![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > psmetf | Structured version Visualization version GIF version |
Description: The distance function of a pseudometric as a function. (Contributed by Thierry Arnoux, 7-Feb-2018.) |
Ref | Expression |
---|---|
psmetf | β’ (π· β (PsMetβπ) β π·:(π Γ π)βΆβ*) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfvex 6929 | . . . 4 β’ (π· β (PsMetβπ) β π β V) | |
2 | ispsmet 23809 | . . . 4 β’ (π β V β (π· β (PsMetβπ) β (π·:(π Γ π)βΆβ* β§ βπ β π ((ππ·π) = 0 β§ βπ β π βπ β π (ππ·π) β€ ((ππ·π) +π (ππ·π)))))) | |
3 | 1, 2 | syl 17 | . . 3 β’ (π· β (PsMetβπ) β (π· β (PsMetβπ) β (π·:(π Γ π)βΆβ* β§ βπ β π ((ππ·π) = 0 β§ βπ β π βπ β π (ππ·π) β€ ((ππ·π) +π (ππ·π)))))) |
4 | 3 | ibi 266 | . 2 β’ (π· β (PsMetβπ) β (π·:(π Γ π)βΆβ* β§ βπ β π ((ππ·π) = 0 β§ βπ β π βπ β π (ππ·π) β€ ((ππ·π) +π (ππ·π))))) |
5 | 4 | simpld 495 | 1 β’ (π· β (PsMetβπ) β π·:(π Γ π)βΆβ*) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 396 = wceq 1541 β wcel 2106 βwral 3061 Vcvv 3474 class class class wbr 5148 Γ cxp 5674 βΆwf 6539 βcfv 6543 (class class class)co 7408 0cc0 11109 β*cxr 11246 β€ cle 11248 +π cxad 13089 PsMetcpsmet 20927 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 ax-cnex 11165 ax-resscn 11166 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-sbc 3778 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-fv 6551 df-ov 7411 df-oprab 7412 df-mpo 7413 df-map 8821 df-xr 11251 df-psmet 20935 |
This theorem is referenced by: psmetcl 23812 psmetxrge0 23818 psmetres2 23819 distspace 23821 metustss 24059 metustid 24062 metustsym 24063 metustexhalf 24064 metustfbas 24065 cfilucfil 24067 blval2 24070 metuel2 24073 restmetu 24078 metideq 32868 pstmxmet 32872 |
Copyright terms: Public domain | W3C validator |