdmul  22069  psdmvr  22072
  Copyright terms: Public domain W3C validator