MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psmetf Structured version   Visualization version   GIF version

Theorem psmetf 24245
Description: The distance function of a pseudometric as a function. (Contributed by Thierry Arnoux, 7-Feb-2018.)
Assertion
Ref Expression
psmetf (𝐷 ∈ (PsMet‘𝑋) → 𝐷:(𝑋 × 𝑋)⟶ℝ*)

Proof of Theorem psmetf
Dummy variables 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elfvex 6914 . . . 4 (𝐷 ∈ (PsMet‘𝑋) → 𝑋 ∈ V)
2 ispsmet 24243 . . . 4 (𝑋 ∈ V → (𝐷 ∈ (PsMet‘𝑋) ↔ (𝐷:(𝑋 × 𝑋)⟶ℝ* ∧ ∀𝑎𝑋 ((𝑎𝐷𝑎) = 0 ∧ ∀𝑏𝑋𝑐𝑋 (𝑎𝐷𝑏) ≤ ((𝑐𝐷𝑎) +𝑒 (𝑐𝐷𝑏))))))
31, 2syl 17 . . 3 (𝐷 ∈ (PsMet‘𝑋) → (𝐷 ∈ (PsMet‘𝑋) ↔ (𝐷:(𝑋 × 𝑋)⟶ℝ* ∧ ∀𝑎𝑋 ((𝑎𝐷𝑎) = 0 ∧ ∀𝑏𝑋𝑐𝑋 (𝑎𝐷𝑏) ≤ ((𝑐𝐷𝑎) +𝑒 (𝑐𝐷𝑏))))))
43ibi 267 . 2 (𝐷 ∈ (PsMet‘𝑋) → (𝐷:(𝑋 × 𝑋)⟶ℝ* ∧ ∀𝑎𝑋 ((𝑎𝐷𝑎) = 0 ∧ ∀𝑏𝑋𝑐𝑋 (𝑎𝐷𝑏) ≤ ((𝑐𝐷𝑎) +𝑒 (𝑐𝐷𝑏)))))
54simpld 494 1 (𝐷 ∈ (PsMet‘𝑋) → 𝐷:(𝑋 × 𝑋)⟶ℝ*)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wral 3051  Vcvv 3459   class class class wbr 5119   × cxp 5652  wf 6527  cfv 6531  (class class class)co 7405  0cc0 11129  *cxr 11268  cle 11270   +𝑒 cxad 13126  PsMetcpsmet 21299
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-sbc 3766  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-fv 6539  df-ov 7408  df-oprab 7409  df-mpo 7410  df-map 8842  df-xr 11273  df-psmet 21307
This theorem is referenced by:  psmetcl  24246  psmetxrge0  24252  psmetres2  24253  distspace  24255  metustss  24490  metustid  24493  metustsym  24494  metustexhalf  24495  metustfbas  24496  cfilucfil  24498  blval2  24501  metuel2  24504  restmetu  24509  metideq  33924  pstmxmet  33928
  Copyright terms: Public domain W3C validator