MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnfcom3clem Structured version   Visualization version   GIF version

Theorem cnfcom3clem 9601
Description: Lemma for cnfcom3c 9602. (Contributed by Mario Carneiro, 30-May-2015.) (Revised by AV, 4-Jul-2019.)
Hypotheses
Ref Expression
cnfcom3c.s 𝑆 = dom (ω CNF 𝐴)
cnfcom3c.f 𝐹 = ((ω CNF 𝐴)‘𝑏)
cnfcom3c.g 𝐺 = OrdIso( E , (𝐹 supp ∅))
cnfcom3c.h 𝐻 = seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (𝑀 +o 𝑧)), ∅)
cnfcom3c.t 𝑇 = seqω((𝑘 ∈ V, 𝑓 ∈ V ↦ 𝐾), ∅)
cnfcom3c.m 𝑀 = ((ω ↑o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘)))
cnfcom3c.k 𝐾 = ((𝑥𝑀 ↦ (dom 𝑓 +o 𝑥)) ∪ (𝑥 ∈ dom 𝑓 ↦ (𝑀 +o 𝑥)))
cnfcom3c.w 𝑊 = (𝐺 dom 𝐺)
cnfcom3c.x 𝑋 = (𝑢 ∈ (𝐹𝑊), 𝑣 ∈ (ω ↑o 𝑊) ↦ (((𝐹𝑊) ·o 𝑣) +o 𝑢))
cnfcom3c.y 𝑌 = (𝑢 ∈ (𝐹𝑊), 𝑣 ∈ (ω ↑o 𝑊) ↦ (((ω ↑o 𝑊) ·o 𝑢) +o 𝑣))
cnfcom3c.n 𝑁 = ((𝑋𝑌) ∘ (𝑇‘dom 𝐺))
cnfcom3c.l 𝐿 = (𝑏 ∈ (ω ↑o 𝐴) ↦ 𝑁)
Assertion
Ref Expression
cnfcom3clem (𝐴 ∈ On → ∃𝑔𝑏𝐴 (ω ⊆ 𝑏 → ∃𝑤 ∈ (On ∖ 1o)(𝑔𝑏):𝑏1-1-onto→(ω ↑o 𝑤)))
Distinct variable groups:   𝑔,𝑏,𝑘,𝑢,𝑣,𝑤,𝑥,𝑧,𝐴   𝑢,𝐾,𝑣   𝑔,𝐿,𝑤   𝑥,𝑀   𝑢,𝑇,𝑣,𝑧   𝑓,𝑘,𝑢,𝑣,𝑥,𝑧,𝐹   𝑓,𝐺,𝑘,𝑢,𝑣,𝑥,𝑧   𝑓,𝐻,𝑢,𝑣,𝑥   𝑆,𝑘,𝑧   𝑢,𝑊,𝑣,𝑤,𝑥
Allowed substitution hints:   𝐴(𝑓)   𝑆(𝑥,𝑤,𝑣,𝑢,𝑓,𝑔,𝑏)   𝑇(𝑥,𝑤,𝑓,𝑔,𝑘,𝑏)   𝐹(𝑤,𝑔,𝑏)   𝐺(𝑤,𝑔,𝑏)   𝐻(𝑧,𝑤,𝑔,𝑘,𝑏)   𝐾(𝑥,𝑧,𝑤,𝑓,𝑔,𝑘,𝑏)   𝐿(𝑥,𝑧,𝑣,𝑢,𝑓,𝑘,𝑏)   𝑀(𝑧,𝑤,𝑣,𝑢,𝑓,𝑔,𝑘,𝑏)   𝑁(𝑥,𝑧,𝑤,𝑣,𝑢,𝑓,𝑔,𝑘,𝑏)   𝑊(𝑧,𝑓,𝑔,𝑘,𝑏)   𝑋(𝑥,𝑧,𝑤,𝑣,𝑢,𝑓,𝑔,𝑘,𝑏)   𝑌(𝑥,𝑧,𝑤,𝑣,𝑢,𝑓,𝑔,𝑘,𝑏)

Proof of Theorem cnfcom3clem
StepHypRef Expression
1 cnfcom3c.s . . . . . 6 𝑆 = dom (ω CNF 𝐴)
2 simp1 1136 . . . . . 6 ((𝐴 ∈ On ∧ 𝑏𝐴 ∧ ω ⊆ 𝑏) → 𝐴 ∈ On)
3 omelon 9542 . . . . . . . . 9 ω ∈ On
4 1onn 8558 . . . . . . . . 9 1o ∈ ω
5 ondif2 8420 . . . . . . . . 9 (ω ∈ (On ∖ 2o) ↔ (ω ∈ On ∧ 1o ∈ ω))
63, 4, 5mpbir2an 711 . . . . . . . 8 ω ∈ (On ∖ 2o)
7 oeworde 8511 . . . . . . . 8 ((ω ∈ (On ∖ 2o) ∧ 𝐴 ∈ On) → 𝐴 ⊆ (ω ↑o 𝐴))
86, 2, 7sylancr 587 . . . . . . 7 ((𝐴 ∈ On ∧ 𝑏𝐴 ∧ ω ⊆ 𝑏) → 𝐴 ⊆ (ω ↑o 𝐴))
9 simp2 1137 . . . . . . 7 ((𝐴 ∈ On ∧ 𝑏𝐴 ∧ ω ⊆ 𝑏) → 𝑏𝐴)
108, 9sseldd 3936 . . . . . 6 ((𝐴 ∈ On ∧ 𝑏𝐴 ∧ ω ⊆ 𝑏) → 𝑏 ∈ (ω ↑o 𝐴))
11 cnfcom3c.f . . . . . 6 𝐹 = ((ω CNF 𝐴)‘𝑏)
12 cnfcom3c.g . . . . . 6 𝐺 = OrdIso( E , (𝐹 supp ∅))
13 cnfcom3c.h . . . . . 6 𝐻 = seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (𝑀 +o 𝑧)), ∅)
14 cnfcom3c.t . . . . . 6 𝑇 = seqω((𝑘 ∈ V, 𝑓 ∈ V ↦ 𝐾), ∅)
15 cnfcom3c.m . . . . . 6 𝑀 = ((ω ↑o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘)))
16 cnfcom3c.k . . . . . 6 𝐾 = ((𝑥𝑀 ↦ (dom 𝑓 +o 𝑥)) ∪ (𝑥 ∈ dom 𝑓 ↦ (𝑀 +o 𝑥)))
17 cnfcom3c.w . . . . . 6 𝑊 = (𝐺 dom 𝐺)
18 simp3 1138 . . . . . 6 ((𝐴 ∈ On ∧ 𝑏𝐴 ∧ ω ⊆ 𝑏) → ω ⊆ 𝑏)
191, 2, 10, 11, 12, 13, 14, 15, 16, 17, 18cnfcom3lem 9599 . . . . 5 ((𝐴 ∈ On ∧ 𝑏𝐴 ∧ ω ⊆ 𝑏) → 𝑊 ∈ (On ∖ 1o))
20 cnfcom3c.x . . . . . . 7 𝑋 = (𝑢 ∈ (𝐹𝑊), 𝑣 ∈ (ω ↑o 𝑊) ↦ (((𝐹𝑊) ·o 𝑣) +o 𝑢))
21 cnfcom3c.y . . . . . . 7 𝑌 = (𝑢 ∈ (𝐹𝑊), 𝑣 ∈ (ω ↑o 𝑊) ↦ (((ω ↑o 𝑊) ·o 𝑢) +o 𝑣))
22 cnfcom3c.n . . . . . . 7 𝑁 = ((𝑋𝑌) ∘ (𝑇‘dom 𝐺))
231, 2, 10, 11, 12, 13, 14, 15, 16, 17, 18, 20, 21, 22cnfcom3 9600 . . . . . 6 ((𝐴 ∈ On ∧ 𝑏𝐴 ∧ ω ⊆ 𝑏) → 𝑁:𝑏1-1-onto→(ω ↑o 𝑊))
24 f1of 6764 . . . . . . . . . 10 (𝑁:𝑏1-1-onto→(ω ↑o 𝑊) → 𝑁:𝑏⟶(ω ↑o 𝑊))
2523, 24syl 17 . . . . . . . . 9 ((𝐴 ∈ On ∧ 𝑏𝐴 ∧ ω ⊆ 𝑏) → 𝑁:𝑏⟶(ω ↑o 𝑊))
2625, 9fexd 7163 . . . . . . . 8 ((𝐴 ∈ On ∧ 𝑏𝐴 ∧ ω ⊆ 𝑏) → 𝑁 ∈ V)
27 cnfcom3c.l . . . . . . . . 9 𝐿 = (𝑏 ∈ (ω ↑o 𝐴) ↦ 𝑁)
2827fvmpt2 6941 . . . . . . . 8 ((𝑏 ∈ (ω ↑o 𝐴) ∧ 𝑁 ∈ V) → (𝐿𝑏) = 𝑁)
2910, 26, 28syl2anc 584 . . . . . . 7 ((𝐴 ∈ On ∧ 𝑏𝐴 ∧ ω ⊆ 𝑏) → (𝐿𝑏) = 𝑁)
3029f1oeq1d 6759 . . . . . 6 ((𝐴 ∈ On ∧ 𝑏𝐴 ∧ ω ⊆ 𝑏) → ((𝐿𝑏):𝑏1-1-onto→(ω ↑o 𝑊) ↔ 𝑁:𝑏1-1-onto→(ω ↑o 𝑊)))
3123, 30mpbird 257 . . . . 5 ((𝐴 ∈ On ∧ 𝑏𝐴 ∧ ω ⊆ 𝑏) → (𝐿𝑏):𝑏1-1-onto→(ω ↑o 𝑊))
32 oveq2 7357 . . . . . . 7 (𝑤 = 𝑊 → (ω ↑o 𝑤) = (ω ↑o 𝑊))
3332f1oeq3d 6761 . . . . . 6 (𝑤 = 𝑊 → ((𝐿𝑏):𝑏1-1-onto→(ω ↑o 𝑤) ↔ (𝐿𝑏):𝑏1-1-onto→(ω ↑o 𝑊)))
3433rspcev 3577 . . . . 5 ((𝑊 ∈ (On ∖ 1o) ∧ (𝐿𝑏):𝑏1-1-onto→(ω ↑o 𝑊)) → ∃𝑤 ∈ (On ∖ 1o)(𝐿𝑏):𝑏1-1-onto→(ω ↑o 𝑤))
3519, 31, 34syl2anc 584 . . . 4 ((𝐴 ∈ On ∧ 𝑏𝐴 ∧ ω ⊆ 𝑏) → ∃𝑤 ∈ (On ∖ 1o)(𝐿𝑏):𝑏1-1-onto→(ω ↑o 𝑤))
36353expia 1121 . . 3 ((𝐴 ∈ On ∧ 𝑏𝐴) → (ω ⊆ 𝑏 → ∃𝑤 ∈ (On ∖ 1o)(𝐿𝑏):𝑏1-1-onto→(ω ↑o 𝑤)))
3736ralrimiva 3121 . 2 (𝐴 ∈ On → ∀𝑏𝐴 (ω ⊆ 𝑏 → ∃𝑤 ∈ (On ∖ 1o)(𝐿𝑏):𝑏1-1-onto→(ω ↑o 𝑤)))
38 ovex 7382 . . . . 5 (ω ↑o 𝐴) ∈ V
3938mptex 7159 . . . 4 (𝑏 ∈ (ω ↑o 𝐴) ↦ 𝑁) ∈ V
4027, 39eqeltri 2824 . . 3 𝐿 ∈ V
41 nfmpt1 5191 . . . . . 6 𝑏(𝑏 ∈ (ω ↑o 𝐴) ↦ 𝑁)
4227, 41nfcxfr 2889 . . . . 5 𝑏𝐿
4342nfeq2 2909 . . . 4 𝑏 𝑔 = 𝐿
44 fveq1 6821 . . . . . . 7 (𝑔 = 𝐿 → (𝑔𝑏) = (𝐿𝑏))
4544f1oeq1d 6759 . . . . . 6 (𝑔 = 𝐿 → ((𝑔𝑏):𝑏1-1-onto→(ω ↑o 𝑤) ↔ (𝐿𝑏):𝑏1-1-onto→(ω ↑o 𝑤)))
4645rexbidv 3153 . . . . 5 (𝑔 = 𝐿 → (∃𝑤 ∈ (On ∖ 1o)(𝑔𝑏):𝑏1-1-onto→(ω ↑o 𝑤) ↔ ∃𝑤 ∈ (On ∖ 1o)(𝐿𝑏):𝑏1-1-onto→(ω ↑o 𝑤)))
4746imbi2d 340 . . . 4 (𝑔 = 𝐿 → ((ω ⊆ 𝑏 → ∃𝑤 ∈ (On ∖ 1o)(𝑔𝑏):𝑏1-1-onto→(ω ↑o 𝑤)) ↔ (ω ⊆ 𝑏 → ∃𝑤 ∈ (On ∖ 1o)(𝐿𝑏):𝑏1-1-onto→(ω ↑o 𝑤))))
4843, 47ralbid 3242 . . 3 (𝑔 = 𝐿 → (∀𝑏𝐴 (ω ⊆ 𝑏 → ∃𝑤 ∈ (On ∖ 1o)(𝑔𝑏):𝑏1-1-onto→(ω ↑o 𝑤)) ↔ ∀𝑏𝐴 (ω ⊆ 𝑏 → ∃𝑤 ∈ (On ∖ 1o)(𝐿𝑏):𝑏1-1-onto→(ω ↑o 𝑤))))
4940, 48spcev 3561 . 2 (∀𝑏𝐴 (ω ⊆ 𝑏 → ∃𝑤 ∈ (On ∖ 1o)(𝐿𝑏):𝑏1-1-onto→(ω ↑o 𝑤)) → ∃𝑔𝑏𝐴 (ω ⊆ 𝑏 → ∃𝑤 ∈ (On ∖ 1o)(𝑔𝑏):𝑏1-1-onto→(ω ↑o 𝑤)))
5037, 49syl 17 1 (𝐴 ∈ On → ∃𝑔𝑏𝐴 (ω ⊆ 𝑏 → ∃𝑤 ∈ (On ∖ 1o)(𝑔𝑏):𝑏1-1-onto→(ω ↑o 𝑤)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1540  wex 1779  wcel 2109  wral 3044  wrex 3053  Vcvv 3436  cdif 3900  cun 3901  wss 3903  c0 4284   cuni 4858  cmpt 5173   E cep 5518  ccnv 5618  dom cdm 5619  ccom 5623  Oncon0 6307  wf 6478  1-1-ontowf1o 6481  cfv 6482  (class class class)co 7349  cmpo 7351  ωcom 7799   supp csupp 8093  seqωcseqom 8369  1oc1o 8381  2oc2o 8382   +o coa 8385   ·o comu 8386  o coe 8387  OrdIsocoi 9401   CNF ccnf 9557
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-inf2 9537
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-isom 6491  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-supp 8094  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-seqom 8370  df-1o 8388  df-2o 8389  df-oadd 8392  df-omul 8393  df-oexp 8394  df-er 8625  df-map 8755  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-fsupp 9252  df-oi 9402  df-cnf 9558
This theorem is referenced by:  cnfcom3c  9602
  Copyright terms: Public domain W3C validator