| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ply1lss | Structured version Visualization version GIF version | ||
| Description: Univariate polynomials form a linear subspace of the set of univariate power series. (Contributed by Mario Carneiro, 9-Feb-2015.) |
| Ref | Expression |
|---|---|
| ply1val.1 | ⊢ 𝑃 = (Poly1‘𝑅) |
| ply1lss.2 | ⊢ 𝑆 = (PwSer1‘𝑅) |
| ply1lss.u | ⊢ 𝑈 = (Base‘𝑃) |
| Ref | Expression |
|---|---|
| ply1lss | ⊢ (𝑅 ∈ Ring → 𝑈 ∈ (LSubSp‘𝑆)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2731 | . . 3 ⊢ (1o mPwSer 𝑅) = (1o mPwSer 𝑅) | |
| 2 | eqid 2731 | . . 3 ⊢ (1o mPoly 𝑅) = (1o mPoly 𝑅) | |
| 3 | ply1val.1 | . . . 4 ⊢ 𝑃 = (Poly1‘𝑅) | |
| 4 | ply1lss.u | . . . 4 ⊢ 𝑈 = (Base‘𝑃) | |
| 5 | 3, 4 | ply1bas 22107 | . . 3 ⊢ 𝑈 = (Base‘(1o mPoly 𝑅)) |
| 6 | 1on 8397 | . . . 4 ⊢ 1o ∈ On | |
| 7 | 6 | a1i 11 | . . 3 ⊢ (𝑅 ∈ Ring → 1o ∈ On) |
| 8 | id 22 | . . 3 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ Ring) | |
| 9 | 1, 2, 5, 7, 8 | mpllss 21940 | . 2 ⊢ (𝑅 ∈ Ring → 𝑈 ∈ (LSubSp‘(1o mPwSer 𝑅))) |
| 10 | eqidd 2732 | . . 3 ⊢ (𝑅 ∈ Ring → (Base‘(1o mPwSer 𝑅)) = (Base‘(1o mPwSer 𝑅))) | |
| 11 | ply1lss.2 | . . . . 5 ⊢ 𝑆 = (PwSer1‘𝑅) | |
| 12 | 11 | psr1val 22098 | . . . 4 ⊢ 𝑆 = ((1o ordPwSer 𝑅)‘∅) |
| 13 | 0ss 4347 | . . . . 5 ⊢ ∅ ⊆ (1o × 1o) | |
| 14 | 13 | a1i 11 | . . . 4 ⊢ (𝑅 ∈ Ring → ∅ ⊆ (1o × 1o)) |
| 15 | 1, 12, 14 | opsrbas 21985 | . . 3 ⊢ (𝑅 ∈ Ring → (Base‘(1o mPwSer 𝑅)) = (Base‘𝑆)) |
| 16 | ssv 3954 | . . . 4 ⊢ (Base‘(1o mPwSer 𝑅)) ⊆ V | |
| 17 | 16 | a1i 11 | . . 3 ⊢ (𝑅 ∈ Ring → (Base‘(1o mPwSer 𝑅)) ⊆ V) |
| 18 | 1, 12, 14 | opsrplusg 21986 | . . . 4 ⊢ (𝑅 ∈ Ring → (+g‘(1o mPwSer 𝑅)) = (+g‘𝑆)) |
| 19 | 18 | oveqdr 7374 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V)) → (𝑥(+g‘(1o mPwSer 𝑅))𝑦) = (𝑥(+g‘𝑆)𝑦)) |
| 20 | ovexd 7381 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘(1o mPwSer 𝑅)))) → (𝑥( ·𝑠 ‘(1o mPwSer 𝑅))𝑦) ∈ V) | |
| 21 | 1, 12, 14 | opsrvsca 21988 | . . . 4 ⊢ (𝑅 ∈ Ring → ( ·𝑠 ‘(1o mPwSer 𝑅)) = ( ·𝑠 ‘𝑆)) |
| 22 | 21 | oveqdr 7374 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘(1o mPwSer 𝑅)))) → (𝑥( ·𝑠 ‘(1o mPwSer 𝑅))𝑦) = (𝑥( ·𝑠 ‘𝑆)𝑦)) |
| 23 | 1, 7, 8 | psrsca 21884 | . . . 4 ⊢ (𝑅 ∈ Ring → 𝑅 = (Scalar‘(1o mPwSer 𝑅))) |
| 24 | 23 | fveq2d 6826 | . . 3 ⊢ (𝑅 ∈ Ring → (Base‘𝑅) = (Base‘(Scalar‘(1o mPwSer 𝑅)))) |
| 25 | 1, 12, 14, 7, 8 | opsrsca 21989 | . . . 4 ⊢ (𝑅 ∈ Ring → 𝑅 = (Scalar‘𝑆)) |
| 26 | 25 | fveq2d 6826 | . . 3 ⊢ (𝑅 ∈ Ring → (Base‘𝑅) = (Base‘(Scalar‘𝑆))) |
| 27 | 10, 15, 17, 19, 20, 22, 24, 26 | lsspropd 20951 | . 2 ⊢ (𝑅 ∈ Ring → (LSubSp‘(1o mPwSer 𝑅)) = (LSubSp‘𝑆)) |
| 28 | 9, 27 | eleqtrd 2833 | 1 ⊢ (𝑅 ∈ Ring → 𝑈 ∈ (LSubSp‘𝑆)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 Vcvv 3436 ⊆ wss 3897 ∅c0 4280 × cxp 5612 Oncon0 6306 ‘cfv 6481 (class class class)co 7346 1oc1o 8378 Basecbs 17120 +gcplusg 17161 Scalarcsca 17164 ·𝑠 cvsca 17165 Ringcrg 20151 LSubSpclss 20864 mPwSer cmps 21841 mPoly cmpl 21843 PwSer1cps1 22087 Poly1cpl1 22089 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-tp 4578 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-of 7610 df-om 7797 df-1st 7921 df-2nd 7922 df-supp 8091 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-er 8622 df-map 8752 df-ixp 8822 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-fsupp 9246 df-sup 9326 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-2 12188 df-3 12189 df-4 12190 df-5 12191 df-6 12192 df-7 12193 df-8 12194 df-9 12195 df-n0 12382 df-z 12469 df-dec 12589 df-uz 12733 df-fz 13408 df-struct 17058 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-mulr 17175 df-sca 17177 df-vsca 17178 df-ip 17179 df-tset 17180 df-ple 17181 df-ds 17183 df-hom 17185 df-cco 17186 df-0g 17345 df-prds 17351 df-pws 17353 df-mgm 18548 df-sgrp 18627 df-mnd 18643 df-grp 18849 df-minusg 18850 df-subg 19036 df-cmn 19694 df-abl 19695 df-mgp 20059 df-rng 20071 df-ur 20100 df-ring 20153 df-lss 20865 df-psr 21846 df-mpl 21848 df-opsr 21850 df-psr1 22092 df-ply1 22094 |
| This theorem is referenced by: ply1assa 22112 ply1lmod 22164 |
| Copyright terms: Public domain | W3C validator |