MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psr1baslem Structured version   Visualization version   GIF version

Theorem psr1baslem 22098
Description: The set of finite bags on 1o is just the set of all functions from 1o to 0. (Contributed by Mario Carneiro, 9-Feb-2015.)
Assertion
Ref Expression
psr1baslem (ℕ0m 1o) = {𝑓 ∈ (ℕ0m 1o) ∣ (𝑓 “ ℕ) ∈ Fin}

Proof of Theorem psr1baslem
StepHypRef Expression
1 rabid2 3429 . 2 ((ℕ0m 1o) = {𝑓 ∈ (ℕ0m 1o) ∣ (𝑓 “ ℕ) ∈ Fin} ↔ ∀𝑓 ∈ (ℕ0m 1o)(𝑓 “ ℕ) ∈ Fin)
2 df1o2 8398 . . . 4 1o = {∅}
3 snfi 8972 . . . 4 {∅} ∈ Fin
42, 3eqeltri 2829 . . 3 1o ∈ Fin
5 cnvimass 6035 . . . 4 (𝑓 “ ℕ) ⊆ dom 𝑓
6 elmapi 8779 . . . 4 (𝑓 ∈ (ℕ0m 1o) → 𝑓:1o⟶ℕ0)
75, 6fssdm 6675 . . 3 (𝑓 ∈ (ℕ0m 1o) → (𝑓 “ ℕ) ⊆ 1o)
8 ssfi 9089 . . 3 ((1o ∈ Fin ∧ (𝑓 “ ℕ) ⊆ 1o) → (𝑓 “ ℕ) ∈ Fin)
94, 7, 8sylancr 587 . 2 (𝑓 ∈ (ℕ0m 1o) → (𝑓 “ ℕ) ∈ Fin)
101, 9mprgbir 3055 1 (ℕ0m 1o) = {𝑓 ∈ (ℕ0m 1o) ∣ (𝑓 “ ℕ) ∈ Fin}
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  wcel 2113  {crab 3396  wss 3898  c0 4282  {csn 4575  ccnv 5618  cima 5622  (class class class)co 7352  1oc1o 8384  m cmap 8756  Fincfn 8875  cn 12132  0cn0 12388
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-1st 7927  df-2nd 7928  df-1o 8391  df-map 8758  df-en 8876  df-fin 8879
This theorem is referenced by:  psr1bas  22104  ply1basf  22116  ply1plusgfvi  22155  coe1z  22178  coe1mul2  22184  coe1tm  22188  ply1coe  22214  rhmply1vsca  22304  deg1ldg  26025  deg1leb  26028  deg1val  26029
  Copyright terms: Public domain W3C validator