![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ply1lss | Structured version Visualization version GIF version |
Description: Univariate polynomials form a linear subspace of the set of univariate power series. (Contributed by Mario Carneiro, 9-Feb-2015.) |
Ref | Expression |
---|---|
ply1val.1 | β’ π = (Poly1βπ ) |
ply1val.2 | β’ π = (PwSer1βπ ) |
ply1bas.u | β’ π = (Baseβπ) |
Ref | Expression |
---|---|
ply1lss | β’ (π β Ring β π β (LSubSpβπ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2732 | . . 3 β’ (1o mPwSer π ) = (1o mPwSer π ) | |
2 | eqid 2732 | . . 3 β’ (1o mPoly π ) = (1o mPoly π ) | |
3 | ply1val.1 | . . . 4 β’ π = (Poly1βπ ) | |
4 | ply1val.2 | . . . 4 β’ π = (PwSer1βπ ) | |
5 | ply1bas.u | . . . 4 β’ π = (Baseβπ) | |
6 | 3, 4, 5 | ply1bas 21718 | . . 3 β’ π = (Baseβ(1o mPoly π )) |
7 | 1on 8477 | . . . 4 β’ 1o β On | |
8 | 7 | a1i 11 | . . 3 β’ (π β Ring β 1o β On) |
9 | id 22 | . . 3 β’ (π β Ring β π β Ring) | |
10 | 1, 2, 6, 8, 9 | mpllss 21561 | . 2 β’ (π β Ring β π β (LSubSpβ(1o mPwSer π ))) |
11 | eqidd 2733 | . . 3 β’ (π β Ring β (Baseβ(1o mPwSer π )) = (Baseβ(1o mPwSer π ))) | |
12 | 4 | psr1val 21709 | . . . 4 β’ π = ((1o ordPwSer π )ββ ) |
13 | 0ss 4396 | . . . . 5 β’ β β (1o Γ 1o) | |
14 | 13 | a1i 11 | . . . 4 β’ (π β Ring β β β (1o Γ 1o)) |
15 | 1, 12, 14 | opsrbas 21605 | . . 3 β’ (π β Ring β (Baseβ(1o mPwSer π )) = (Baseβπ)) |
16 | ssv 4006 | . . . 4 β’ (Baseβ(1o mPwSer π )) β V | |
17 | 16 | a1i 11 | . . 3 β’ (π β Ring β (Baseβ(1o mPwSer π )) β V) |
18 | 1, 12, 14 | opsrplusg 21607 | . . . 4 β’ (π β Ring β (+gβ(1o mPwSer π )) = (+gβπ)) |
19 | 18 | oveqdr 7436 | . . 3 β’ ((π β Ring β§ (π₯ β V β§ π¦ β V)) β (π₯(+gβ(1o mPwSer π ))π¦) = (π₯(+gβπ)π¦)) |
20 | ovexd 7443 | . . 3 β’ ((π β Ring β§ (π₯ β (Baseβπ ) β§ π¦ β (Baseβ(1o mPwSer π )))) β (π₯( Β·π β(1o mPwSer π ))π¦) β V) | |
21 | 1, 12, 14 | opsrvsca 21611 | . . . 4 β’ (π β Ring β ( Β·π β(1o mPwSer π )) = ( Β·π βπ)) |
22 | 21 | oveqdr 7436 | . . 3 β’ ((π β Ring β§ (π₯ β (Baseβπ ) β§ π¦ β (Baseβ(1o mPwSer π )))) β (π₯( Β·π β(1o mPwSer π ))π¦) = (π₯( Β·π βπ)π¦)) |
23 | 1, 8, 9 | psrsca 21507 | . . . 4 β’ (π β Ring β π = (Scalarβ(1o mPwSer π ))) |
24 | 23 | fveq2d 6895 | . . 3 β’ (π β Ring β (Baseβπ ) = (Baseβ(Scalarβ(1o mPwSer π )))) |
25 | 1, 12, 14, 8, 9 | opsrsca 21613 | . . . 4 β’ (π β Ring β π = (Scalarβπ)) |
26 | 25 | fveq2d 6895 | . . 3 β’ (π β Ring β (Baseβπ ) = (Baseβ(Scalarβπ))) |
27 | 11, 15, 17, 19, 20, 22, 24, 26 | lsspropd 20627 | . 2 β’ (π β Ring β (LSubSpβ(1o mPwSer π )) = (LSubSpβπ)) |
28 | 10, 27 | eleqtrd 2835 | 1 β’ (π β Ring β π β (LSubSpβπ)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 396 = wceq 1541 β wcel 2106 Vcvv 3474 β wss 3948 β c0 4322 Γ cxp 5674 Oncon0 6364 βcfv 6543 (class class class)co 7408 1oc1o 8458 Basecbs 17143 +gcplusg 17196 Scalarcsca 17199 Β·π cvsca 17200 Ringcrg 20055 LSubSpclss 20541 mPwSer cmps 21456 mPoly cmpl 21458 PwSer1cps1 21698 Poly1cpl1 21700 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 ax-cnex 11165 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-tp 4633 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7364 df-ov 7411 df-oprab 7412 df-mpo 7413 df-of 7669 df-om 7855 df-1st 7974 df-2nd 7975 df-supp 8146 df-frecs 8265 df-wrecs 8296 df-recs 8370 df-rdg 8409 df-1o 8465 df-er 8702 df-map 8821 df-ixp 8891 df-en 8939 df-dom 8940 df-sdom 8941 df-fin 8942 df-fsupp 9361 df-sup 9436 df-pnf 11249 df-mnf 11250 df-xr 11251 df-ltxr 11252 df-le 11253 df-sub 11445 df-neg 11446 df-nn 12212 df-2 12274 df-3 12275 df-4 12276 df-5 12277 df-6 12278 df-7 12279 df-8 12280 df-9 12281 df-n0 12472 df-z 12558 df-dec 12677 df-uz 12822 df-fz 13484 df-struct 17079 df-sets 17096 df-slot 17114 df-ndx 17126 df-base 17144 df-ress 17173 df-plusg 17209 df-mulr 17210 df-sca 17212 df-vsca 17213 df-ip 17214 df-tset 17215 df-ple 17216 df-ds 17218 df-hom 17220 df-cco 17221 df-0g 17386 df-prds 17392 df-pws 17394 df-mgm 18560 df-sgrp 18609 df-mnd 18625 df-grp 18821 df-minusg 18822 df-subg 19002 df-mgp 19987 df-ring 20057 df-lss 20542 df-psr 21461 df-mpl 21463 df-opsr 21465 df-psr1 21703 df-ply1 21705 |
This theorem is referenced by: ply1assa 21722 ply1lmod 21773 |
Copyright terms: Public domain | W3C validator |