Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > psmetdmdm | Structured version Visualization version GIF version |
Description: Recover the base set from a pseudometric. (Contributed by Thierry Arnoux, 7-Feb-2018.) |
Ref | Expression |
---|---|
psmetdmdm | ⊢ (𝐷 ∈ (PsMet‘𝑋) → 𝑋 = dom dom 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfvex 6799 | . . . . 5 ⊢ (𝐷 ∈ (PsMet‘𝑋) → 𝑋 ∈ V) | |
2 | ispsmet 23467 | . . . . . 6 ⊢ (𝑋 ∈ V → (𝐷 ∈ (PsMet‘𝑋) ↔ (𝐷:(𝑋 × 𝑋)⟶ℝ* ∧ ∀𝑥 ∈ 𝑋 ((𝑥𝐷𝑥) = 0 ∧ ∀𝑦 ∈ 𝑋 ∀𝑧 ∈ 𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦)))))) | |
3 | 2 | biimpa 477 | . . . . 5 ⊢ ((𝑋 ∈ V ∧ 𝐷 ∈ (PsMet‘𝑋)) → (𝐷:(𝑋 × 𝑋)⟶ℝ* ∧ ∀𝑥 ∈ 𝑋 ((𝑥𝐷𝑥) = 0 ∧ ∀𝑦 ∈ 𝑋 ∀𝑧 ∈ 𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦))))) |
4 | 1, 3 | mpancom 685 | . . . 4 ⊢ (𝐷 ∈ (PsMet‘𝑋) → (𝐷:(𝑋 × 𝑋)⟶ℝ* ∧ ∀𝑥 ∈ 𝑋 ((𝑥𝐷𝑥) = 0 ∧ ∀𝑦 ∈ 𝑋 ∀𝑧 ∈ 𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦))))) |
5 | 4 | simpld 495 | . . 3 ⊢ (𝐷 ∈ (PsMet‘𝑋) → 𝐷:(𝑋 × 𝑋)⟶ℝ*) |
6 | fdm 6601 | . . . 4 ⊢ (𝐷:(𝑋 × 𝑋)⟶ℝ* → dom 𝐷 = (𝑋 × 𝑋)) | |
7 | 6 | dmeqd 5807 | . . 3 ⊢ (𝐷:(𝑋 × 𝑋)⟶ℝ* → dom dom 𝐷 = dom (𝑋 × 𝑋)) |
8 | 5, 7 | syl 17 | . 2 ⊢ (𝐷 ∈ (PsMet‘𝑋) → dom dom 𝐷 = dom (𝑋 × 𝑋)) |
9 | dmxpid 5832 | . 2 ⊢ dom (𝑋 × 𝑋) = 𝑋 | |
10 | 8, 9 | eqtr2di 2795 | 1 ⊢ (𝐷 ∈ (PsMet‘𝑋) → 𝑋 = dom dom 𝐷) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ∀wral 3064 Vcvv 3429 class class class wbr 5073 × cxp 5582 dom cdm 5584 ⟶wf 6422 ‘cfv 6426 (class class class)co 7267 0cc0 10881 ℝ*cxr 11018 ≤ cle 11020 +𝑒 cxad 12856 PsMetcpsmet 20591 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5221 ax-nul 5228 ax-pow 5286 ax-pr 5350 ax-un 7578 ax-cnex 10937 ax-resscn 10938 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3431 df-sbc 3716 df-dif 3889 df-un 3891 df-in 3893 df-ss 3903 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5074 df-opab 5136 df-mpt 5157 df-id 5484 df-xp 5590 df-rel 5591 df-cnv 5592 df-co 5593 df-dm 5594 df-rn 5595 df-iota 6384 df-fun 6428 df-fn 6429 df-f 6430 df-fv 6434 df-ov 7270 df-oprab 7271 df-mpo 7272 df-map 8604 df-xr 11023 df-psmet 20599 |
This theorem is referenced by: blfvalps 23546 metuval 23715 metidval 31848 pstmval 31853 |
Copyright terms: Public domain | W3C validator |