Step | Hyp | Ref
| Expression |
1 | | infxpenc2.1 |
. . 3
β’ (π β π΄ β On) |
2 | 1 | mptexd 7222 |
. 2
β’ (π β (π β π΄ β¦ πΊ) β V) |
3 | 1 | adantr 481 |
. . . . . . 7
β’ ((π β§ (π β π΄ β§ Ο β π)) β π΄ β On) |
4 | | simprl 769 |
. . . . . . 7
β’ ((π β§ (π β π΄ β§ Ο β π)) β π β π΄) |
5 | | onelon 6386 |
. . . . . . 7
β’ ((π΄ β On β§ π β π΄) β π β On) |
6 | 3, 4, 5 | syl2anc 584 |
. . . . . 6
β’ ((π β§ (π β π΄ β§ Ο β π)) β π β On) |
7 | | simprr 771 |
. . . . . 6
β’ ((π β§ (π β π΄ β§ Ο β π)) β Ο β π) |
8 | | infxpenc2.2 |
. . . . . . . 8
β’ (π β βπ β π΄ (Ο β π β βπ€ β (On β 1o)(πβπ):πβ1-1-ontoβ(Ο βo π€))) |
9 | | infxpenc2.3 |
. . . . . . . 8
β’ π = (β‘(π₯ β (On β 1o) β¦
(Ο βo π₯))βran (πβπ)) |
10 | 1, 8, 9 | infxpenc2lem1 10010 |
. . . . . . 7
β’ ((π β§ (π β π΄ β§ Ο β π)) β (π β (On β 1o) β§
(πβπ):πβ1-1-ontoβ(Ο βo π))) |
11 | 10 | simpld 495 |
. . . . . 6
β’ ((π β§ (π β π΄ β§ Ο β π)) β π β (On β
1o)) |
12 | | infxpenc2.4 |
. . . . . . 7
β’ (π β πΉ:(Ο βo
2o)β1-1-ontoβΟ) |
13 | 12 | adantr 481 |
. . . . . 6
β’ ((π β§ (π β π΄ β§ Ο β π)) β πΉ:(Ο βo
2o)β1-1-ontoβΟ) |
14 | | infxpenc2.5 |
. . . . . . 7
β’ (π β (πΉββ
) = β
) |
15 | 14 | adantr 481 |
. . . . . 6
β’ ((π β§ (π β π΄ β§ Ο β π)) β (πΉββ
) = β
) |
16 | 10 | simprd 496 |
. . . . . 6
β’ ((π β§ (π β π΄ β§ Ο β π)) β (πβπ):πβ1-1-ontoβ(Ο βo π)) |
17 | | infxpenc2.k |
. . . . . 6
β’ πΎ = (π¦ β {π₯ β ((Ο βo
2o) βm π) β£ π₯ finSupp β
} β¦ (πΉ β (π¦ β β‘( I βΎ π)))) |
18 | | infxpenc2.h |
. . . . . 6
β’ π» = (((Ο CNF π) β πΎ) β β‘((Ο βo 2o)
CNF π)) |
19 | | infxpenc2.l |
. . . . . 6
β’ πΏ = (π¦ β {π₯ β (Ο βm (π Β·o
2o)) β£ π₯
finSupp β
} β¦ (( I βΎ Ο) β (π¦ β β‘(π β β‘π)))) |
20 | | infxpenc2.x |
. . . . . 6
β’ π = (π§ β 2o, π€ β π β¦ ((π Β·o π§) +o π€)) |
21 | | infxpenc2.y |
. . . . . 6
β’ π = (π§ β 2o, π€ β π β¦ ((2o
Β·o π€)
+o π§)) |
22 | | infxpenc2.j |
. . . . . 6
β’ π½ = (((Ο CNF (2o
Β·o π))
β πΏ) β β‘(Ο CNF (π Β·o
2o))) |
23 | | infxpenc2.z |
. . . . . 6
β’ π = (π₯ β (Ο βo π), π¦ β (Ο βo π) β¦ (((Ο
βo π)
Β·o π₯)
+o π¦)) |
24 | | infxpenc2.t |
. . . . . 6
β’ π = (π₯ β π, π¦ β π β¦ β¨((πβπ)βπ₯), ((πβπ)βπ¦)β©) |
25 | | infxpenc2.g |
. . . . . 6
β’ πΊ = (β‘(πβπ) β (((π» β π½) β π) β π)) |
26 | 6, 7, 11, 13, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25 | infxpenc 10009 |
. . . . 5
β’ ((π β§ (π β π΄ β§ Ο β π)) β πΊ:(π Γ π)β1-1-ontoβπ) |
27 | | f1of 6830 |
. . . . . . . . 9
β’ (πΊ:(π Γ π)β1-1-ontoβπ β πΊ:(π Γ π)βΆπ) |
28 | 26, 27 | syl 17 |
. . . . . . . 8
β’ ((π β§ (π β π΄ β§ Ο β π)) β πΊ:(π Γ π)βΆπ) |
29 | | vex 3478 |
. . . . . . . . 9
β’ π β V |
30 | 29, 29 | xpex 7736 |
. . . . . . . 8
β’ (π Γ π) β V |
31 | | fex 7224 |
. . . . . . . 8
β’ ((πΊ:(π Γ π)βΆπ β§ (π Γ π) β V) β πΊ β V) |
32 | 28, 30, 31 | sylancl 586 |
. . . . . . 7
β’ ((π β§ (π β π΄ β§ Ο β π)) β πΊ β V) |
33 | | eqid 2732 |
. . . . . . . 8
β’ (π β π΄ β¦ πΊ) = (π β π΄ β¦ πΊ) |
34 | 33 | fvmpt2 7006 |
. . . . . . 7
β’ ((π β π΄ β§ πΊ β V) β ((π β π΄ β¦ πΊ)βπ) = πΊ) |
35 | 4, 32, 34 | syl2anc 584 |
. . . . . 6
β’ ((π β§ (π β π΄ β§ Ο β π)) β ((π β π΄ β¦ πΊ)βπ) = πΊ) |
36 | 35 | f1oeq1d 6825 |
. . . . 5
β’ ((π β§ (π β π΄ β§ Ο β π)) β (((π β π΄ β¦ πΊ)βπ):(π Γ π)β1-1-ontoβπ β πΊ:(π Γ π)β1-1-ontoβπ)) |
37 | 26, 36 | mpbird 256 |
. . . 4
β’ ((π β§ (π β π΄ β§ Ο β π)) β ((π β π΄ β¦ πΊ)βπ):(π Γ π)β1-1-ontoβπ) |
38 | 37 | expr 457 |
. . 3
β’ ((π β§ π β π΄) β (Ο β π β ((π β π΄ β¦ πΊ)βπ):(π Γ π)β1-1-ontoβπ)) |
39 | 38 | ralrimiva 3146 |
. 2
β’ (π β βπ β π΄ (Ο β π β ((π β π΄ β¦ πΊ)βπ):(π Γ π)β1-1-ontoβπ)) |
40 | | nfmpt1 5255 |
. . . 4
β’
β²π(π β π΄ β¦ πΊ) |
41 | 40 | nfeq2 2920 |
. . 3
β’
β²π π = (π β π΄ β¦ πΊ) |
42 | | fveq1 6887 |
. . . . 5
β’ (π = (π β π΄ β¦ πΊ) β (πβπ) = ((π β π΄ β¦ πΊ)βπ)) |
43 | 42 | f1oeq1d 6825 |
. . . 4
β’ (π = (π β π΄ β¦ πΊ) β ((πβπ):(π Γ π)β1-1-ontoβπ β ((π β π΄ β¦ πΊ)βπ):(π Γ π)β1-1-ontoβπ)) |
44 | 43 | imbi2d 340 |
. . 3
β’ (π = (π β π΄ β¦ πΊ) β ((Ο β π β (πβπ):(π Γ π)β1-1-ontoβπ) β (Ο β π β ((π β π΄ β¦ πΊ)βπ):(π Γ π)β1-1-ontoβπ))) |
45 | 41, 44 | ralbid 3270 |
. 2
β’ (π = (π β π΄ β¦ πΊ) β (βπ β π΄ (Ο β π β (πβπ):(π Γ π)β1-1-ontoβπ) β βπ β π΄ (Ο β π β ((π β π΄ β¦ πΊ)βπ):(π Γ π)β1-1-ontoβπ))) |
46 | 2, 39, 45 | spcedv 3588 |
1
β’ (π β βπβπ β π΄ (Ο β π β (πβπ):(π Γ π)β1-1-ontoβπ)) |