![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > psmetdmdm | Structured version Visualization version GIF version |
Description: Recover the base set from a pseudometric. (Contributed by Thierry Arnoux, 7-Feb-2018.) |
Ref | Expression |
---|---|
psmetdmdm | ⊢ (𝐷 ∈ (PsMet‘𝑋) → 𝑋 = dom dom 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfvex 6934 | . . . . 5 ⊢ (𝐷 ∈ (PsMet‘𝑋) → 𝑋 ∈ V) | |
2 | ispsmet 24254 | . . . . . 6 ⊢ (𝑋 ∈ V → (𝐷 ∈ (PsMet‘𝑋) ↔ (𝐷:(𝑋 × 𝑋)⟶ℝ* ∧ ∀𝑥 ∈ 𝑋 ((𝑥𝐷𝑥) = 0 ∧ ∀𝑦 ∈ 𝑋 ∀𝑧 ∈ 𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦)))))) | |
3 | 2 | biimpa 475 | . . . . 5 ⊢ ((𝑋 ∈ V ∧ 𝐷 ∈ (PsMet‘𝑋)) → (𝐷:(𝑋 × 𝑋)⟶ℝ* ∧ ∀𝑥 ∈ 𝑋 ((𝑥𝐷𝑥) = 0 ∧ ∀𝑦 ∈ 𝑋 ∀𝑧 ∈ 𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦))))) |
4 | 1, 3 | mpancom 686 | . . . 4 ⊢ (𝐷 ∈ (PsMet‘𝑋) → (𝐷:(𝑋 × 𝑋)⟶ℝ* ∧ ∀𝑥 ∈ 𝑋 ((𝑥𝐷𝑥) = 0 ∧ ∀𝑦 ∈ 𝑋 ∀𝑧 ∈ 𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦))))) |
5 | 4 | simpld 493 | . . 3 ⊢ (𝐷 ∈ (PsMet‘𝑋) → 𝐷:(𝑋 × 𝑋)⟶ℝ*) |
6 | fdm 6732 | . . . 4 ⊢ (𝐷:(𝑋 × 𝑋)⟶ℝ* → dom 𝐷 = (𝑋 × 𝑋)) | |
7 | 6 | dmeqd 5908 | . . 3 ⊢ (𝐷:(𝑋 × 𝑋)⟶ℝ* → dom dom 𝐷 = dom (𝑋 × 𝑋)) |
8 | 5, 7 | syl 17 | . 2 ⊢ (𝐷 ∈ (PsMet‘𝑋) → dom dom 𝐷 = dom (𝑋 × 𝑋)) |
9 | dmxpid 5932 | . 2 ⊢ dom (𝑋 × 𝑋) = 𝑋 | |
10 | 8, 9 | eqtr2di 2782 | 1 ⊢ (𝐷 ∈ (PsMet‘𝑋) → 𝑋 = dom dom 𝐷) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1533 ∈ wcel 2098 ∀wral 3050 Vcvv 3461 class class class wbr 5149 × cxp 5676 dom cdm 5678 ⟶wf 6545 ‘cfv 6549 (class class class)co 7419 0cc0 11140 ℝ*cxr 11279 ≤ cle 11281 +𝑒 cxad 13125 PsMetcpsmet 21280 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5300 ax-nul 5307 ax-pow 5365 ax-pr 5429 ax-un 7741 ax-cnex 11196 ax-resscn 11197 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-ral 3051 df-rex 3060 df-rab 3419 df-v 3463 df-sbc 3774 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5576 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-iota 6501 df-fun 6551 df-fn 6552 df-f 6553 df-fv 6557 df-ov 7422 df-oprab 7423 df-mpo 7424 df-map 8847 df-xr 11284 df-psmet 21288 |
This theorem is referenced by: blfvalps 24333 metuval 24502 metidval 33622 pstmval 33627 |
Copyright terms: Public domain | W3C validator |