MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psr1baslem Structured version   Visualization version   GIF version

Theorem psr1baslem 22202
Description: The set of finite bags on 1o is just the set of all functions from 1o to 0. (Contributed by Mario Carneiro, 9-Feb-2015.)
Assertion
Ref Expression
psr1baslem (ℕ0m 1o) = {𝑓 ∈ (ℕ0m 1o) ∣ (𝑓 “ ℕ) ∈ Fin}

Proof of Theorem psr1baslem
StepHypRef Expression
1 rabid2 3468 . 2 ((ℕ0m 1o) = {𝑓 ∈ (ℕ0m 1o) ∣ (𝑓 “ ℕ) ∈ Fin} ↔ ∀𝑓 ∈ (ℕ0m 1o)(𝑓 “ ℕ) ∈ Fin)
2 df1o2 8512 . . . 4 1o = {∅}
3 snfi 9082 . . . 4 {∅} ∈ Fin
42, 3eqeltri 2835 . . 3 1o ∈ Fin
5 cnvimass 6102 . . . 4 (𝑓 “ ℕ) ⊆ dom 𝑓
6 elmapi 8888 . . . 4 (𝑓 ∈ (ℕ0m 1o) → 𝑓:1o⟶ℕ0)
75, 6fssdm 6756 . . 3 (𝑓 ∈ (ℕ0m 1o) → (𝑓 “ ℕ) ⊆ 1o)
8 ssfi 9212 . . 3 ((1o ∈ Fin ∧ (𝑓 “ ℕ) ⊆ 1o) → (𝑓 “ ℕ) ∈ Fin)
94, 7, 8sylancr 587 . 2 (𝑓 ∈ (ℕ0m 1o) → (𝑓 “ ℕ) ∈ Fin)
101, 9mprgbir 3066 1 (ℕ0m 1o) = {𝑓 ∈ (ℕ0m 1o) ∣ (𝑓 “ ℕ) ∈ Fin}
Colors of variables: wff setvar class
Syntax hints:   = wceq 1537  wcel 2106  {crab 3433  wss 3963  c0 4339  {csn 4631  ccnv 5688  cima 5692  (class class class)co 7431  1oc1o 8498  m cmap 8865  Fincfn 8984  cn 12264  0cn0 12524
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-1o 8505  df-map 8867  df-en 8985  df-fin 8988
This theorem is referenced by:  psr1bas  22208  ply1basf  22220  ply1plusgfvi  22259  coe1z  22282  coe1mul2  22288  coe1tm  22292  ply1coe  22318  rhmply1vsca  22408  deg1ldg  26146  deg1leb  26149  deg1val  26150
  Copyright terms: Public domain W3C validator