MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ispthson Structured version   Visualization version   GIF version

Theorem ispthson 29729
Description: Properties of a pair of functions to be a path between two given vertices. (Contributed by Alexander van der Vekens, 8-Nov-2017.) (Revised by AV, 16-Jan-2021.) (Revised by AV, 21-Mar-2021.)
Hypothesis
Ref Expression
pthsonfval.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
ispthson (((𝐴𝑉𝐵𝑉) ∧ (𝐹𝑈𝑃𝑍)) → (𝐹(𝐴(PathsOn‘𝐺)𝐵)𝑃 ↔ (𝐹(𝐴(TrailsOn‘𝐺)𝐵)𝑃𝐹(Paths‘𝐺)𝑃)))

Proof of Theorem ispthson
Dummy variables 𝑓 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pthsonfval.v . . . 4 𝑉 = (Vtx‘𝐺)
21pthsonfval 29727 . . 3 ((𝐴𝑉𝐵𝑉) → (𝐴(PathsOn‘𝐺)𝐵) = {⟨𝑓, 𝑝⟩ ∣ (𝑓(𝐴(TrailsOn‘𝐺)𝐵)𝑝𝑓(Paths‘𝐺)𝑝)})
32breqd 5135 . 2 ((𝐴𝑉𝐵𝑉) → (𝐹(𝐴(PathsOn‘𝐺)𝐵)𝑃𝐹{⟨𝑓, 𝑝⟩ ∣ (𝑓(𝐴(TrailsOn‘𝐺)𝐵)𝑝𝑓(Paths‘𝐺)𝑝)}𝑃))
4 breq12 5129 . . . 4 ((𝑓 = 𝐹𝑝 = 𝑃) → (𝑓(𝐴(TrailsOn‘𝐺)𝐵)𝑝𝐹(𝐴(TrailsOn‘𝐺)𝐵)𝑃))
5 breq12 5129 . . . 4 ((𝑓 = 𝐹𝑝 = 𝑃) → (𝑓(Paths‘𝐺)𝑝𝐹(Paths‘𝐺)𝑃))
64, 5anbi12d 632 . . 3 ((𝑓 = 𝐹𝑝 = 𝑃) → ((𝑓(𝐴(TrailsOn‘𝐺)𝐵)𝑝𝑓(Paths‘𝐺)𝑝) ↔ (𝐹(𝐴(TrailsOn‘𝐺)𝐵)𝑃𝐹(Paths‘𝐺)𝑃)))
7 eqid 2736 . . 3 {⟨𝑓, 𝑝⟩ ∣ (𝑓(𝐴(TrailsOn‘𝐺)𝐵)𝑝𝑓(Paths‘𝐺)𝑝)} = {⟨𝑓, 𝑝⟩ ∣ (𝑓(𝐴(TrailsOn‘𝐺)𝐵)𝑝𝑓(Paths‘𝐺)𝑝)}
86, 7brabga 5514 . 2 ((𝐹𝑈𝑃𝑍) → (𝐹{⟨𝑓, 𝑝⟩ ∣ (𝑓(𝐴(TrailsOn‘𝐺)𝐵)𝑝𝑓(Paths‘𝐺)𝑝)}𝑃 ↔ (𝐹(𝐴(TrailsOn‘𝐺)𝐵)𝑃𝐹(Paths‘𝐺)𝑃)))
93, 8sylan9bb 509 1 (((𝐴𝑉𝐵𝑉) ∧ (𝐹𝑈𝑃𝑍)) → (𝐹(𝐴(PathsOn‘𝐺)𝐵)𝑃 ↔ (𝐹(𝐴(TrailsOn‘𝐺)𝐵)𝑃𝐹(Paths‘𝐺)𝑃)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109   class class class wbr 5124  {copab 5186  cfv 6536  (class class class)co 7410  Vtxcvtx 28980  TrailsOnctrlson 29676  Pathscpths 29697  PathsOncpthson 29699
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-fv 6544  df-ov 7413  df-oprab 7414  df-mpo 7415  df-1st 7993  df-2nd 7994  df-pthson 29703
This theorem is referenced by:  pthsonprop  29731  pthonpth  29735  spthonpthon  29738  0pthon  30113  1pthond  30130  3pthond  30161
  Copyright terms: Public domain W3C validator