MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnfcom3clem Structured version   Visualization version   GIF version

Theorem cnfcom3clem 9717
Description: Lemma for cnfcom3c 9718. (Contributed by Mario Carneiro, 30-May-2015.) (Revised by AV, 4-Jul-2019.)
Hypotheses
Ref Expression
cnfcom3c.s 𝑆 = dom (ω CNF 𝐴)
cnfcom3c.f 𝐹 = ((ω CNF 𝐴)‘𝑏)
cnfcom3c.g 𝐺 = OrdIso( E , (𝐹 supp ∅))
cnfcom3c.h 𝐻 = seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (𝑀 +o 𝑧)), ∅)
cnfcom3c.t 𝑇 = seqω((𝑘 ∈ V, 𝑓 ∈ V ↦ 𝐾), ∅)
cnfcom3c.m 𝑀 = ((ω ↑o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘)))
cnfcom3c.k 𝐾 = ((𝑥𝑀 ↦ (dom 𝑓 +o 𝑥)) ∪ (𝑥 ∈ dom 𝑓 ↦ (𝑀 +o 𝑥)))
cnfcom3c.w 𝑊 = (𝐺 dom 𝐺)
cnfcom3c.x 𝑋 = (𝑢 ∈ (𝐹𝑊), 𝑣 ∈ (ω ↑o 𝑊) ↦ (((𝐹𝑊) ·o 𝑣) +o 𝑢))
cnfcom3c.y 𝑌 = (𝑢 ∈ (𝐹𝑊), 𝑣 ∈ (ω ↑o 𝑊) ↦ (((ω ↑o 𝑊) ·o 𝑢) +o 𝑣))
cnfcom3c.n 𝑁 = ((𝑋𝑌) ∘ (𝑇‘dom 𝐺))
cnfcom3c.l 𝐿 = (𝑏 ∈ (ω ↑o 𝐴) ↦ 𝑁)
Assertion
Ref Expression
cnfcom3clem (𝐴 ∈ On → ∃𝑔𝑏𝐴 (ω ⊆ 𝑏 → ∃𝑤 ∈ (On ∖ 1o)(𝑔𝑏):𝑏1-1-onto→(ω ↑o 𝑤)))
Distinct variable groups:   𝑔,𝑏,𝑘,𝑢,𝑣,𝑤,𝑥,𝑧,𝐴   𝑢,𝐾,𝑣   𝑔,𝐿,𝑤   𝑥,𝑀   𝑢,𝑇,𝑣,𝑧   𝑓,𝑘,𝑢,𝑣,𝑥,𝑧,𝐹   𝑓,𝐺,𝑘,𝑢,𝑣,𝑥,𝑧   𝑓,𝐻,𝑢,𝑣,𝑥   𝑆,𝑘,𝑧   𝑢,𝑊,𝑣,𝑤,𝑥
Allowed substitution hints:   𝐴(𝑓)   𝑆(𝑥,𝑤,𝑣,𝑢,𝑓,𝑔,𝑏)   𝑇(𝑥,𝑤,𝑓,𝑔,𝑘,𝑏)   𝐹(𝑤,𝑔,𝑏)   𝐺(𝑤,𝑔,𝑏)   𝐻(𝑧,𝑤,𝑔,𝑘,𝑏)   𝐾(𝑥,𝑧,𝑤,𝑓,𝑔,𝑘,𝑏)   𝐿(𝑥,𝑧,𝑣,𝑢,𝑓,𝑘,𝑏)   𝑀(𝑧,𝑤,𝑣,𝑢,𝑓,𝑔,𝑘,𝑏)   𝑁(𝑥,𝑧,𝑤,𝑣,𝑢,𝑓,𝑔,𝑘,𝑏)   𝑊(𝑧,𝑓,𝑔,𝑘,𝑏)   𝑋(𝑥,𝑧,𝑤,𝑣,𝑢,𝑓,𝑔,𝑘,𝑏)   𝑌(𝑥,𝑧,𝑤,𝑣,𝑢,𝑓,𝑔,𝑘,𝑏)

Proof of Theorem cnfcom3clem
StepHypRef Expression
1 cnfcom3c.s . . . . . 6 𝑆 = dom (ω CNF 𝐴)
2 simp1 1136 . . . . . 6 ((𝐴 ∈ On ∧ 𝑏𝐴 ∧ ω ⊆ 𝑏) → 𝐴 ∈ On)
3 omelon 9658 . . . . . . . . 9 ω ∈ On
4 1onn 8650 . . . . . . . . 9 1o ∈ ω
5 ondif2 8512 . . . . . . . . 9 (ω ∈ (On ∖ 2o) ↔ (ω ∈ On ∧ 1o ∈ ω))
63, 4, 5mpbir2an 711 . . . . . . . 8 ω ∈ (On ∖ 2o)
7 oeworde 8603 . . . . . . . 8 ((ω ∈ (On ∖ 2o) ∧ 𝐴 ∈ On) → 𝐴 ⊆ (ω ↑o 𝐴))
86, 2, 7sylancr 587 . . . . . . 7 ((𝐴 ∈ On ∧ 𝑏𝐴 ∧ ω ⊆ 𝑏) → 𝐴 ⊆ (ω ↑o 𝐴))
9 simp2 1137 . . . . . . 7 ((𝐴 ∈ On ∧ 𝑏𝐴 ∧ ω ⊆ 𝑏) → 𝑏𝐴)
108, 9sseldd 3959 . . . . . 6 ((𝐴 ∈ On ∧ 𝑏𝐴 ∧ ω ⊆ 𝑏) → 𝑏 ∈ (ω ↑o 𝐴))
11 cnfcom3c.f . . . . . 6 𝐹 = ((ω CNF 𝐴)‘𝑏)
12 cnfcom3c.g . . . . . 6 𝐺 = OrdIso( E , (𝐹 supp ∅))
13 cnfcom3c.h . . . . . 6 𝐻 = seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (𝑀 +o 𝑧)), ∅)
14 cnfcom3c.t . . . . . 6 𝑇 = seqω((𝑘 ∈ V, 𝑓 ∈ V ↦ 𝐾), ∅)
15 cnfcom3c.m . . . . . 6 𝑀 = ((ω ↑o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘)))
16 cnfcom3c.k . . . . . 6 𝐾 = ((𝑥𝑀 ↦ (dom 𝑓 +o 𝑥)) ∪ (𝑥 ∈ dom 𝑓 ↦ (𝑀 +o 𝑥)))
17 cnfcom3c.w . . . . . 6 𝑊 = (𝐺 dom 𝐺)
18 simp3 1138 . . . . . 6 ((𝐴 ∈ On ∧ 𝑏𝐴 ∧ ω ⊆ 𝑏) → ω ⊆ 𝑏)
191, 2, 10, 11, 12, 13, 14, 15, 16, 17, 18cnfcom3lem 9715 . . . . 5 ((𝐴 ∈ On ∧ 𝑏𝐴 ∧ ω ⊆ 𝑏) → 𝑊 ∈ (On ∖ 1o))
20 cnfcom3c.x . . . . . . 7 𝑋 = (𝑢 ∈ (𝐹𝑊), 𝑣 ∈ (ω ↑o 𝑊) ↦ (((𝐹𝑊) ·o 𝑣) +o 𝑢))
21 cnfcom3c.y . . . . . . 7 𝑌 = (𝑢 ∈ (𝐹𝑊), 𝑣 ∈ (ω ↑o 𝑊) ↦ (((ω ↑o 𝑊) ·o 𝑢) +o 𝑣))
22 cnfcom3c.n . . . . . . 7 𝑁 = ((𝑋𝑌) ∘ (𝑇‘dom 𝐺))
231, 2, 10, 11, 12, 13, 14, 15, 16, 17, 18, 20, 21, 22cnfcom3 9716 . . . . . 6 ((𝐴 ∈ On ∧ 𝑏𝐴 ∧ ω ⊆ 𝑏) → 𝑁:𝑏1-1-onto→(ω ↑o 𝑊))
24 f1of 6817 . . . . . . . . . 10 (𝑁:𝑏1-1-onto→(ω ↑o 𝑊) → 𝑁:𝑏⟶(ω ↑o 𝑊))
2523, 24syl 17 . . . . . . . . 9 ((𝐴 ∈ On ∧ 𝑏𝐴 ∧ ω ⊆ 𝑏) → 𝑁:𝑏⟶(ω ↑o 𝑊))
2625, 9fexd 7218 . . . . . . . 8 ((𝐴 ∈ On ∧ 𝑏𝐴 ∧ ω ⊆ 𝑏) → 𝑁 ∈ V)
27 cnfcom3c.l . . . . . . . . 9 𝐿 = (𝑏 ∈ (ω ↑o 𝐴) ↦ 𝑁)
2827fvmpt2 6996 . . . . . . . 8 ((𝑏 ∈ (ω ↑o 𝐴) ∧ 𝑁 ∈ V) → (𝐿𝑏) = 𝑁)
2910, 26, 28syl2anc 584 . . . . . . 7 ((𝐴 ∈ On ∧ 𝑏𝐴 ∧ ω ⊆ 𝑏) → (𝐿𝑏) = 𝑁)
3029f1oeq1d 6812 . . . . . 6 ((𝐴 ∈ On ∧ 𝑏𝐴 ∧ ω ⊆ 𝑏) → ((𝐿𝑏):𝑏1-1-onto→(ω ↑o 𝑊) ↔ 𝑁:𝑏1-1-onto→(ω ↑o 𝑊)))
3123, 30mpbird 257 . . . . 5 ((𝐴 ∈ On ∧ 𝑏𝐴 ∧ ω ⊆ 𝑏) → (𝐿𝑏):𝑏1-1-onto→(ω ↑o 𝑊))
32 oveq2 7411 . . . . . . 7 (𝑤 = 𝑊 → (ω ↑o 𝑤) = (ω ↑o 𝑊))
3332f1oeq3d 6814 . . . . . 6 (𝑤 = 𝑊 → ((𝐿𝑏):𝑏1-1-onto→(ω ↑o 𝑤) ↔ (𝐿𝑏):𝑏1-1-onto→(ω ↑o 𝑊)))
3433rspcev 3601 . . . . 5 ((𝑊 ∈ (On ∖ 1o) ∧ (𝐿𝑏):𝑏1-1-onto→(ω ↑o 𝑊)) → ∃𝑤 ∈ (On ∖ 1o)(𝐿𝑏):𝑏1-1-onto→(ω ↑o 𝑤))
3519, 31, 34syl2anc 584 . . . 4 ((𝐴 ∈ On ∧ 𝑏𝐴 ∧ ω ⊆ 𝑏) → ∃𝑤 ∈ (On ∖ 1o)(𝐿𝑏):𝑏1-1-onto→(ω ↑o 𝑤))
36353expia 1121 . . 3 ((𝐴 ∈ On ∧ 𝑏𝐴) → (ω ⊆ 𝑏 → ∃𝑤 ∈ (On ∖ 1o)(𝐿𝑏):𝑏1-1-onto→(ω ↑o 𝑤)))
3736ralrimiva 3132 . 2 (𝐴 ∈ On → ∀𝑏𝐴 (ω ⊆ 𝑏 → ∃𝑤 ∈ (On ∖ 1o)(𝐿𝑏):𝑏1-1-onto→(ω ↑o 𝑤)))
38 ovex 7436 . . . . 5 (ω ↑o 𝐴) ∈ V
3938mptex 7214 . . . 4 (𝑏 ∈ (ω ↑o 𝐴) ↦ 𝑁) ∈ V
4027, 39eqeltri 2830 . . 3 𝐿 ∈ V
41 nfmpt1 5220 . . . . . 6 𝑏(𝑏 ∈ (ω ↑o 𝐴) ↦ 𝑁)
4227, 41nfcxfr 2896 . . . . 5 𝑏𝐿
4342nfeq2 2916 . . . 4 𝑏 𝑔 = 𝐿
44 fveq1 6874 . . . . . . 7 (𝑔 = 𝐿 → (𝑔𝑏) = (𝐿𝑏))
4544f1oeq1d 6812 . . . . . 6 (𝑔 = 𝐿 → ((𝑔𝑏):𝑏1-1-onto→(ω ↑o 𝑤) ↔ (𝐿𝑏):𝑏1-1-onto→(ω ↑o 𝑤)))
4645rexbidv 3164 . . . . 5 (𝑔 = 𝐿 → (∃𝑤 ∈ (On ∖ 1o)(𝑔𝑏):𝑏1-1-onto→(ω ↑o 𝑤) ↔ ∃𝑤 ∈ (On ∖ 1o)(𝐿𝑏):𝑏1-1-onto→(ω ↑o 𝑤)))
4746imbi2d 340 . . . 4 (𝑔 = 𝐿 → ((ω ⊆ 𝑏 → ∃𝑤 ∈ (On ∖ 1o)(𝑔𝑏):𝑏1-1-onto→(ω ↑o 𝑤)) ↔ (ω ⊆ 𝑏 → ∃𝑤 ∈ (On ∖ 1o)(𝐿𝑏):𝑏1-1-onto→(ω ↑o 𝑤))))
4843, 47ralbid 3255 . . 3 (𝑔 = 𝐿 → (∀𝑏𝐴 (ω ⊆ 𝑏 → ∃𝑤 ∈ (On ∖ 1o)(𝑔𝑏):𝑏1-1-onto→(ω ↑o 𝑤)) ↔ ∀𝑏𝐴 (ω ⊆ 𝑏 → ∃𝑤 ∈ (On ∖ 1o)(𝐿𝑏):𝑏1-1-onto→(ω ↑o 𝑤))))
4940, 48spcev 3585 . 2 (∀𝑏𝐴 (ω ⊆ 𝑏 → ∃𝑤 ∈ (On ∖ 1o)(𝐿𝑏):𝑏1-1-onto→(ω ↑o 𝑤)) → ∃𝑔𝑏𝐴 (ω ⊆ 𝑏 → ∃𝑤 ∈ (On ∖ 1o)(𝑔𝑏):𝑏1-1-onto→(ω ↑o 𝑤)))
5037, 49syl 17 1 (𝐴 ∈ On → ∃𝑔𝑏𝐴 (ω ⊆ 𝑏 → ∃𝑤 ∈ (On ∖ 1o)(𝑔𝑏):𝑏1-1-onto→(ω ↑o 𝑤)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1540  wex 1779  wcel 2108  wral 3051  wrex 3060  Vcvv 3459  cdif 3923  cun 3924  wss 3926  c0 4308   cuni 4883  cmpt 5201   E cep 5552  ccnv 5653  dom cdm 5654  ccom 5658  Oncon0 6352  wf 6526  1-1-ontowf1o 6529  cfv 6530  (class class class)co 7403  cmpo 7405  ωcom 7859   supp csupp 8157  seqωcseqom 8459  1oc1o 8471  2oc2o 8472   +o coa 8475   ·o comu 8476  o coe 8477  OrdIsocoi 9521   CNF ccnf 9673
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727  ax-inf2 9653
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-isom 6539  df-riota 7360  df-ov 7406  df-oprab 7407  df-mpo 7408  df-om 7860  df-1st 7986  df-2nd 7987  df-supp 8158  df-frecs 8278  df-wrecs 8309  df-recs 8383  df-rdg 8422  df-seqom 8460  df-1o 8478  df-2o 8479  df-oadd 8482  df-omul 8483  df-oexp 8484  df-er 8717  df-map 8840  df-en 8958  df-dom 8959  df-sdom 8960  df-fin 8961  df-fsupp 9372  df-oi 9522  df-cnf 9674
This theorem is referenced by:  cnfcom3c  9718
  Copyright terms: Public domain W3C validator