MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  blfvalps Structured version   Visualization version   GIF version

Theorem blfvalps 24339
Description: The value of the ball function. (Contributed by NM, 30-Aug-2006.) (Revised by Mario Carneiro, 11-Nov-2013.) (Revised by Thierry Arnoux, 11-Feb-2018.)
Assertion
Ref Expression
blfvalps (𝐷 ∈ (PsMet‘𝑋) → (ball‘𝐷) = (𝑥𝑋, 𝑟 ∈ ℝ* ↦ {𝑦𝑋 ∣ (𝑥𝐷𝑦) < 𝑟}))
Distinct variable groups:   𝑥,𝑟,𝑦,𝐷   𝑋,𝑟,𝑥,𝑦

Proof of Theorem blfvalps
Dummy variable 𝑑 is distinct from all other variables.
StepHypRef Expression
1 df-bl 21322 . 2 ball = (𝑑 ∈ V ↦ (𝑥 ∈ dom dom 𝑑, 𝑟 ∈ ℝ* ↦ {𝑦 ∈ dom dom 𝑑 ∣ (𝑥𝑑𝑦) < 𝑟}))
2 dmeq 5894 . . . . 5 (𝑑 = 𝐷 → dom 𝑑 = dom 𝐷)
32dmeqd 5896 . . . 4 (𝑑 = 𝐷 → dom dom 𝑑 = dom dom 𝐷)
4 psmetdmdm 24261 . . . . 5 (𝐷 ∈ (PsMet‘𝑋) → 𝑋 = dom dom 𝐷)
54eqcomd 2740 . . . 4 (𝐷 ∈ (PsMet‘𝑋) → dom dom 𝐷 = 𝑋)
63, 5sylan9eqr 2791 . . 3 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑑 = 𝐷) → dom dom 𝑑 = 𝑋)
7 eqidd 2735 . . 3 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑑 = 𝐷) → ℝ* = ℝ*)
8 simpr 484 . . . . . 6 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑑 = 𝐷) → 𝑑 = 𝐷)
98oveqd 7430 . . . . 5 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑑 = 𝐷) → (𝑥𝑑𝑦) = (𝑥𝐷𝑦))
109breq1d 5133 . . . 4 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑑 = 𝐷) → ((𝑥𝑑𝑦) < 𝑟 ↔ (𝑥𝐷𝑦) < 𝑟))
116, 10rabeqbidv 3438 . . 3 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑑 = 𝐷) → {𝑦 ∈ dom dom 𝑑 ∣ (𝑥𝑑𝑦) < 𝑟} = {𝑦𝑋 ∣ (𝑥𝐷𝑦) < 𝑟})
126, 7, 11mpoeq123dv 7490 . 2 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑑 = 𝐷) → (𝑥 ∈ dom dom 𝑑, 𝑟 ∈ ℝ* ↦ {𝑦 ∈ dom dom 𝑑 ∣ (𝑥𝑑𝑦) < 𝑟}) = (𝑥𝑋, 𝑟 ∈ ℝ* ↦ {𝑦𝑋 ∣ (𝑥𝐷𝑦) < 𝑟}))
13 elex 3484 . 2 (𝐷 ∈ (PsMet‘𝑋) → 𝐷 ∈ V)
14 ssrab2 4060 . . . . . 6 {𝑦𝑋 ∣ (𝑥𝐷𝑦) < 𝑟} ⊆ 𝑋
15 elfvdm 6923 . . . . . . . 8 (𝐷 ∈ (PsMet‘𝑋) → 𝑋 ∈ dom PsMet)
1615adantr 480 . . . . . . 7 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑥𝑋𝑟 ∈ ℝ*)) → 𝑋 ∈ dom PsMet)
17 elpw2g 5313 . . . . . . 7 (𝑋 ∈ dom PsMet → ({𝑦𝑋 ∣ (𝑥𝐷𝑦) < 𝑟} ∈ 𝒫 𝑋 ↔ {𝑦𝑋 ∣ (𝑥𝐷𝑦) < 𝑟} ⊆ 𝑋))
1816, 17syl 17 . . . . . 6 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑥𝑋𝑟 ∈ ℝ*)) → ({𝑦𝑋 ∣ (𝑥𝐷𝑦) < 𝑟} ∈ 𝒫 𝑋 ↔ {𝑦𝑋 ∣ (𝑥𝐷𝑦) < 𝑟} ⊆ 𝑋))
1914, 18mpbiri 258 . . . . 5 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑥𝑋𝑟 ∈ ℝ*)) → {𝑦𝑋 ∣ (𝑥𝐷𝑦) < 𝑟} ∈ 𝒫 𝑋)
2019ralrimivva 3189 . . . 4 (𝐷 ∈ (PsMet‘𝑋) → ∀𝑥𝑋𝑟 ∈ ℝ* {𝑦𝑋 ∣ (𝑥𝐷𝑦) < 𝑟} ∈ 𝒫 𝑋)
21 eqid 2734 . . . . 5 (𝑥𝑋, 𝑟 ∈ ℝ* ↦ {𝑦𝑋 ∣ (𝑥𝐷𝑦) < 𝑟}) = (𝑥𝑋, 𝑟 ∈ ℝ* ↦ {𝑦𝑋 ∣ (𝑥𝐷𝑦) < 𝑟})
2221fmpo 8075 . . . 4 (∀𝑥𝑋𝑟 ∈ ℝ* {𝑦𝑋 ∣ (𝑥𝐷𝑦) < 𝑟} ∈ 𝒫 𝑋 ↔ (𝑥𝑋, 𝑟 ∈ ℝ* ↦ {𝑦𝑋 ∣ (𝑥𝐷𝑦) < 𝑟}):(𝑋 × ℝ*)⟶𝒫 𝑋)
2320, 22sylib 218 . . 3 (𝐷 ∈ (PsMet‘𝑋) → (𝑥𝑋, 𝑟 ∈ ℝ* ↦ {𝑦𝑋 ∣ (𝑥𝐷𝑦) < 𝑟}):(𝑋 × ℝ*)⟶𝒫 𝑋)
24 xrex 13011 . . . 4 * ∈ V
25 xpexg 7752 . . . 4 ((𝑋 ∈ dom PsMet ∧ ℝ* ∈ V) → (𝑋 × ℝ*) ∈ V)
2615, 24, 25sylancl 586 . . 3 (𝐷 ∈ (PsMet‘𝑋) → (𝑋 × ℝ*) ∈ V)
2715pwexd 5359 . . 3 (𝐷 ∈ (PsMet‘𝑋) → 𝒫 𝑋 ∈ V)
28 fex2 7940 . . 3 (((𝑥𝑋, 𝑟 ∈ ℝ* ↦ {𝑦𝑋 ∣ (𝑥𝐷𝑦) < 𝑟}):(𝑋 × ℝ*)⟶𝒫 𝑋 ∧ (𝑋 × ℝ*) ∈ V ∧ 𝒫 𝑋 ∈ V) → (𝑥𝑋, 𝑟 ∈ ℝ* ↦ {𝑦𝑋 ∣ (𝑥𝐷𝑦) < 𝑟}) ∈ V)
2923, 26, 27, 28syl3anc 1372 . 2 (𝐷 ∈ (PsMet‘𝑋) → (𝑥𝑋, 𝑟 ∈ ℝ* ↦ {𝑦𝑋 ∣ (𝑥𝐷𝑦) < 𝑟}) ∈ V)
301, 12, 13, 29fvmptd2 7004 1 (𝐷 ∈ (PsMet‘𝑋) → (ball‘𝐷) = (𝑥𝑋, 𝑟 ∈ ℝ* ↦ {𝑦𝑋 ∣ (𝑥𝐷𝑦) < 𝑟}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1539  wcel 2107  wral 3050  {crab 3419  Vcvv 3463  wss 3931  𝒫 cpw 4580   class class class wbr 5123   × cxp 5663  dom cdm 5665  wf 6537  cfv 6541  (class class class)co 7413  cmpo 7415  *cxr 11276   < clt 11277  PsMetcpsmet 21311  ballcbl 21314
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737  ax-cnex 11193  ax-resscn 11194
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-iun 4973  df-br 5124  df-opab 5186  df-mpt 5206  df-id 5558  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-fv 6549  df-ov 7416  df-oprab 7417  df-mpo 7418  df-1st 7996  df-2nd 7997  df-map 8850  df-xr 11281  df-psmet 21319  df-bl 21322
This theorem is referenced by:  blfval  24340  blvalps  24341  blfps  24362
  Copyright terms: Public domain W3C validator