Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  ply1lss Structured version   Visualization version   GIF version

Theorem ply1lss 20356
 Description: Univariate polynomials form a linear subspace of the set of univariate power series. (Contributed by Mario Carneiro, 9-Feb-2015.)
Hypotheses
Ref Expression
ply1val.1 𝑃 = (Poly1𝑅)
ply1val.2 𝑆 = (PwSer1𝑅)
ply1bas.u 𝑈 = (Base‘𝑃)
Assertion
Ref Expression
ply1lss (𝑅 ∈ Ring → 𝑈 ∈ (LSubSp‘𝑆))

Proof of Theorem ply1lss
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2819 . . 3 (1o mPwSer 𝑅) = (1o mPwSer 𝑅)
2 eqid 2819 . . 3 (1o mPoly 𝑅) = (1o mPoly 𝑅)
3 ply1val.1 . . . 4 𝑃 = (Poly1𝑅)
4 ply1val.2 . . . 4 𝑆 = (PwSer1𝑅)
5 ply1bas.u . . . 4 𝑈 = (Base‘𝑃)
63, 4, 5ply1bas 20355 . . 3 𝑈 = (Base‘(1o mPoly 𝑅))
7 1on 8101 . . . 4 1o ∈ On
87a1i 11 . . 3 (𝑅 ∈ Ring → 1o ∈ On)
9 id 22 . . 3 (𝑅 ∈ Ring → 𝑅 ∈ Ring)
101, 2, 6, 8, 9mpllss 20210 . 2 (𝑅 ∈ Ring → 𝑈 ∈ (LSubSp‘(1o mPwSer 𝑅)))
11 eqidd 2820 . . 3 (𝑅 ∈ Ring → (Base‘(1o mPwSer 𝑅)) = (Base‘(1o mPwSer 𝑅)))
124psr1val 20346 . . . 4 𝑆 = ((1o ordPwSer 𝑅)‘∅)
13 0ss 4348 . . . . 5 ∅ ⊆ (1o × 1o)
1413a1i 11 . . . 4 (𝑅 ∈ Ring → ∅ ⊆ (1o × 1o))
151, 12, 14opsrbas 20251 . . 3 (𝑅 ∈ Ring → (Base‘(1o mPwSer 𝑅)) = (Base‘𝑆))
16 ssv 3989 . . . 4 (Base‘(1o mPwSer 𝑅)) ⊆ V
1716a1i 11 . . 3 (𝑅 ∈ Ring → (Base‘(1o mPwSer 𝑅)) ⊆ V)
181, 12, 14opsrplusg 20252 . . . 4 (𝑅 ∈ Ring → (+g‘(1o mPwSer 𝑅)) = (+g𝑆))
1918oveqdr 7176 . . 3 ((𝑅 ∈ Ring ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V)) → (𝑥(+g‘(1o mPwSer 𝑅))𝑦) = (𝑥(+g𝑆)𝑦))
20 ovexd 7183 . . 3 ((𝑅 ∈ Ring ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘(1o mPwSer 𝑅)))) → (𝑥( ·𝑠 ‘(1o mPwSer 𝑅))𝑦) ∈ V)
211, 12, 14opsrvsca 20254 . . . 4 (𝑅 ∈ Ring → ( ·𝑠 ‘(1o mPwSer 𝑅)) = ( ·𝑠𝑆))
2221oveqdr 7176 . . 3 ((𝑅 ∈ Ring ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘(1o mPwSer 𝑅)))) → (𝑥( ·𝑠 ‘(1o mPwSer 𝑅))𝑦) = (𝑥( ·𝑠𝑆)𝑦))
231, 8, 9psrsca 20161 . . . 4 (𝑅 ∈ Ring → 𝑅 = (Scalar‘(1o mPwSer 𝑅)))
2423fveq2d 6667 . . 3 (𝑅 ∈ Ring → (Base‘𝑅) = (Base‘(Scalar‘(1o mPwSer 𝑅))))
251, 12, 14, 8, 9opsrsca 20255 . . . 4 (𝑅 ∈ Ring → 𝑅 = (Scalar‘𝑆))
2625fveq2d 6667 . . 3 (𝑅 ∈ Ring → (Base‘𝑅) = (Base‘(Scalar‘𝑆)))
2711, 15, 17, 19, 20, 22, 24, 26lsspropd 19781 . 2 (𝑅 ∈ Ring → (LSubSp‘(1o mPwSer 𝑅)) = (LSubSp‘𝑆))
2810, 27eleqtrd 2913 1 (𝑅 ∈ Ring → 𝑈 ∈ (LSubSp‘𝑆))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 398   = wceq 1530   ∈ wcel 2107  Vcvv 3493   ⊆ wss 3934  ∅c0 4289   × cxp 5546  Oncon0 6184  ‘cfv 6348  (class class class)co 7148  1oc1o 8087  Basecbs 16475  +gcplusg 16557  Scalarcsca 16560   ·𝑠 cvsca 16561  Ringcrg 19289  LSubSpclss 19695   mPwSer cmps 20123   mPoly cmpl 20125  PwSer1cps1 20335  Poly1cpl1 20337 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2791  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606 This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-nel 3122  df-ral 3141  df-rex 3142  df-reu 3143  df-rmo 3144  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-pss 3952  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-tp 4564  df-op 4566  df-uni 4831  df-int 4868  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-of 7401  df-om 7573  df-1st 7681  df-2nd 7682  df-supp 7823  df-wrecs 7939  df-recs 8000  df-rdg 8038  df-1o 8094  df-oadd 8098  df-er 8281  df-map 8400  df-en 8502  df-dom 8503  df-sdom 8504  df-fin 8505  df-fsupp 8826  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-nn 11631  df-2 11692  df-3 11693  df-4 11694  df-5 11695  df-6 11696  df-7 11697  df-8 11698  df-9 11699  df-n0 11890  df-z 11974  df-dec 12091  df-uz 12236  df-fz 12885  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-sca 16573  df-vsca 16574  df-tset 16576  df-ple 16577  df-0g 16707  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-grp 18098  df-minusg 18099  df-subg 18268  df-mgp 19232  df-ring 19291  df-lss 19696  df-psr 20128  df-mpl 20130  df-opsr 20132  df-psr1 20340  df-ply1 20342 This theorem is referenced by:  ply1assa  20359  ply1lmod  20412
 Copyright terms: Public domain W3C validator