![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > psmetf | Structured version Visualization version GIF version |
Description: The distance function of a pseudometric as a function. (Contributed by Thierry Arnoux, 7-Feb-2018.) |
Ref | Expression |
---|---|
psmetf | ⊢ (𝐷 ∈ (PsMet‘𝑋) → 𝐷:(𝑋 × 𝑋)⟶ℝ*) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfvex 6958 | . . . 4 ⊢ (𝐷 ∈ (PsMet‘𝑋) → 𝑋 ∈ V) | |
2 | ispsmet 24335 | . . . 4 ⊢ (𝑋 ∈ V → (𝐷 ∈ (PsMet‘𝑋) ↔ (𝐷:(𝑋 × 𝑋)⟶ℝ* ∧ ∀𝑎 ∈ 𝑋 ((𝑎𝐷𝑎) = 0 ∧ ∀𝑏 ∈ 𝑋 ∀𝑐 ∈ 𝑋 (𝑎𝐷𝑏) ≤ ((𝑐𝐷𝑎) +𝑒 (𝑐𝐷𝑏)))))) | |
3 | 1, 2 | syl 17 | . . 3 ⊢ (𝐷 ∈ (PsMet‘𝑋) → (𝐷 ∈ (PsMet‘𝑋) ↔ (𝐷:(𝑋 × 𝑋)⟶ℝ* ∧ ∀𝑎 ∈ 𝑋 ((𝑎𝐷𝑎) = 0 ∧ ∀𝑏 ∈ 𝑋 ∀𝑐 ∈ 𝑋 (𝑎𝐷𝑏) ≤ ((𝑐𝐷𝑎) +𝑒 (𝑐𝐷𝑏)))))) |
4 | 3 | ibi 267 | . 2 ⊢ (𝐷 ∈ (PsMet‘𝑋) → (𝐷:(𝑋 × 𝑋)⟶ℝ* ∧ ∀𝑎 ∈ 𝑋 ((𝑎𝐷𝑎) = 0 ∧ ∀𝑏 ∈ 𝑋 ∀𝑐 ∈ 𝑋 (𝑎𝐷𝑏) ≤ ((𝑐𝐷𝑎) +𝑒 (𝑐𝐷𝑏))))) |
5 | 4 | simpld 494 | 1 ⊢ (𝐷 ∈ (PsMet‘𝑋) → 𝐷:(𝑋 × 𝑋)⟶ℝ*) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∀wral 3067 Vcvv 3488 class class class wbr 5166 × cxp 5698 ⟶wf 6569 ‘cfv 6573 (class class class)co 7448 0cc0 11184 ℝ*cxr 11323 ≤ cle 11325 +𝑒 cxad 13173 PsMetcpsmet 21371 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-map 8886 df-xr 11328 df-psmet 21379 |
This theorem is referenced by: psmetcl 24338 psmetxrge0 24344 psmetres2 24345 distspace 24347 metustss 24585 metustid 24588 metustsym 24589 metustexhalf 24590 metustfbas 24591 cfilucfil 24593 blval2 24596 metuel2 24599 restmetu 24604 metideq 33839 pstmxmet 33843 |
Copyright terms: Public domain | W3C validator |