![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > psr1baslem | Structured version Visualization version GIF version |
Description: The set of finite bags on 1o is just the set of all functions from 1o to β0. (Contributed by Mario Carneiro, 9-Feb-2015.) |
Ref | Expression |
---|---|
psr1baslem | β’ (β0 βm 1o) = {π β (β0 βm 1o) β£ (β‘π β β) β Fin} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rabid2 3458 | . 2 β’ ((β0 βm 1o) = {π β (β0 βm 1o) β£ (β‘π β β) β Fin} β βπ β (β0 βm 1o)(β‘π β β) β Fin) | |
2 | df1o2 8474 | . . . 4 β’ 1o = {β } | |
3 | snfi 9046 | . . . 4 β’ {β } β Fin | |
4 | 2, 3 | eqeltri 2823 | . . 3 β’ 1o β Fin |
5 | cnvimass 6074 | . . . 4 β’ (β‘π β β) β dom π | |
6 | elmapi 8845 | . . . 4 β’ (π β (β0 βm 1o) β π:1oβΆβ0) | |
7 | 5, 6 | fssdm 6731 | . . 3 β’ (π β (β0 βm 1o) β (β‘π β β) β 1o) |
8 | ssfi 9175 | . . 3 β’ ((1o β Fin β§ (β‘π β β) β 1o) β (β‘π β β) β Fin) | |
9 | 4, 7, 8 | sylancr 586 | . 2 β’ (π β (β0 βm 1o) β (β‘π β β) β Fin) |
10 | 1, 9 | mprgbir 3062 | 1 β’ (β0 βm 1o) = {π β (β0 βm 1o) β£ (β‘π β β) β Fin} |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1533 β wcel 2098 {crab 3426 β wss 3943 β c0 4317 {csn 4623 β‘ccnv 5668 β cima 5672 (class class class)co 7405 1oc1o 8460 βm cmap 8822 Fincfn 8941 βcn 12216 β0cn0 12476 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7722 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-ral 3056 df-rex 3065 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-ord 6361 df-on 6362 df-lim 6363 df-suc 6364 df-iota 6489 df-fun 6539 df-fn 6540 df-f 6541 df-f1 6542 df-fo 6543 df-f1o 6544 df-fv 6545 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7853 df-1st 7974 df-2nd 7975 df-1o 8467 df-map 8824 df-en 8942 df-fin 8945 |
This theorem is referenced by: psr1bas 22065 ply1basf 22076 ply1plusgfvi 22115 coe1z 22137 coe1mul2 22143 coe1tm 22147 ply1coe 22172 deg1ldg 25983 deg1leb 25986 deg1val 25987 |
Copyright terms: Public domain | W3C validator |