![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ply1lss | Structured version Visualization version GIF version |
Description: Univariate polynomials form a linear subspace of the set of univariate power series. (Contributed by Mario Carneiro, 9-Feb-2015.) |
Ref | Expression |
---|---|
ply1val.1 | β’ π = (Poly1βπ ) |
ply1val.2 | β’ π = (PwSer1βπ ) |
ply1bas.u | β’ π = (Baseβπ) |
Ref | Expression |
---|---|
ply1lss | β’ (π β Ring β π β (LSubSpβπ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2726 | . . 3 β’ (1o mPwSer π ) = (1o mPwSer π ) | |
2 | eqid 2726 | . . 3 β’ (1o mPoly π ) = (1o mPoly π ) | |
3 | ply1val.1 | . . . 4 β’ π = (Poly1βπ ) | |
4 | ply1val.2 | . . . 4 β’ π = (PwSer1βπ ) | |
5 | ply1bas.u | . . . 4 β’ π = (Baseβπ) | |
6 | 3, 4, 5 | ply1bas 22064 | . . 3 β’ π = (Baseβ(1o mPoly π )) |
7 | 1on 8476 | . . . 4 β’ 1o β On | |
8 | 7 | a1i 11 | . . 3 β’ (π β Ring β 1o β On) |
9 | id 22 | . . 3 β’ (π β Ring β π β Ring) | |
10 | 1, 2, 6, 8, 9 | mpllss 21899 | . 2 β’ (π β Ring β π β (LSubSpβ(1o mPwSer π ))) |
11 | eqidd 2727 | . . 3 β’ (π β Ring β (Baseβ(1o mPwSer π )) = (Baseβ(1o mPwSer π ))) | |
12 | 4 | psr1val 22055 | . . . 4 β’ π = ((1o ordPwSer π )ββ ) |
13 | 0ss 4391 | . . . . 5 β’ β β (1o Γ 1o) | |
14 | 13 | a1i 11 | . . . 4 β’ (π β Ring β β β (1o Γ 1o)) |
15 | 1, 12, 14 | opsrbas 21943 | . . 3 β’ (π β Ring β (Baseβ(1o mPwSer π )) = (Baseβπ)) |
16 | ssv 4001 | . . . 4 β’ (Baseβ(1o mPwSer π )) β V | |
17 | 16 | a1i 11 | . . 3 β’ (π β Ring β (Baseβ(1o mPwSer π )) β V) |
18 | 1, 12, 14 | opsrplusg 21945 | . . . 4 β’ (π β Ring β (+gβ(1o mPwSer π )) = (+gβπ)) |
19 | 18 | oveqdr 7432 | . . 3 β’ ((π β Ring β§ (π₯ β V β§ π¦ β V)) β (π₯(+gβ(1o mPwSer π ))π¦) = (π₯(+gβπ)π¦)) |
20 | ovexd 7439 | . . 3 β’ ((π β Ring β§ (π₯ β (Baseβπ ) β§ π¦ β (Baseβ(1o mPwSer π )))) β (π₯( Β·π β(1o mPwSer π ))π¦) β V) | |
21 | 1, 12, 14 | opsrvsca 21949 | . . . 4 β’ (π β Ring β ( Β·π β(1o mPwSer π )) = ( Β·π βπ)) |
22 | 21 | oveqdr 7432 | . . 3 β’ ((π β Ring β§ (π₯ β (Baseβπ ) β§ π¦ β (Baseβ(1o mPwSer π )))) β (π₯( Β·π β(1o mPwSer π ))π¦) = (π₯( Β·π βπ)π¦)) |
23 | 1, 8, 9 | psrsca 21845 | . . . 4 β’ (π β Ring β π = (Scalarβ(1o mPwSer π ))) |
24 | 23 | fveq2d 6888 | . . 3 β’ (π β Ring β (Baseβπ ) = (Baseβ(Scalarβ(1o mPwSer π )))) |
25 | 1, 12, 14, 8, 9 | opsrsca 21951 | . . . 4 β’ (π β Ring β π = (Scalarβπ)) |
26 | 25 | fveq2d 6888 | . . 3 β’ (π β Ring β (Baseβπ ) = (Baseβ(Scalarβπ))) |
27 | 11, 15, 17, 19, 20, 22, 24, 26 | lsspropd 20862 | . 2 β’ (π β Ring β (LSubSpβ(1o mPwSer π )) = (LSubSpβπ)) |
28 | 10, 27 | eleqtrd 2829 | 1 β’ (π β Ring β π β (LSubSpβπ)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 395 = wceq 1533 β wcel 2098 Vcvv 3468 β wss 3943 β c0 4317 Γ cxp 5667 Oncon0 6357 βcfv 6536 (class class class)co 7404 1oc1o 8457 Basecbs 17150 +gcplusg 17203 Scalarcsca 17206 Β·π cvsca 17207 Ringcrg 20135 LSubSpclss 20775 mPwSer cmps 21793 mPoly cmpl 21795 PwSer1cps1 22044 Poly1cpl1 22046 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7721 ax-cnex 11165 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-nel 3041 df-ral 3056 df-rex 3065 df-rmo 3370 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-tp 4628 df-op 4630 df-uni 4903 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6293 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6488 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7360 df-ov 7407 df-oprab 7408 df-mpo 7409 df-of 7666 df-om 7852 df-1st 7971 df-2nd 7972 df-supp 8144 df-frecs 8264 df-wrecs 8295 df-recs 8369 df-rdg 8408 df-1o 8464 df-er 8702 df-map 8821 df-ixp 8891 df-en 8939 df-dom 8940 df-sdom 8941 df-fin 8942 df-fsupp 9361 df-sup 9436 df-pnf 11251 df-mnf 11252 df-xr 11253 df-ltxr 11254 df-le 11255 df-sub 11447 df-neg 11448 df-nn 12214 df-2 12276 df-3 12277 df-4 12278 df-5 12279 df-6 12280 df-7 12281 df-8 12282 df-9 12283 df-n0 12474 df-z 12560 df-dec 12679 df-uz 12824 df-fz 13488 df-struct 17086 df-sets 17103 df-slot 17121 df-ndx 17133 df-base 17151 df-ress 17180 df-plusg 17216 df-mulr 17217 df-sca 17219 df-vsca 17220 df-ip 17221 df-tset 17222 df-ple 17223 df-ds 17225 df-hom 17227 df-cco 17228 df-0g 17393 df-prds 17399 df-pws 17401 df-mgm 18570 df-sgrp 18649 df-mnd 18665 df-grp 18863 df-minusg 18864 df-subg 19047 df-cmn 19699 df-abl 19700 df-mgp 20037 df-rng 20055 df-ur 20084 df-ring 20137 df-lss 20776 df-psr 21798 df-mpl 21800 df-opsr 21802 df-psr1 22049 df-ply1 22051 |
This theorem is referenced by: ply1assa 22068 ply1lmod 22120 |
Copyright terms: Public domain | W3C validator |