![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > psr1baslem | Structured version Visualization version GIF version |
Description: The set of finite bags on 1o is just the set of all functions from 1o to β0. (Contributed by Mario Carneiro, 9-Feb-2015.) |
Ref | Expression |
---|---|
psr1baslem | β’ (β0 βm 1o) = {π β (β0 βm 1o) β£ (β‘π β β) β Fin} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rabid2 3453 | . 2 β’ ((β0 βm 1o) = {π β (β0 βm 1o) β£ (β‘π β β) β Fin} β βπ β (β0 βm 1o)(β‘π β β) β Fin) | |
2 | df1o2 8492 | . . . 4 β’ 1o = {β } | |
3 | snfi 9067 | . . . 4 β’ {β } β Fin | |
4 | 2, 3 | eqeltri 2821 | . . 3 β’ 1o β Fin |
5 | cnvimass 6080 | . . . 4 β’ (β‘π β β) β dom π | |
6 | elmapi 8866 | . . . 4 β’ (π β (β0 βm 1o) β π:1oβΆβ0) | |
7 | 5, 6 | fssdm 6737 | . . 3 β’ (π β (β0 βm 1o) β (β‘π β β) β 1o) |
8 | ssfi 9196 | . . 3 β’ ((1o β Fin β§ (β‘π β β) β 1o) β (β‘π β β) β Fin) | |
9 | 4, 7, 8 | sylancr 585 | . 2 β’ (π β (β0 βm 1o) β (β‘π β β) β Fin) |
10 | 1, 9 | mprgbir 3058 | 1 β’ (β0 βm 1o) = {π β (β0 βm 1o) β£ (β‘π β β) β Fin} |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1533 β wcel 2098 {crab 3419 β wss 3939 β c0 4318 {csn 4624 β‘ccnv 5671 β cima 5675 (class class class)co 7416 1oc1o 8478 βm cmap 8843 Fincfn 8962 βcn 12242 β0cn0 12502 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5294 ax-nul 5301 ax-pow 5359 ax-pr 5423 ax-un 7738 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-ral 3052 df-rex 3061 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3769 df-csb 3885 df-dif 3942 df-un 3944 df-in 3946 df-ss 3956 df-pss 3959 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5227 df-tr 5261 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7419 df-oprab 7420 df-mpo 7421 df-om 7869 df-1st 7991 df-2nd 7992 df-1o 8485 df-map 8845 df-en 8963 df-fin 8966 |
This theorem is referenced by: psr1bas 22118 ply1basf 22130 ply1plusgfvi 22169 coe1z 22191 coe1mul2 22197 coe1tm 22201 ply1coe 22226 deg1ldg 26046 deg1leb 26049 deg1val 26050 rhmply1vsca 41850 |
Copyright terms: Public domain | W3C validator |