![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ispthson | Structured version Visualization version GIF version |
Description: Properties of a pair of functions to be a path between two given vertices. (Contributed by Alexander van der Vekens, 8-Nov-2017.) (Revised by AV, 16-Jan-2021.) (Revised by AV, 21-Mar-2021.) |
Ref | Expression |
---|---|
pthsonfval.v | β’ π = (VtxβπΊ) |
Ref | Expression |
---|---|
ispthson | β’ (((π΄ β π β§ π΅ β π) β§ (πΉ β π β§ π β π)) β (πΉ(π΄(PathsOnβπΊ)π΅)π β (πΉ(π΄(TrailsOnβπΊ)π΅)π β§ πΉ(PathsβπΊ)π))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pthsonfval.v | . . . 4 β’ π = (VtxβπΊ) | |
2 | 1 | pthsonfval 29574 | . . 3 β’ ((π΄ β π β§ π΅ β π) β (π΄(PathsOnβπΊ)π΅) = {β¨π, πβ© β£ (π(π΄(TrailsOnβπΊ)π΅)π β§ π(PathsβπΊ)π)}) |
3 | 2 | breqd 5163 | . 2 β’ ((π΄ β π β§ π΅ β π) β (πΉ(π΄(PathsOnβπΊ)π΅)π β πΉ{β¨π, πβ© β£ (π(π΄(TrailsOnβπΊ)π΅)π β§ π(PathsβπΊ)π)}π)) |
4 | breq12 5157 | . . . 4 β’ ((π = πΉ β§ π = π) β (π(π΄(TrailsOnβπΊ)π΅)π β πΉ(π΄(TrailsOnβπΊ)π΅)π)) | |
5 | breq12 5157 | . . . 4 β’ ((π = πΉ β§ π = π) β (π(PathsβπΊ)π β πΉ(PathsβπΊ)π)) | |
6 | 4, 5 | anbi12d 630 | . . 3 β’ ((π = πΉ β§ π = π) β ((π(π΄(TrailsOnβπΊ)π΅)π β§ π(PathsβπΊ)π) β (πΉ(π΄(TrailsOnβπΊ)π΅)π β§ πΉ(PathsβπΊ)π))) |
7 | eqid 2728 | . . 3 β’ {β¨π, πβ© β£ (π(π΄(TrailsOnβπΊ)π΅)π β§ π(PathsβπΊ)π)} = {β¨π, πβ© β£ (π(π΄(TrailsOnβπΊ)π΅)π β§ π(PathsβπΊ)π)} | |
8 | 6, 7 | brabga 5540 | . 2 β’ ((πΉ β π β§ π β π) β (πΉ{β¨π, πβ© β£ (π(π΄(TrailsOnβπΊ)π΅)π β§ π(PathsβπΊ)π)}π β (πΉ(π΄(TrailsOnβπΊ)π΅)π β§ πΉ(PathsβπΊ)π))) |
9 | 3, 8 | sylan9bb 508 | 1 β’ (((π΄ β π β§ π΅ β π) β§ (πΉ β π β§ π β π)) β (πΉ(π΄(PathsOnβπΊ)π΅)π β (πΉ(π΄(TrailsOnβπΊ)π΅)π β§ πΉ(PathsβπΊ)π))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 394 = wceq 1533 β wcel 2098 class class class wbr 5152 {copab 5214 βcfv 6553 (class class class)co 7426 Vtxcvtx 28829 TrailsOnctrlson 29525 Pathscpths 29546 PathsOncpthson 29548 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-sep 5303 ax-nul 5310 ax-pow 5369 ax-pr 5433 ax-un 7746 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-ral 3059 df-rex 3068 df-rab 3431 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4327 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-iun 5002 df-br 5153 df-opab 5215 df-mpt 5236 df-id 5580 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-iota 6505 df-fun 6555 df-fn 6556 df-f 6557 df-fv 6561 df-ov 7429 df-oprab 7430 df-mpo 7431 df-1st 7999 df-2nd 8000 df-pthson 29552 |
This theorem is referenced by: pthsonprop 29578 pthonpth 29582 spthonpthon 29585 0pthon 29957 1pthond 29974 3pthond 30005 |
Copyright terms: Public domain | W3C validator |