MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ispthson Structured version   Visualization version   GIF version

Theorem ispthson 28996
Description: Properties of a pair of functions to be a path between two given vertices. (Contributed by Alexander van der Vekens, 8-Nov-2017.) (Revised by AV, 16-Jan-2021.) (Revised by AV, 21-Mar-2021.)
Hypothesis
Ref Expression
pthsonfval.v 𝑉 = (Vtxβ€˜πΊ)
Assertion
Ref Expression
ispthson (((𝐴 ∈ 𝑉 ∧ 𝐡 ∈ 𝑉) ∧ (𝐹 ∈ π‘ˆ ∧ 𝑃 ∈ 𝑍)) β†’ (𝐹(𝐴(PathsOnβ€˜πΊ)𝐡)𝑃 ↔ (𝐹(𝐴(TrailsOnβ€˜πΊ)𝐡)𝑃 ∧ 𝐹(Pathsβ€˜πΊ)𝑃)))

Proof of Theorem ispthson
Dummy variables 𝑓 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pthsonfval.v . . . 4 𝑉 = (Vtxβ€˜πΊ)
21pthsonfval 28994 . . 3 ((𝐴 ∈ 𝑉 ∧ 𝐡 ∈ 𝑉) β†’ (𝐴(PathsOnβ€˜πΊ)𝐡) = {βŸ¨π‘“, π‘βŸ© ∣ (𝑓(𝐴(TrailsOnβ€˜πΊ)𝐡)𝑝 ∧ 𝑓(Pathsβ€˜πΊ)𝑝)})
32breqd 5159 . 2 ((𝐴 ∈ 𝑉 ∧ 𝐡 ∈ 𝑉) β†’ (𝐹(𝐴(PathsOnβ€˜πΊ)𝐡)𝑃 ↔ 𝐹{βŸ¨π‘“, π‘βŸ© ∣ (𝑓(𝐴(TrailsOnβ€˜πΊ)𝐡)𝑝 ∧ 𝑓(Pathsβ€˜πΊ)𝑝)}𝑃))
4 breq12 5153 . . . 4 ((𝑓 = 𝐹 ∧ 𝑝 = 𝑃) β†’ (𝑓(𝐴(TrailsOnβ€˜πΊ)𝐡)𝑝 ↔ 𝐹(𝐴(TrailsOnβ€˜πΊ)𝐡)𝑃))
5 breq12 5153 . . . 4 ((𝑓 = 𝐹 ∧ 𝑝 = 𝑃) β†’ (𝑓(Pathsβ€˜πΊ)𝑝 ↔ 𝐹(Pathsβ€˜πΊ)𝑃))
64, 5anbi12d 631 . . 3 ((𝑓 = 𝐹 ∧ 𝑝 = 𝑃) β†’ ((𝑓(𝐴(TrailsOnβ€˜πΊ)𝐡)𝑝 ∧ 𝑓(Pathsβ€˜πΊ)𝑝) ↔ (𝐹(𝐴(TrailsOnβ€˜πΊ)𝐡)𝑃 ∧ 𝐹(Pathsβ€˜πΊ)𝑃)))
7 eqid 2732 . . 3 {βŸ¨π‘“, π‘βŸ© ∣ (𝑓(𝐴(TrailsOnβ€˜πΊ)𝐡)𝑝 ∧ 𝑓(Pathsβ€˜πΊ)𝑝)} = {βŸ¨π‘“, π‘βŸ© ∣ (𝑓(𝐴(TrailsOnβ€˜πΊ)𝐡)𝑝 ∧ 𝑓(Pathsβ€˜πΊ)𝑝)}
86, 7brabga 5534 . 2 ((𝐹 ∈ π‘ˆ ∧ 𝑃 ∈ 𝑍) β†’ (𝐹{βŸ¨π‘“, π‘βŸ© ∣ (𝑓(𝐴(TrailsOnβ€˜πΊ)𝐡)𝑝 ∧ 𝑓(Pathsβ€˜πΊ)𝑝)}𝑃 ↔ (𝐹(𝐴(TrailsOnβ€˜πΊ)𝐡)𝑃 ∧ 𝐹(Pathsβ€˜πΊ)𝑃)))
93, 8sylan9bb 510 1 (((𝐴 ∈ 𝑉 ∧ 𝐡 ∈ 𝑉) ∧ (𝐹 ∈ π‘ˆ ∧ 𝑃 ∈ 𝑍)) β†’ (𝐹(𝐴(PathsOnβ€˜πΊ)𝐡)𝑃 ↔ (𝐹(𝐴(TrailsOnβ€˜πΊ)𝐡)𝑃 ∧ 𝐹(Pathsβ€˜πΊ)𝑃)))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 396   = wceq 1541   ∈ wcel 2106   class class class wbr 5148  {copab 5210  β€˜cfv 6543  (class class class)co 7408  Vtxcvtx 28253  TrailsOnctrlson 28945  Pathscpths 28966  PathsOncpthson 28968
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-ov 7411  df-oprab 7412  df-mpo 7413  df-1st 7974  df-2nd 7975  df-pthson 28972
This theorem is referenced by:  pthsonprop  28998  pthonpth  29002  spthonpthon  29005  0pthon  29377  1pthond  29394  3pthond  29425
  Copyright terms: Public domain W3C validator