MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psr1baslem Structured version   Visualization version   GIF version

Theorem psr1baslem 22120
Description: The set of finite bags on 1o is just the set of all functions from 1o to 0. (Contributed by Mario Carneiro, 9-Feb-2015.)
Assertion
Ref Expression
psr1baslem (ℕ0m 1o) = {𝑓 ∈ (ℕ0m 1o) ∣ (𝑓 “ ℕ) ∈ Fin}

Proof of Theorem psr1baslem
StepHypRef Expression
1 rabid2 3449 . 2 ((ℕ0m 1o) = {𝑓 ∈ (ℕ0m 1o) ∣ (𝑓 “ ℕ) ∈ Fin} ↔ ∀𝑓 ∈ (ℕ0m 1o)(𝑓 “ ℕ) ∈ Fin)
2 df1o2 8487 . . . 4 1o = {∅}
3 snfi 9057 . . . 4 {∅} ∈ Fin
42, 3eqeltri 2830 . . 3 1o ∈ Fin
5 cnvimass 6069 . . . 4 (𝑓 “ ℕ) ⊆ dom 𝑓
6 elmapi 8863 . . . 4 (𝑓 ∈ (ℕ0m 1o) → 𝑓:1o⟶ℕ0)
75, 6fssdm 6725 . . 3 (𝑓 ∈ (ℕ0m 1o) → (𝑓 “ ℕ) ⊆ 1o)
8 ssfi 9187 . . 3 ((1o ∈ Fin ∧ (𝑓 “ ℕ) ⊆ 1o) → (𝑓 “ ℕ) ∈ Fin)
94, 7, 8sylancr 587 . 2 (𝑓 ∈ (ℕ0m 1o) → (𝑓 “ ℕ) ∈ Fin)
101, 9mprgbir 3058 1 (ℕ0m 1o) = {𝑓 ∈ (ℕ0m 1o) ∣ (𝑓 “ ℕ) ∈ Fin}
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2108  {crab 3415  wss 3926  c0 4308  {csn 4601  ccnv 5653  cima 5657  (class class class)co 7405  1oc1o 8473  m cmap 8840  Fincfn 8959  cn 12240  0cn0 12501
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-1o 8480  df-map 8842  df-en 8960  df-fin 8963
This theorem is referenced by:  psr1bas  22126  ply1basf  22138  ply1plusgfvi  22177  coe1z  22200  coe1mul2  22206  coe1tm  22210  ply1coe  22236  rhmply1vsca  22326  deg1ldg  26049  deg1leb  26052  deg1val  26053
  Copyright terms: Public domain W3C validator