MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  blfvalps Structured version   Visualization version   GIF version

Theorem blfvalps 24299
Description: The value of the ball function. (Contributed by NM, 30-Aug-2006.) (Revised by Mario Carneiro, 11-Nov-2013.) (Revised by Thierry Arnoux, 11-Feb-2018.)
Assertion
Ref Expression
blfvalps (𝐷 ∈ (PsMet‘𝑋) → (ball‘𝐷) = (𝑥𝑋, 𝑟 ∈ ℝ* ↦ {𝑦𝑋 ∣ (𝑥𝐷𝑦) < 𝑟}))
Distinct variable groups:   𝑥,𝑟,𝑦,𝐷   𝑋,𝑟,𝑥,𝑦

Proof of Theorem blfvalps
Dummy variable 𝑑 is distinct from all other variables.
StepHypRef Expression
1 df-bl 21287 . 2 ball = (𝑑 ∈ V ↦ (𝑥 ∈ dom dom 𝑑, 𝑟 ∈ ℝ* ↦ {𝑦 ∈ dom dom 𝑑 ∣ (𝑥𝑑𝑦) < 𝑟}))
2 dmeq 5843 . . . . 5 (𝑑 = 𝐷 → dom 𝑑 = dom 𝐷)
32dmeqd 5845 . . . 4 (𝑑 = 𝐷 → dom dom 𝑑 = dom dom 𝐷)
4 psmetdmdm 24221 . . . . 5 (𝐷 ∈ (PsMet‘𝑋) → 𝑋 = dom dom 𝐷)
54eqcomd 2737 . . . 4 (𝐷 ∈ (PsMet‘𝑋) → dom dom 𝐷 = 𝑋)
63, 5sylan9eqr 2788 . . 3 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑑 = 𝐷) → dom dom 𝑑 = 𝑋)
7 eqidd 2732 . . 3 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑑 = 𝐷) → ℝ* = ℝ*)
8 simpr 484 . . . . . 6 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑑 = 𝐷) → 𝑑 = 𝐷)
98oveqd 7363 . . . . 5 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑑 = 𝐷) → (𝑥𝑑𝑦) = (𝑥𝐷𝑦))
109breq1d 5101 . . . 4 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑑 = 𝐷) → ((𝑥𝑑𝑦) < 𝑟 ↔ (𝑥𝐷𝑦) < 𝑟))
116, 10rabeqbidv 3413 . . 3 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑑 = 𝐷) → {𝑦 ∈ dom dom 𝑑 ∣ (𝑥𝑑𝑦) < 𝑟} = {𝑦𝑋 ∣ (𝑥𝐷𝑦) < 𝑟})
126, 7, 11mpoeq123dv 7421 . 2 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑑 = 𝐷) → (𝑥 ∈ dom dom 𝑑, 𝑟 ∈ ℝ* ↦ {𝑦 ∈ dom dom 𝑑 ∣ (𝑥𝑑𝑦) < 𝑟}) = (𝑥𝑋, 𝑟 ∈ ℝ* ↦ {𝑦𝑋 ∣ (𝑥𝐷𝑦) < 𝑟}))
13 elex 3457 . 2 (𝐷 ∈ (PsMet‘𝑋) → 𝐷 ∈ V)
14 ssrab2 4030 . . . . . 6 {𝑦𝑋 ∣ (𝑥𝐷𝑦) < 𝑟} ⊆ 𝑋
15 elfvdm 6856 . . . . . . . 8 (𝐷 ∈ (PsMet‘𝑋) → 𝑋 ∈ dom PsMet)
1615adantr 480 . . . . . . 7 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑥𝑋𝑟 ∈ ℝ*)) → 𝑋 ∈ dom PsMet)
17 elpw2g 5271 . . . . . . 7 (𝑋 ∈ dom PsMet → ({𝑦𝑋 ∣ (𝑥𝐷𝑦) < 𝑟} ∈ 𝒫 𝑋 ↔ {𝑦𝑋 ∣ (𝑥𝐷𝑦) < 𝑟} ⊆ 𝑋))
1816, 17syl 17 . . . . . 6 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑥𝑋𝑟 ∈ ℝ*)) → ({𝑦𝑋 ∣ (𝑥𝐷𝑦) < 𝑟} ∈ 𝒫 𝑋 ↔ {𝑦𝑋 ∣ (𝑥𝐷𝑦) < 𝑟} ⊆ 𝑋))
1914, 18mpbiri 258 . . . . 5 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑥𝑋𝑟 ∈ ℝ*)) → {𝑦𝑋 ∣ (𝑥𝐷𝑦) < 𝑟} ∈ 𝒫 𝑋)
2019ralrimivva 3175 . . . 4 (𝐷 ∈ (PsMet‘𝑋) → ∀𝑥𝑋𝑟 ∈ ℝ* {𝑦𝑋 ∣ (𝑥𝐷𝑦) < 𝑟} ∈ 𝒫 𝑋)
21 eqid 2731 . . . . 5 (𝑥𝑋, 𝑟 ∈ ℝ* ↦ {𝑦𝑋 ∣ (𝑥𝐷𝑦) < 𝑟}) = (𝑥𝑋, 𝑟 ∈ ℝ* ↦ {𝑦𝑋 ∣ (𝑥𝐷𝑦) < 𝑟})
2221fmpo 8000 . . . 4 (∀𝑥𝑋𝑟 ∈ ℝ* {𝑦𝑋 ∣ (𝑥𝐷𝑦) < 𝑟} ∈ 𝒫 𝑋 ↔ (𝑥𝑋, 𝑟 ∈ ℝ* ↦ {𝑦𝑋 ∣ (𝑥𝐷𝑦) < 𝑟}):(𝑋 × ℝ*)⟶𝒫 𝑋)
2320, 22sylib 218 . . 3 (𝐷 ∈ (PsMet‘𝑋) → (𝑥𝑋, 𝑟 ∈ ℝ* ↦ {𝑦𝑋 ∣ (𝑥𝐷𝑦) < 𝑟}):(𝑋 × ℝ*)⟶𝒫 𝑋)
24 xrex 12885 . . . 4 * ∈ V
25 xpexg 7683 . . . 4 ((𝑋 ∈ dom PsMet ∧ ℝ* ∈ V) → (𝑋 × ℝ*) ∈ V)
2615, 24, 25sylancl 586 . . 3 (𝐷 ∈ (PsMet‘𝑋) → (𝑋 × ℝ*) ∈ V)
2715pwexd 5317 . . 3 (𝐷 ∈ (PsMet‘𝑋) → 𝒫 𝑋 ∈ V)
28 fex2 7866 . . 3 (((𝑥𝑋, 𝑟 ∈ ℝ* ↦ {𝑦𝑋 ∣ (𝑥𝐷𝑦) < 𝑟}):(𝑋 × ℝ*)⟶𝒫 𝑋 ∧ (𝑋 × ℝ*) ∈ V ∧ 𝒫 𝑋 ∈ V) → (𝑥𝑋, 𝑟 ∈ ℝ* ↦ {𝑦𝑋 ∣ (𝑥𝐷𝑦) < 𝑟}) ∈ V)
2923, 26, 27, 28syl3anc 1373 . 2 (𝐷 ∈ (PsMet‘𝑋) → (𝑥𝑋, 𝑟 ∈ ℝ* ↦ {𝑦𝑋 ∣ (𝑥𝐷𝑦) < 𝑟}) ∈ V)
301, 12, 13, 29fvmptd2 6937 1 (𝐷 ∈ (PsMet‘𝑋) → (ball‘𝐷) = (𝑥𝑋, 𝑟 ∈ ℝ* ↦ {𝑦𝑋 ∣ (𝑥𝐷𝑦) < 𝑟}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wral 3047  {crab 3395  Vcvv 3436  wss 3902  𝒫 cpw 4550   class class class wbr 5091   × cxp 5614  dom cdm 5616  wf 6477  cfv 6481  (class class class)co 7346  cmpo 7348  *cxr 11145   < clt 11146  PsMetcpsmet 21276  ballcbl 21279
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11062  ax-resscn 11063
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-1st 7921  df-2nd 7922  df-map 8752  df-xr 11150  df-psmet 21284  df-bl 21287
This theorem is referenced by:  blfval  24300  blvalps  24301  blfps  24322
  Copyright terms: Public domain W3C validator