| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > psr1baslem | Structured version Visualization version GIF version | ||
| Description: The set of finite bags on 1o is just the set of all functions from 1o to ℕ0. (Contributed by Mario Carneiro, 9-Feb-2015.) |
| Ref | Expression |
|---|---|
| psr1baslem | ⊢ (ℕ0 ↑m 1o) = {𝑓 ∈ (ℕ0 ↑m 1o) ∣ (◡𝑓 “ ℕ) ∈ Fin} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rabid2 3449 | . 2 ⊢ ((ℕ0 ↑m 1o) = {𝑓 ∈ (ℕ0 ↑m 1o) ∣ (◡𝑓 “ ℕ) ∈ Fin} ↔ ∀𝑓 ∈ (ℕ0 ↑m 1o)(◡𝑓 “ ℕ) ∈ Fin) | |
| 2 | df1o2 8487 | . . . 4 ⊢ 1o = {∅} | |
| 3 | snfi 9057 | . . . 4 ⊢ {∅} ∈ Fin | |
| 4 | 2, 3 | eqeltri 2830 | . . 3 ⊢ 1o ∈ Fin |
| 5 | cnvimass 6069 | . . . 4 ⊢ (◡𝑓 “ ℕ) ⊆ dom 𝑓 | |
| 6 | elmapi 8863 | . . . 4 ⊢ (𝑓 ∈ (ℕ0 ↑m 1o) → 𝑓:1o⟶ℕ0) | |
| 7 | 5, 6 | fssdm 6725 | . . 3 ⊢ (𝑓 ∈ (ℕ0 ↑m 1o) → (◡𝑓 “ ℕ) ⊆ 1o) |
| 8 | ssfi 9187 | . . 3 ⊢ ((1o ∈ Fin ∧ (◡𝑓 “ ℕ) ⊆ 1o) → (◡𝑓 “ ℕ) ∈ Fin) | |
| 9 | 4, 7, 8 | sylancr 587 | . 2 ⊢ (𝑓 ∈ (ℕ0 ↑m 1o) → (◡𝑓 “ ℕ) ∈ Fin) |
| 10 | 1, 9 | mprgbir 3058 | 1 ⊢ (ℕ0 ↑m 1o) = {𝑓 ∈ (ℕ0 ↑m 1o) ∣ (◡𝑓 “ ℕ) ∈ Fin} |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2108 {crab 3415 ⊆ wss 3926 ∅c0 4308 {csn 4601 ◡ccnv 5653 “ cima 5657 (class class class)co 7405 1oc1o 8473 ↑m cmap 8840 Fincfn 8959 ℕcn 12240 ℕ0cn0 12501 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-1st 7988 df-2nd 7989 df-1o 8480 df-map 8842 df-en 8960 df-fin 8963 |
| This theorem is referenced by: psr1bas 22126 ply1basf 22138 ply1plusgfvi 22177 coe1z 22200 coe1mul2 22206 coe1tm 22210 ply1coe 22236 rhmply1vsca 22326 deg1ldg 26049 deg1leb 26052 deg1val 26053 |
| Copyright terms: Public domain | W3C validator |