MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  infxpenc2lem2 Structured version   Visualization version   GIF version

Theorem infxpenc2lem2 9949
Description: Lemma for infxpenc2 9951. (Contributed by Mario Carneiro, 30-May-2015.) (Revised by AV, 7-Jul-2019.)
Hypotheses
Ref Expression
infxpenc2.1 (𝜑𝐴 ∈ On)
infxpenc2.2 (𝜑 → ∀𝑏𝐴 (ω ⊆ 𝑏 → ∃𝑤 ∈ (On ∖ 1o)(𝑛𝑏):𝑏1-1-onto→(ω ↑o 𝑤)))
infxpenc2.3 𝑊 = ((𝑥 ∈ (On ∖ 1o) ↦ (ω ↑o 𝑥))‘ran (𝑛𝑏))
infxpenc2.4 (𝜑𝐹:(ω ↑o 2o)–1-1-onto→ω)
infxpenc2.5 (𝜑 → (𝐹‘∅) = ∅)
infxpenc2.k 𝐾 = (𝑦 ∈ {𝑥 ∈ ((ω ↑o 2o) ↑m 𝑊) ∣ 𝑥 finSupp ∅} ↦ (𝐹 ∘ (𝑦( I ↾ 𝑊))))
infxpenc2.h 𝐻 = (((ω CNF 𝑊) ∘ 𝐾) ∘ ((ω ↑o 2o) CNF 𝑊))
infxpenc2.l 𝐿 = (𝑦 ∈ {𝑥 ∈ (ω ↑m (𝑊 ·o 2o)) ∣ 𝑥 finSupp ∅} ↦ (( I ↾ ω) ∘ (𝑦(𝑌𝑋))))
infxpenc2.x 𝑋 = (𝑧 ∈ 2o, 𝑤𝑊 ↦ ((𝑊 ·o 𝑧) +o 𝑤))
infxpenc2.y 𝑌 = (𝑧 ∈ 2o, 𝑤𝑊 ↦ ((2o ·o 𝑤) +o 𝑧))
infxpenc2.j 𝐽 = (((ω CNF (2o ·o 𝑊)) ∘ 𝐿) ∘ (ω CNF (𝑊 ·o 2o)))
infxpenc2.z 𝑍 = (𝑥 ∈ (ω ↑o 𝑊), 𝑦 ∈ (ω ↑o 𝑊) ↦ (((ω ↑o 𝑊) ·o 𝑥) +o 𝑦))
infxpenc2.t 𝑇 = (𝑥𝑏, 𝑦𝑏 ↦ ⟨((𝑛𝑏)‘𝑥), ((𝑛𝑏)‘𝑦)⟩)
infxpenc2.g 𝐺 = ((𝑛𝑏) ∘ (((𝐻𝐽) ∘ 𝑍) ∘ 𝑇))
Assertion
Ref Expression
infxpenc2lem2 (𝜑 → ∃𝑔𝑏𝐴 (ω ⊆ 𝑏 → (𝑔𝑏):(𝑏 × 𝑏)–1-1-onto𝑏))
Distinct variable groups:   𝑔,𝑏,𝑛,𝑤,𝑥,𝑦,𝐴   𝜑,𝑏,𝑤,𝑥,𝑦   𝑧,𝑔,𝑊,𝑤,𝑥,𝑦   𝑔,𝐹,𝑥,𝑦   𝑔,𝐺   𝑥,𝑋,𝑦   𝑥,𝑌,𝑦
Allowed substitution hints:   𝜑(𝑧,𝑔,𝑛)   𝐴(𝑧)   𝑇(𝑥,𝑦,𝑧,𝑤,𝑔,𝑛,𝑏)   𝐹(𝑧,𝑤,𝑛,𝑏)   𝐺(𝑥,𝑦,𝑧,𝑤,𝑛,𝑏)   𝐻(𝑥,𝑦,𝑧,𝑤,𝑔,𝑛,𝑏)   𝐽(𝑥,𝑦,𝑧,𝑤,𝑔,𝑛,𝑏)   𝐾(𝑥,𝑦,𝑧,𝑤,𝑔,𝑛,𝑏)   𝐿(𝑥,𝑦,𝑧,𝑤,𝑔,𝑛,𝑏)   𝑊(𝑛,𝑏)   𝑋(𝑧,𝑤,𝑔,𝑛,𝑏)   𝑌(𝑧,𝑤,𝑔,𝑛,𝑏)   𝑍(𝑥,𝑦,𝑧,𝑤,𝑔,𝑛,𝑏)

Proof of Theorem infxpenc2lem2
StepHypRef Expression
1 infxpenc2.1 . . 3 (𝜑𝐴 ∈ On)
21mptexd 7180 . 2 (𝜑 → (𝑏𝐴𝐺) ∈ V)
31adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑏𝐴 ∧ ω ⊆ 𝑏)) → 𝐴 ∈ On)
4 simprl 770 . . . . . . 7 ((𝜑 ∧ (𝑏𝐴 ∧ ω ⊆ 𝑏)) → 𝑏𝐴)
5 onelon 6345 . . . . . . 7 ((𝐴 ∈ On ∧ 𝑏𝐴) → 𝑏 ∈ On)
63, 4, 5syl2anc 584 . . . . . 6 ((𝜑 ∧ (𝑏𝐴 ∧ ω ⊆ 𝑏)) → 𝑏 ∈ On)
7 simprr 772 . . . . . 6 ((𝜑 ∧ (𝑏𝐴 ∧ ω ⊆ 𝑏)) → ω ⊆ 𝑏)
8 infxpenc2.2 . . . . . . . 8 (𝜑 → ∀𝑏𝐴 (ω ⊆ 𝑏 → ∃𝑤 ∈ (On ∖ 1o)(𝑛𝑏):𝑏1-1-onto→(ω ↑o 𝑤)))
9 infxpenc2.3 . . . . . . . 8 𝑊 = ((𝑥 ∈ (On ∖ 1o) ↦ (ω ↑o 𝑥))‘ran (𝑛𝑏))
101, 8, 9infxpenc2lem1 9948 . . . . . . 7 ((𝜑 ∧ (𝑏𝐴 ∧ ω ⊆ 𝑏)) → (𝑊 ∈ (On ∖ 1o) ∧ (𝑛𝑏):𝑏1-1-onto→(ω ↑o 𝑊)))
1110simpld 494 . . . . . 6 ((𝜑 ∧ (𝑏𝐴 ∧ ω ⊆ 𝑏)) → 𝑊 ∈ (On ∖ 1o))
12 infxpenc2.4 . . . . . . 7 (𝜑𝐹:(ω ↑o 2o)–1-1-onto→ω)
1312adantr 480 . . . . . 6 ((𝜑 ∧ (𝑏𝐴 ∧ ω ⊆ 𝑏)) → 𝐹:(ω ↑o 2o)–1-1-onto→ω)
14 infxpenc2.5 . . . . . . 7 (𝜑 → (𝐹‘∅) = ∅)
1514adantr 480 . . . . . 6 ((𝜑 ∧ (𝑏𝐴 ∧ ω ⊆ 𝑏)) → (𝐹‘∅) = ∅)
1610simprd 495 . . . . . 6 ((𝜑 ∧ (𝑏𝐴 ∧ ω ⊆ 𝑏)) → (𝑛𝑏):𝑏1-1-onto→(ω ↑o 𝑊))
17 infxpenc2.k . . . . . 6 𝐾 = (𝑦 ∈ {𝑥 ∈ ((ω ↑o 2o) ↑m 𝑊) ∣ 𝑥 finSupp ∅} ↦ (𝐹 ∘ (𝑦( I ↾ 𝑊))))
18 infxpenc2.h . . . . . 6 𝐻 = (((ω CNF 𝑊) ∘ 𝐾) ∘ ((ω ↑o 2o) CNF 𝑊))
19 infxpenc2.l . . . . . 6 𝐿 = (𝑦 ∈ {𝑥 ∈ (ω ↑m (𝑊 ·o 2o)) ∣ 𝑥 finSupp ∅} ↦ (( I ↾ ω) ∘ (𝑦(𝑌𝑋))))
20 infxpenc2.x . . . . . 6 𝑋 = (𝑧 ∈ 2o, 𝑤𝑊 ↦ ((𝑊 ·o 𝑧) +o 𝑤))
21 infxpenc2.y . . . . . 6 𝑌 = (𝑧 ∈ 2o, 𝑤𝑊 ↦ ((2o ·o 𝑤) +o 𝑧))
22 infxpenc2.j . . . . . 6 𝐽 = (((ω CNF (2o ·o 𝑊)) ∘ 𝐿) ∘ (ω CNF (𝑊 ·o 2o)))
23 infxpenc2.z . . . . . 6 𝑍 = (𝑥 ∈ (ω ↑o 𝑊), 𝑦 ∈ (ω ↑o 𝑊) ↦ (((ω ↑o 𝑊) ·o 𝑥) +o 𝑦))
24 infxpenc2.t . . . . . 6 𝑇 = (𝑥𝑏, 𝑦𝑏 ↦ ⟨((𝑛𝑏)‘𝑥), ((𝑛𝑏)‘𝑦)⟩)
25 infxpenc2.g . . . . . 6 𝐺 = ((𝑛𝑏) ∘ (((𝐻𝐽) ∘ 𝑍) ∘ 𝑇))
266, 7, 11, 13, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25infxpenc 9947 . . . . 5 ((𝜑 ∧ (𝑏𝐴 ∧ ω ⊆ 𝑏)) → 𝐺:(𝑏 × 𝑏)–1-1-onto𝑏)
27 f1of 6782 . . . . . . . . 9 (𝐺:(𝑏 × 𝑏)–1-1-onto𝑏𝐺:(𝑏 × 𝑏)⟶𝑏)
2826, 27syl 17 . . . . . . . 8 ((𝜑 ∧ (𝑏𝐴 ∧ ω ⊆ 𝑏)) → 𝐺:(𝑏 × 𝑏)⟶𝑏)
29 vex 3448 . . . . . . . . 9 𝑏 ∈ V
3029, 29xpex 7709 . . . . . . . 8 (𝑏 × 𝑏) ∈ V
31 fex 7182 . . . . . . . 8 ((𝐺:(𝑏 × 𝑏)⟶𝑏 ∧ (𝑏 × 𝑏) ∈ V) → 𝐺 ∈ V)
3228, 30, 31sylancl 586 . . . . . . 7 ((𝜑 ∧ (𝑏𝐴 ∧ ω ⊆ 𝑏)) → 𝐺 ∈ V)
33 eqid 2729 . . . . . . . 8 (𝑏𝐴𝐺) = (𝑏𝐴𝐺)
3433fvmpt2 6961 . . . . . . 7 ((𝑏𝐴𝐺 ∈ V) → ((𝑏𝐴𝐺)‘𝑏) = 𝐺)
354, 32, 34syl2anc 584 . . . . . 6 ((𝜑 ∧ (𝑏𝐴 ∧ ω ⊆ 𝑏)) → ((𝑏𝐴𝐺)‘𝑏) = 𝐺)
3635f1oeq1d 6777 . . . . 5 ((𝜑 ∧ (𝑏𝐴 ∧ ω ⊆ 𝑏)) → (((𝑏𝐴𝐺)‘𝑏):(𝑏 × 𝑏)–1-1-onto𝑏𝐺:(𝑏 × 𝑏)–1-1-onto𝑏))
3726, 36mpbird 257 . . . 4 ((𝜑 ∧ (𝑏𝐴 ∧ ω ⊆ 𝑏)) → ((𝑏𝐴𝐺)‘𝑏):(𝑏 × 𝑏)–1-1-onto𝑏)
3837expr 456 . . 3 ((𝜑𝑏𝐴) → (ω ⊆ 𝑏 → ((𝑏𝐴𝐺)‘𝑏):(𝑏 × 𝑏)–1-1-onto𝑏))
3938ralrimiva 3125 . 2 (𝜑 → ∀𝑏𝐴 (ω ⊆ 𝑏 → ((𝑏𝐴𝐺)‘𝑏):(𝑏 × 𝑏)–1-1-onto𝑏))
40 nfmpt1 5201 . . . 4 𝑏(𝑏𝐴𝐺)
4140nfeq2 2909 . . 3 𝑏 𝑔 = (𝑏𝐴𝐺)
42 fveq1 6839 . . . . 5 (𝑔 = (𝑏𝐴𝐺) → (𝑔𝑏) = ((𝑏𝐴𝐺)‘𝑏))
4342f1oeq1d 6777 . . . 4 (𝑔 = (𝑏𝐴𝐺) → ((𝑔𝑏):(𝑏 × 𝑏)–1-1-onto𝑏 ↔ ((𝑏𝐴𝐺)‘𝑏):(𝑏 × 𝑏)–1-1-onto𝑏))
4443imbi2d 340 . . 3 (𝑔 = (𝑏𝐴𝐺) → ((ω ⊆ 𝑏 → (𝑔𝑏):(𝑏 × 𝑏)–1-1-onto𝑏) ↔ (ω ⊆ 𝑏 → ((𝑏𝐴𝐺)‘𝑏):(𝑏 × 𝑏)–1-1-onto𝑏)))
4541, 44ralbid 3248 . 2 (𝑔 = (𝑏𝐴𝐺) → (∀𝑏𝐴 (ω ⊆ 𝑏 → (𝑔𝑏):(𝑏 × 𝑏)–1-1-onto𝑏) ↔ ∀𝑏𝐴 (ω ⊆ 𝑏 → ((𝑏𝐴𝐺)‘𝑏):(𝑏 × 𝑏)–1-1-onto𝑏)))
462, 39, 45spcedv 3561 1 (𝜑 → ∃𝑔𝑏𝐴 (ω ⊆ 𝑏 → (𝑔𝑏):(𝑏 × 𝑏)–1-1-onto𝑏))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wex 1779  wcel 2109  wral 3044  wrex 3053  {crab 3402  Vcvv 3444  cdif 3908  wss 3911  c0 4292  cop 4591   class class class wbr 5102  cmpt 5183   I cid 5525   × cxp 5629  ccnv 5630  ran crn 5632  cres 5633  ccom 5635  Oncon0 6320  wf 6495  1-1-ontowf1o 6498  cfv 6499  (class class class)co 7369  cmpo 7371  ωcom 7822  1oc1o 8404  2oc2o 8405   +o coa 8408   ·o comu 8409  o coe 8410  m cmap 8776   finSupp cfsupp 9288   CNF ccnf 9590
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-inf2 9570
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-supp 8117  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-seqom 8393  df-1o 8411  df-2o 8412  df-oadd 8415  df-omul 8416  df-oexp 8417  df-er 8648  df-map 8778  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-fsupp 9289  df-oi 9439  df-cnf 9591
This theorem is referenced by:  infxpenc2lem3  9950
  Copyright terms: Public domain W3C validator