| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > psr1baslem | Structured version Visualization version GIF version | ||
| Description: The set of finite bags on 1o is just the set of all functions from 1o to ℕ0. (Contributed by Mario Carneiro, 9-Feb-2015.) |
| Ref | Expression |
|---|---|
| psr1baslem | ⊢ (ℕ0 ↑m 1o) = {𝑓 ∈ (ℕ0 ↑m 1o) ∣ (◡𝑓 “ ℕ) ∈ Fin} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rabid2 3429 | . 2 ⊢ ((ℕ0 ↑m 1o) = {𝑓 ∈ (ℕ0 ↑m 1o) ∣ (◡𝑓 “ ℕ) ∈ Fin} ↔ ∀𝑓 ∈ (ℕ0 ↑m 1o)(◡𝑓 “ ℕ) ∈ Fin) | |
| 2 | df1o2 8398 | . . . 4 ⊢ 1o = {∅} | |
| 3 | snfi 8972 | . . . 4 ⊢ {∅} ∈ Fin | |
| 4 | 2, 3 | eqeltri 2829 | . . 3 ⊢ 1o ∈ Fin |
| 5 | cnvimass 6035 | . . . 4 ⊢ (◡𝑓 “ ℕ) ⊆ dom 𝑓 | |
| 6 | elmapi 8779 | . . . 4 ⊢ (𝑓 ∈ (ℕ0 ↑m 1o) → 𝑓:1o⟶ℕ0) | |
| 7 | 5, 6 | fssdm 6675 | . . 3 ⊢ (𝑓 ∈ (ℕ0 ↑m 1o) → (◡𝑓 “ ℕ) ⊆ 1o) |
| 8 | ssfi 9089 | . . 3 ⊢ ((1o ∈ Fin ∧ (◡𝑓 “ ℕ) ⊆ 1o) → (◡𝑓 “ ℕ) ∈ Fin) | |
| 9 | 4, 7, 8 | sylancr 587 | . 2 ⊢ (𝑓 ∈ (ℕ0 ↑m 1o) → (◡𝑓 “ ℕ) ∈ Fin) |
| 10 | 1, 9 | mprgbir 3055 | 1 ⊢ (ℕ0 ↑m 1o) = {𝑓 ∈ (ℕ0 ↑m 1o) ∣ (◡𝑓 “ ℕ) ∈ Fin} |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∈ wcel 2113 {crab 3396 ⊆ wss 3898 ∅c0 4282 {csn 4575 ◡ccnv 5618 “ cima 5622 (class class class)co 7352 1oc1o 8384 ↑m cmap 8756 Fincfn 8875 ℕcn 12132 ℕ0cn0 12388 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-1st 7927 df-2nd 7928 df-1o 8391 df-map 8758 df-en 8876 df-fin 8879 |
| This theorem is referenced by: psr1bas 22104 ply1basf 22116 ply1plusgfvi 22155 coe1z 22178 coe1mul2 22184 coe1tm 22188 ply1coe 22214 rhmply1vsca 22304 deg1ldg 26025 deg1leb 26028 deg1val 26029 |
| Copyright terms: Public domain | W3C validator |