![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ispthson | Structured version Visualization version GIF version |
Description: Properties of a pair of functions to be a path between two given vertices. (Contributed by Alexander van der Vekens, 8-Nov-2017.) (Revised by AV, 16-Jan-2021.) (Revised by AV, 21-Mar-2021.) |
Ref | Expression |
---|---|
pthsonfval.v | β’ π = (VtxβπΊ) |
Ref | Expression |
---|---|
ispthson | β’ (((π΄ β π β§ π΅ β π) β§ (πΉ β π β§ π β π)) β (πΉ(π΄(PathsOnβπΊ)π΅)π β (πΉ(π΄(TrailsOnβπΊ)π΅)π β§ πΉ(PathsβπΊ)π))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pthsonfval.v | . . . 4 β’ π = (VtxβπΊ) | |
2 | 1 | pthsonfval 29506 | . . 3 β’ ((π΄ β π β§ π΅ β π) β (π΄(PathsOnβπΊ)π΅) = {β¨π, πβ© β£ (π(π΄(TrailsOnβπΊ)π΅)π β§ π(PathsβπΊ)π)}) |
3 | 2 | breqd 5152 | . 2 β’ ((π΄ β π β§ π΅ β π) β (πΉ(π΄(PathsOnβπΊ)π΅)π β πΉ{β¨π, πβ© β£ (π(π΄(TrailsOnβπΊ)π΅)π β§ π(PathsβπΊ)π)}π)) |
4 | breq12 5146 | . . . 4 β’ ((π = πΉ β§ π = π) β (π(π΄(TrailsOnβπΊ)π΅)π β πΉ(π΄(TrailsOnβπΊ)π΅)π)) | |
5 | breq12 5146 | . . . 4 β’ ((π = πΉ β§ π = π) β (π(PathsβπΊ)π β πΉ(PathsβπΊ)π)) | |
6 | 4, 5 | anbi12d 630 | . . 3 β’ ((π = πΉ β§ π = π) β ((π(π΄(TrailsOnβπΊ)π΅)π β§ π(PathsβπΊ)π) β (πΉ(π΄(TrailsOnβπΊ)π΅)π β§ πΉ(PathsβπΊ)π))) |
7 | eqid 2726 | . . 3 β’ {β¨π, πβ© β£ (π(π΄(TrailsOnβπΊ)π΅)π β§ π(PathsβπΊ)π)} = {β¨π, πβ© β£ (π(π΄(TrailsOnβπΊ)π΅)π β§ π(PathsβπΊ)π)} | |
8 | 6, 7 | brabga 5527 | . 2 β’ ((πΉ β π β§ π β π) β (πΉ{β¨π, πβ© β£ (π(π΄(TrailsOnβπΊ)π΅)π β§ π(PathsβπΊ)π)}π β (πΉ(π΄(TrailsOnβπΊ)π΅)π β§ πΉ(PathsβπΊ)π))) |
9 | 3, 8 | sylan9bb 509 | 1 β’ (((π΄ β π β§ π΅ β π) β§ (πΉ β π β§ π β π)) β (πΉ(π΄(PathsOnβπΊ)π΅)π β (πΉ(π΄(TrailsOnβπΊ)π΅)π β§ πΉ(PathsβπΊ)π))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 395 = wceq 1533 β wcel 2098 class class class wbr 5141 {copab 5203 βcfv 6537 (class class class)co 7405 Vtxcvtx 28764 TrailsOnctrlson 29457 Pathscpths 29478 PathsOncpthson 29480 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7722 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-ral 3056 df-rex 3065 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-id 5567 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-iota 6489 df-fun 6539 df-fn 6540 df-f 6541 df-fv 6545 df-ov 7408 df-oprab 7409 df-mpo 7410 df-1st 7974 df-2nd 7975 df-pthson 29484 |
This theorem is referenced by: pthsonprop 29510 pthonpth 29514 spthonpthon 29517 0pthon 29889 1pthond 29906 3pthond 29937 |
Copyright terms: Public domain | W3C validator |