MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ply1lss Structured version   Visualization version   GIF version

Theorem ply1lss 22079
Description: Univariate polynomials form a linear subspace of the set of univariate power series. (Contributed by Mario Carneiro, 9-Feb-2015.)
Hypotheses
Ref Expression
ply1val.1 𝑃 = (Poly1𝑅)
ply1lss.2 𝑆 = (PwSer1𝑅)
ply1lss.u 𝑈 = (Base‘𝑃)
Assertion
Ref Expression
ply1lss (𝑅 ∈ Ring → 𝑈 ∈ (LSubSp‘𝑆))

Proof of Theorem ply1lss
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2729 . . 3 (1o mPwSer 𝑅) = (1o mPwSer 𝑅)
2 eqid 2729 . . 3 (1o mPoly 𝑅) = (1o mPoly 𝑅)
3 ply1val.1 . . . 4 𝑃 = (Poly1𝑅)
4 ply1lss.u . . . 4 𝑈 = (Base‘𝑃)
53, 4ply1bas 22077 . . 3 𝑈 = (Base‘(1o mPoly 𝑅))
6 1on 8400 . . . 4 1o ∈ On
76a1i 11 . . 3 (𝑅 ∈ Ring → 1o ∈ On)
8 id 22 . . 3 (𝑅 ∈ Ring → 𝑅 ∈ Ring)
91, 2, 5, 7, 8mpllss 21910 . 2 (𝑅 ∈ Ring → 𝑈 ∈ (LSubSp‘(1o mPwSer 𝑅)))
10 eqidd 2730 . . 3 (𝑅 ∈ Ring → (Base‘(1o mPwSer 𝑅)) = (Base‘(1o mPwSer 𝑅)))
11 ply1lss.2 . . . . 5 𝑆 = (PwSer1𝑅)
1211psr1val 22068 . . . 4 𝑆 = ((1o ordPwSer 𝑅)‘∅)
13 0ss 4351 . . . . 5 ∅ ⊆ (1o × 1o)
1413a1i 11 . . . 4 (𝑅 ∈ Ring → ∅ ⊆ (1o × 1o))
151, 12, 14opsrbas 21955 . . 3 (𝑅 ∈ Ring → (Base‘(1o mPwSer 𝑅)) = (Base‘𝑆))
16 ssv 3960 . . . 4 (Base‘(1o mPwSer 𝑅)) ⊆ V
1716a1i 11 . . 3 (𝑅 ∈ Ring → (Base‘(1o mPwSer 𝑅)) ⊆ V)
181, 12, 14opsrplusg 21956 . . . 4 (𝑅 ∈ Ring → (+g‘(1o mPwSer 𝑅)) = (+g𝑆))
1918oveqdr 7377 . . 3 ((𝑅 ∈ Ring ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V)) → (𝑥(+g‘(1o mPwSer 𝑅))𝑦) = (𝑥(+g𝑆)𝑦))
20 ovexd 7384 . . 3 ((𝑅 ∈ Ring ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘(1o mPwSer 𝑅)))) → (𝑥( ·𝑠 ‘(1o mPwSer 𝑅))𝑦) ∈ V)
211, 12, 14opsrvsca 21958 . . . 4 (𝑅 ∈ Ring → ( ·𝑠 ‘(1o mPwSer 𝑅)) = ( ·𝑠𝑆))
2221oveqdr 7377 . . 3 ((𝑅 ∈ Ring ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘(1o mPwSer 𝑅)))) → (𝑥( ·𝑠 ‘(1o mPwSer 𝑅))𝑦) = (𝑥( ·𝑠𝑆)𝑦))
231, 7, 8psrsca 21854 . . . 4 (𝑅 ∈ Ring → 𝑅 = (Scalar‘(1o mPwSer 𝑅)))
2423fveq2d 6826 . . 3 (𝑅 ∈ Ring → (Base‘𝑅) = (Base‘(Scalar‘(1o mPwSer 𝑅))))
251, 12, 14, 7, 8opsrsca 21959 . . . 4 (𝑅 ∈ Ring → 𝑅 = (Scalar‘𝑆))
2625fveq2d 6826 . . 3 (𝑅 ∈ Ring → (Base‘𝑅) = (Base‘(Scalar‘𝑆)))
2710, 15, 17, 19, 20, 22, 24, 26lsspropd 20921 . 2 (𝑅 ∈ Ring → (LSubSp‘(1o mPwSer 𝑅)) = (LSubSp‘𝑆))
289, 27eleqtrd 2830 1 (𝑅 ∈ Ring → 𝑈 ∈ (LSubSp‘𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3436  wss 3903  c0 4284   × cxp 5617  Oncon0 6307  cfv 6482  (class class class)co 7349  1oc1o 8381  Basecbs 17120  +gcplusg 17161  Scalarcsca 17164   ·𝑠 cvsca 17165  Ringcrg 20118  LSubSpclss 20834   mPwSer cmps 21811   mPoly cmpl 21813  PwSer1cps1 22057  Poly1cpl1 22059
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-of 7613  df-om 7800  df-1st 7924  df-2nd 7925  df-supp 8094  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-er 8625  df-map 8755  df-ixp 8825  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-fsupp 9252  df-sup 9332  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-nn 12129  df-2 12191  df-3 12192  df-4 12193  df-5 12194  df-6 12195  df-7 12196  df-8 12197  df-9 12198  df-n0 12385  df-z 12472  df-dec 12592  df-uz 12736  df-fz 13411  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-hom 17185  df-cco 17186  df-0g 17345  df-prds 17351  df-pws 17353  df-mgm 18514  df-sgrp 18593  df-mnd 18609  df-grp 18815  df-minusg 18816  df-subg 19002  df-cmn 19661  df-abl 19662  df-mgp 20026  df-rng 20038  df-ur 20067  df-ring 20120  df-lss 20835  df-psr 21816  df-mpl 21818  df-opsr 21820  df-psr1 22062  df-ply1 22064
This theorem is referenced by:  ply1assa  22082  ply1lmod  22134
  Copyright terms: Public domain W3C validator