MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  blfvalps Structured version   Visualization version   GIF version

Theorem blfvalps 22596
Description: The value of the ball function. (Contributed by NM, 30-Aug-2006.) (Revised by Mario Carneiro, 11-Nov-2013.) (Revised by Thierry Arnoux, 11-Feb-2018.)
Assertion
Ref Expression
blfvalps (𝐷 ∈ (PsMet‘𝑋) → (ball‘𝐷) = (𝑥𝑋, 𝑟 ∈ ℝ* ↦ {𝑦𝑋 ∣ (𝑥𝐷𝑦) < 𝑟}))
Distinct variable groups:   𝑥,𝑟,𝑦,𝐷   𝑋,𝑟,𝑥,𝑦

Proof of Theorem blfvalps
Dummy variable 𝑑 is distinct from all other variables.
StepHypRef Expression
1 df-bl 20137 . . 3 ball = (𝑑 ∈ V ↦ (𝑥 ∈ dom dom 𝑑, 𝑟 ∈ ℝ* ↦ {𝑦 ∈ dom dom 𝑑 ∣ (𝑥𝑑𝑦) < 𝑟}))
21a1i 11 . 2 (𝐷 ∈ (PsMet‘𝑋) → ball = (𝑑 ∈ V ↦ (𝑥 ∈ dom dom 𝑑, 𝑟 ∈ ℝ* ↦ {𝑦 ∈ dom dom 𝑑 ∣ (𝑥𝑑𝑦) < 𝑟})))
3 dmeq 5569 . . . . 5 (𝑑 = 𝐷 → dom 𝑑 = dom 𝐷)
43dmeqd 5571 . . . 4 (𝑑 = 𝐷 → dom dom 𝑑 = dom dom 𝐷)
5 psmetdmdm 22518 . . . . 5 (𝐷 ∈ (PsMet‘𝑋) → 𝑋 = dom dom 𝐷)
65eqcomd 2784 . . . 4 (𝐷 ∈ (PsMet‘𝑋) → dom dom 𝐷 = 𝑋)
74, 6sylan9eqr 2836 . . 3 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑑 = 𝐷) → dom dom 𝑑 = 𝑋)
8 eqidd 2779 . . 3 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑑 = 𝐷) → ℝ* = ℝ*)
9 simpr 479 . . . . . 6 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑑 = 𝐷) → 𝑑 = 𝐷)
109oveqd 6939 . . . . 5 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑑 = 𝐷) → (𝑥𝑑𝑦) = (𝑥𝐷𝑦))
1110breq1d 4896 . . . 4 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑑 = 𝐷) → ((𝑥𝑑𝑦) < 𝑟 ↔ (𝑥𝐷𝑦) < 𝑟))
127, 11rabeqbidv 3392 . . 3 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑑 = 𝐷) → {𝑦 ∈ dom dom 𝑑 ∣ (𝑥𝑑𝑦) < 𝑟} = {𝑦𝑋 ∣ (𝑥𝐷𝑦) < 𝑟})
137, 8, 12mpt2eq123dv 6994 . 2 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑑 = 𝐷) → (𝑥 ∈ dom dom 𝑑, 𝑟 ∈ ℝ* ↦ {𝑦 ∈ dom dom 𝑑 ∣ (𝑥𝑑𝑦) < 𝑟}) = (𝑥𝑋, 𝑟 ∈ ℝ* ↦ {𝑦𝑋 ∣ (𝑥𝐷𝑦) < 𝑟}))
14 elex 3414 . 2 (𝐷 ∈ (PsMet‘𝑋) → 𝐷 ∈ V)
15 ssrab2 3908 . . . . . 6 {𝑦𝑋 ∣ (𝑥𝐷𝑦) < 𝑟} ⊆ 𝑋
16 elfvdm 6478 . . . . . . . 8 (𝐷 ∈ (PsMet‘𝑋) → 𝑋 ∈ dom PsMet)
1716adantr 474 . . . . . . 7 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑥𝑋𝑟 ∈ ℝ*)) → 𝑋 ∈ dom PsMet)
18 elpw2g 5061 . . . . . . 7 (𝑋 ∈ dom PsMet → ({𝑦𝑋 ∣ (𝑥𝐷𝑦) < 𝑟} ∈ 𝒫 𝑋 ↔ {𝑦𝑋 ∣ (𝑥𝐷𝑦) < 𝑟} ⊆ 𝑋))
1917, 18syl 17 . . . . . 6 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑥𝑋𝑟 ∈ ℝ*)) → ({𝑦𝑋 ∣ (𝑥𝐷𝑦) < 𝑟} ∈ 𝒫 𝑋 ↔ {𝑦𝑋 ∣ (𝑥𝐷𝑦) < 𝑟} ⊆ 𝑋))
2015, 19mpbiri 250 . . . . 5 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑥𝑋𝑟 ∈ ℝ*)) → {𝑦𝑋 ∣ (𝑥𝐷𝑦) < 𝑟} ∈ 𝒫 𝑋)
2120ralrimivva 3153 . . . 4 (𝐷 ∈ (PsMet‘𝑋) → ∀𝑥𝑋𝑟 ∈ ℝ* {𝑦𝑋 ∣ (𝑥𝐷𝑦) < 𝑟} ∈ 𝒫 𝑋)
22 eqid 2778 . . . . 5 (𝑥𝑋, 𝑟 ∈ ℝ* ↦ {𝑦𝑋 ∣ (𝑥𝐷𝑦) < 𝑟}) = (𝑥𝑋, 𝑟 ∈ ℝ* ↦ {𝑦𝑋 ∣ (𝑥𝐷𝑦) < 𝑟})
2322fmpt2 7517 . . . 4 (∀𝑥𝑋𝑟 ∈ ℝ* {𝑦𝑋 ∣ (𝑥𝐷𝑦) < 𝑟} ∈ 𝒫 𝑋 ↔ (𝑥𝑋, 𝑟 ∈ ℝ* ↦ {𝑦𝑋 ∣ (𝑥𝐷𝑦) < 𝑟}):(𝑋 × ℝ*)⟶𝒫 𝑋)
2421, 23sylib 210 . . 3 (𝐷 ∈ (PsMet‘𝑋) → (𝑥𝑋, 𝑟 ∈ ℝ* ↦ {𝑦𝑋 ∣ (𝑥𝐷𝑦) < 𝑟}):(𝑋 × ℝ*)⟶𝒫 𝑋)
25 xrex 12134 . . . 4 * ∈ V
26 xpexg 7237 . . . 4 ((𝑋 ∈ dom PsMet ∧ ℝ* ∈ V) → (𝑋 × ℝ*) ∈ V)
2716, 25, 26sylancl 580 . . 3 (𝐷 ∈ (PsMet‘𝑋) → (𝑋 × ℝ*) ∈ V)
2816pwexd 5091 . . 3 (𝐷 ∈ (PsMet‘𝑋) → 𝒫 𝑋 ∈ V)
29 fex2 7400 . . 3 (((𝑥𝑋, 𝑟 ∈ ℝ* ↦ {𝑦𝑋 ∣ (𝑥𝐷𝑦) < 𝑟}):(𝑋 × ℝ*)⟶𝒫 𝑋 ∧ (𝑋 × ℝ*) ∈ V ∧ 𝒫 𝑋 ∈ V) → (𝑥𝑋, 𝑟 ∈ ℝ* ↦ {𝑦𝑋 ∣ (𝑥𝐷𝑦) < 𝑟}) ∈ V)
3024, 27, 28, 29syl3anc 1439 . 2 (𝐷 ∈ (PsMet‘𝑋) → (𝑥𝑋, 𝑟 ∈ ℝ* ↦ {𝑦𝑋 ∣ (𝑥𝐷𝑦) < 𝑟}) ∈ V)
312, 13, 14, 30fvmptd 6548 1 (𝐷 ∈ (PsMet‘𝑋) → (ball‘𝐷) = (𝑥𝑋, 𝑟 ∈ ℝ* ↦ {𝑦𝑋 ∣ (𝑥𝐷𝑦) < 𝑟}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 386   = wceq 1601  wcel 2107  wral 3090  {crab 3094  Vcvv 3398  wss 3792  𝒫 cpw 4379   class class class wbr 4886  cmpt 4965   × cxp 5353  dom cdm 5355  wf 6131  cfv 6135  (class class class)co 6922  cmpt2 6924  *cxr 10410   < clt 10411  PsMetcpsmet 20126  ballcbl 20129
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138  ax-un 7226  ax-cnex 10328  ax-resscn 10329
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-ral 3095  df-rex 3096  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-op 4405  df-uni 4672  df-iun 4755  df-br 4887  df-opab 4949  df-mpt 4966  df-id 5261  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-iota 6099  df-fun 6137  df-fn 6138  df-f 6139  df-fv 6143  df-ov 6925  df-oprab 6926  df-mpt2 6927  df-1st 7445  df-2nd 7446  df-map 8142  df-xr 10415  df-psmet 20134  df-bl 20137
This theorem is referenced by:  blfval  22597  blvalps  22598  blfps  22619
  Copyright terms: Public domain W3C validator