MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ply1lss Structured version   Visualization version   GIF version

Theorem ply1lss 22114
Description: Univariate polynomials form a linear subspace of the set of univariate power series. (Contributed by Mario Carneiro, 9-Feb-2015.)
Hypotheses
Ref Expression
ply1val.1 𝑃 = (Poly1𝑅)
ply1lss.2 𝑆 = (PwSer1𝑅)
ply1lss.u 𝑈 = (Base‘𝑃)
Assertion
Ref Expression
ply1lss (𝑅 ∈ Ring → 𝑈 ∈ (LSubSp‘𝑆))

Proof of Theorem ply1lss
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2729 . . 3 (1o mPwSer 𝑅) = (1o mPwSer 𝑅)
2 eqid 2729 . . 3 (1o mPoly 𝑅) = (1o mPoly 𝑅)
3 ply1val.1 . . . 4 𝑃 = (Poly1𝑅)
4 ply1lss.u . . . 4 𝑈 = (Base‘𝑃)
53, 4ply1bas 22112 . . 3 𝑈 = (Base‘(1o mPoly 𝑅))
6 1on 8423 . . . 4 1o ∈ On
76a1i 11 . . 3 (𝑅 ∈ Ring → 1o ∈ On)
8 id 22 . . 3 (𝑅 ∈ Ring → 𝑅 ∈ Ring)
91, 2, 5, 7, 8mpllss 21945 . 2 (𝑅 ∈ Ring → 𝑈 ∈ (LSubSp‘(1o mPwSer 𝑅)))
10 eqidd 2730 . . 3 (𝑅 ∈ Ring → (Base‘(1o mPwSer 𝑅)) = (Base‘(1o mPwSer 𝑅)))
11 ply1lss.2 . . . . 5 𝑆 = (PwSer1𝑅)
1211psr1val 22103 . . . 4 𝑆 = ((1o ordPwSer 𝑅)‘∅)
13 0ss 4359 . . . . 5 ∅ ⊆ (1o × 1o)
1413a1i 11 . . . 4 (𝑅 ∈ Ring → ∅ ⊆ (1o × 1o))
151, 12, 14opsrbas 21990 . . 3 (𝑅 ∈ Ring → (Base‘(1o mPwSer 𝑅)) = (Base‘𝑆))
16 ssv 3968 . . . 4 (Base‘(1o mPwSer 𝑅)) ⊆ V
1716a1i 11 . . 3 (𝑅 ∈ Ring → (Base‘(1o mPwSer 𝑅)) ⊆ V)
181, 12, 14opsrplusg 21991 . . . 4 (𝑅 ∈ Ring → (+g‘(1o mPwSer 𝑅)) = (+g𝑆))
1918oveqdr 7397 . . 3 ((𝑅 ∈ Ring ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V)) → (𝑥(+g‘(1o mPwSer 𝑅))𝑦) = (𝑥(+g𝑆)𝑦))
20 ovexd 7404 . . 3 ((𝑅 ∈ Ring ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘(1o mPwSer 𝑅)))) → (𝑥( ·𝑠 ‘(1o mPwSer 𝑅))𝑦) ∈ V)
211, 12, 14opsrvsca 21993 . . . 4 (𝑅 ∈ Ring → ( ·𝑠 ‘(1o mPwSer 𝑅)) = ( ·𝑠𝑆))
2221oveqdr 7397 . . 3 ((𝑅 ∈ Ring ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘(1o mPwSer 𝑅)))) → (𝑥( ·𝑠 ‘(1o mPwSer 𝑅))𝑦) = (𝑥( ·𝑠𝑆)𝑦))
231, 7, 8psrsca 21889 . . . 4 (𝑅 ∈ Ring → 𝑅 = (Scalar‘(1o mPwSer 𝑅)))
2423fveq2d 6844 . . 3 (𝑅 ∈ Ring → (Base‘𝑅) = (Base‘(Scalar‘(1o mPwSer 𝑅))))
251, 12, 14, 7, 8opsrsca 21994 . . . 4 (𝑅 ∈ Ring → 𝑅 = (Scalar‘𝑆))
2625fveq2d 6844 . . 3 (𝑅 ∈ Ring → (Base‘𝑅) = (Base‘(Scalar‘𝑆)))
2710, 15, 17, 19, 20, 22, 24, 26lsspropd 20956 . 2 (𝑅 ∈ Ring → (LSubSp‘(1o mPwSer 𝑅)) = (LSubSp‘𝑆))
289, 27eleqtrd 2830 1 (𝑅 ∈ Ring → 𝑈 ∈ (LSubSp‘𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3444  wss 3911  c0 4292   × cxp 5629  Oncon0 6320  cfv 6499  (class class class)co 7369  1oc1o 8404  Basecbs 17155  +gcplusg 17196  Scalarcsca 17199   ·𝑠 cvsca 17200  Ringcrg 20153  LSubSpclss 20869   mPwSer cmps 21846   mPoly cmpl 21848  PwSer1cps1 22092  Poly1cpl1 22094
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-of 7633  df-om 7823  df-1st 7947  df-2nd 7948  df-supp 8117  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-er 8648  df-map 8778  df-ixp 8848  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-fsupp 9289  df-sup 9369  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-z 12506  df-dec 12626  df-uz 12770  df-fz 13445  df-struct 17093  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-ress 17177  df-plusg 17209  df-mulr 17210  df-sca 17212  df-vsca 17213  df-ip 17214  df-tset 17215  df-ple 17216  df-ds 17218  df-hom 17220  df-cco 17221  df-0g 17380  df-prds 17386  df-pws 17388  df-mgm 18549  df-sgrp 18628  df-mnd 18644  df-grp 18850  df-minusg 18851  df-subg 19037  df-cmn 19696  df-abl 19697  df-mgp 20061  df-rng 20073  df-ur 20102  df-ring 20155  df-lss 20870  df-psr 21851  df-mpl 21853  df-opsr 21855  df-psr1 22097  df-ply1 22099
This theorem is referenced by:  ply1assa  22117  ply1lmod  22169
  Copyright terms: Public domain W3C validator