| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > psmetdmdm | Structured version Visualization version GIF version | ||
| Description: Recover the base set from a pseudometric. (Contributed by Thierry Arnoux, 7-Feb-2018.) |
| Ref | Expression |
|---|---|
| psmetdmdm | ⊢ (𝐷 ∈ (PsMet‘𝑋) → 𝑋 = dom dom 𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfvex 6919 | . . . . 5 ⊢ (𝐷 ∈ (PsMet‘𝑋) → 𝑋 ∈ V) | |
| 2 | ispsmet 24248 | . . . . . 6 ⊢ (𝑋 ∈ V → (𝐷 ∈ (PsMet‘𝑋) ↔ (𝐷:(𝑋 × 𝑋)⟶ℝ* ∧ ∀𝑥 ∈ 𝑋 ((𝑥𝐷𝑥) = 0 ∧ ∀𝑦 ∈ 𝑋 ∀𝑧 ∈ 𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦)))))) | |
| 3 | 2 | biimpa 476 | . . . . 5 ⊢ ((𝑋 ∈ V ∧ 𝐷 ∈ (PsMet‘𝑋)) → (𝐷:(𝑋 × 𝑋)⟶ℝ* ∧ ∀𝑥 ∈ 𝑋 ((𝑥𝐷𝑥) = 0 ∧ ∀𝑦 ∈ 𝑋 ∀𝑧 ∈ 𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦))))) |
| 4 | 1, 3 | mpancom 688 | . . . 4 ⊢ (𝐷 ∈ (PsMet‘𝑋) → (𝐷:(𝑋 × 𝑋)⟶ℝ* ∧ ∀𝑥 ∈ 𝑋 ((𝑥𝐷𝑥) = 0 ∧ ∀𝑦 ∈ 𝑋 ∀𝑧 ∈ 𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦))))) |
| 5 | 4 | simpld 494 | . . 3 ⊢ (𝐷 ∈ (PsMet‘𝑋) → 𝐷:(𝑋 × 𝑋)⟶ℝ*) |
| 6 | fdm 6720 | . . . 4 ⊢ (𝐷:(𝑋 × 𝑋)⟶ℝ* → dom 𝐷 = (𝑋 × 𝑋)) | |
| 7 | 6 | dmeqd 5890 | . . 3 ⊢ (𝐷:(𝑋 × 𝑋)⟶ℝ* → dom dom 𝐷 = dom (𝑋 × 𝑋)) |
| 8 | 5, 7 | syl 17 | . 2 ⊢ (𝐷 ∈ (PsMet‘𝑋) → dom dom 𝐷 = dom (𝑋 × 𝑋)) |
| 9 | dmxpid 5915 | . 2 ⊢ dom (𝑋 × 𝑋) = 𝑋 | |
| 10 | 8, 9 | eqtr2di 2788 | 1 ⊢ (𝐷 ∈ (PsMet‘𝑋) → 𝑋 = dom dom 𝐷) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3052 Vcvv 3464 class class class wbr 5124 × cxp 5657 dom cdm 5659 ⟶wf 6532 ‘cfv 6536 (class class class)co 7410 0cc0 11134 ℝ*cxr 11273 ≤ cle 11275 +𝑒 cxad 13131 PsMetcpsmet 21304 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-resscn 11191 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-sbc 3771 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-fv 6544 df-ov 7413 df-oprab 7414 df-mpo 7415 df-map 8847 df-xr 11278 df-psmet 21312 |
| This theorem is referenced by: blfvalps 24327 metuval 24493 metidval 33926 pstmval 33931 |
| Copyright terms: Public domain | W3C validator |