![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > psr1baslem | Structured version Visualization version GIF version |
Description: The set of finite bags on 1𝑜 is just the set of all functions from 1𝑜 to ℕ0. (Contributed by Mario Carneiro, 9-Feb-2015.) |
Ref | Expression |
---|---|
psr1baslem | ⊢ (ℕ0 ↑𝑚 1𝑜) = {𝑓 ∈ (ℕ0 ↑𝑚 1𝑜) ∣ (◡𝑓 “ ℕ) ∈ Fin} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rabid2 3299 | . 2 ⊢ ((ℕ0 ↑𝑚 1𝑜) = {𝑓 ∈ (ℕ0 ↑𝑚 1𝑜) ∣ (◡𝑓 “ ℕ) ∈ Fin} ↔ ∀𝑓 ∈ (ℕ0 ↑𝑚 1𝑜)(◡𝑓 “ ℕ) ∈ Fin) | |
2 | df1o2 7811 | . . . 4 ⊢ 1𝑜 = {∅} | |
3 | snfi 8279 | . . . 4 ⊢ {∅} ∈ Fin | |
4 | 2, 3 | eqeltri 2873 | . . 3 ⊢ 1𝑜 ∈ Fin |
5 | cnvimass 5701 | . . . 4 ⊢ (◡𝑓 “ ℕ) ⊆ dom 𝑓 | |
6 | elmapi 8116 | . . . 4 ⊢ (𝑓 ∈ (ℕ0 ↑𝑚 1𝑜) → 𝑓:1𝑜⟶ℕ0) | |
7 | 5, 6 | fssdm 6271 | . . 3 ⊢ (𝑓 ∈ (ℕ0 ↑𝑚 1𝑜) → (◡𝑓 “ ℕ) ⊆ 1𝑜) |
8 | ssfi 8421 | . . 3 ⊢ ((1𝑜 ∈ Fin ∧ (◡𝑓 “ ℕ) ⊆ 1𝑜) → (◡𝑓 “ ℕ) ∈ Fin) | |
9 | 4, 7, 8 | sylancr 582 | . 2 ⊢ (𝑓 ∈ (ℕ0 ↑𝑚 1𝑜) → (◡𝑓 “ ℕ) ∈ Fin) |
10 | 1, 9 | mprgbir 3107 | 1 ⊢ (ℕ0 ↑𝑚 1𝑜) = {𝑓 ∈ (ℕ0 ↑𝑚 1𝑜) ∣ (◡𝑓 “ ℕ) ∈ Fin} |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1653 ∈ wcel 2157 {crab 3092 ⊆ wss 3768 ∅c0 4114 {csn 4367 ◡ccnv 5310 “ cima 5314 (class class class)co 6877 1𝑜c1o 7791 ↑𝑚 cmap 8094 Fincfn 8194 ℕcn 11311 ℕ0cn0 11577 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2776 ax-sep 4974 ax-nul 4982 ax-pow 5034 ax-pr 5096 ax-un 7182 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3or 1109 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2785 df-cleq 2791 df-clel 2794 df-nfc 2929 df-ne 2971 df-ral 3093 df-rex 3094 df-rab 3097 df-v 3386 df-sbc 3633 df-csb 3728 df-dif 3771 df-un 3773 df-in 3775 df-ss 3782 df-pss 3784 df-nul 4115 df-if 4277 df-pw 4350 df-sn 4368 df-pr 4370 df-tp 4372 df-op 4374 df-uni 4628 df-iun 4711 df-br 4843 df-opab 4905 df-mpt 4922 df-tr 4945 df-id 5219 df-eprel 5224 df-po 5232 df-so 5233 df-fr 5270 df-we 5272 df-xp 5317 df-rel 5318 df-cnv 5319 df-co 5320 df-dm 5321 df-rn 5322 df-res 5323 df-ima 5324 df-ord 5943 df-on 5944 df-lim 5945 df-suc 5946 df-iota 6063 df-fun 6102 df-fn 6103 df-f 6104 df-f1 6105 df-fo 6106 df-f1o 6107 df-fv 6108 df-ov 6880 df-oprab 6881 df-mpt2 6882 df-om 7299 df-1st 7400 df-2nd 7401 df-1o 7798 df-er 7981 df-map 8096 df-en 8195 df-fin 8198 |
This theorem is referenced by: psr1bas 19880 ply1basf 19891 ply1plusgfvi 19931 coe1z 19952 coe1mul2 19958 coe1tm 19962 ply1coe 19985 deg1ldg 24190 deg1leb 24193 deg1val 24194 |
Copyright terms: Public domain | W3C validator |