| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > psr1baslem | Structured version Visualization version GIF version | ||
| Description: The set of finite bags on 1o is just the set of all functions from 1o to ℕ0. (Contributed by Mario Carneiro, 9-Feb-2015.) |
| Ref | Expression |
|---|---|
| psr1baslem | ⊢ (ℕ0 ↑m 1o) = {𝑓 ∈ (ℕ0 ↑m 1o) ∣ (◡𝑓 “ ℕ) ∈ Fin} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rabid2 3439 | . 2 ⊢ ((ℕ0 ↑m 1o) = {𝑓 ∈ (ℕ0 ↑m 1o) ∣ (◡𝑓 “ ℕ) ∈ Fin} ↔ ∀𝑓 ∈ (ℕ0 ↑m 1o)(◡𝑓 “ ℕ) ∈ Fin) | |
| 2 | df1o2 8441 | . . . 4 ⊢ 1o = {∅} | |
| 3 | snfi 9014 | . . . 4 ⊢ {∅} ∈ Fin | |
| 4 | 2, 3 | eqeltri 2824 | . . 3 ⊢ 1o ∈ Fin |
| 5 | cnvimass 6053 | . . . 4 ⊢ (◡𝑓 “ ℕ) ⊆ dom 𝑓 | |
| 6 | elmapi 8822 | . . . 4 ⊢ (𝑓 ∈ (ℕ0 ↑m 1o) → 𝑓:1o⟶ℕ0) | |
| 7 | 5, 6 | fssdm 6707 | . . 3 ⊢ (𝑓 ∈ (ℕ0 ↑m 1o) → (◡𝑓 “ ℕ) ⊆ 1o) |
| 8 | ssfi 9137 | . . 3 ⊢ ((1o ∈ Fin ∧ (◡𝑓 “ ℕ) ⊆ 1o) → (◡𝑓 “ ℕ) ∈ Fin) | |
| 9 | 4, 7, 8 | sylancr 587 | . 2 ⊢ (𝑓 ∈ (ℕ0 ↑m 1o) → (◡𝑓 “ ℕ) ∈ Fin) |
| 10 | 1, 9 | mprgbir 3051 | 1 ⊢ (ℕ0 ↑m 1o) = {𝑓 ∈ (ℕ0 ↑m 1o) ∣ (◡𝑓 “ ℕ) ∈ Fin} |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 {crab 3405 ⊆ wss 3914 ∅c0 4296 {csn 4589 ◡ccnv 5637 “ cima 5641 (class class class)co 7387 1oc1o 8427 ↑m cmap 8799 Fincfn 8918 ℕcn 12186 ℕ0cn0 12442 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-1o 8434 df-map 8801 df-en 8919 df-fin 8922 |
| This theorem is referenced by: psr1bas 22075 ply1basf 22087 ply1plusgfvi 22126 coe1z 22149 coe1mul2 22155 coe1tm 22159 ply1coe 22185 rhmply1vsca 22275 deg1ldg 25997 deg1leb 26000 deg1val 26001 |
| Copyright terms: Public domain | W3C validator |