MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnfcom3clem Structured version   Visualization version   GIF version

Theorem cnfcom3clem 9658
Description: Lemma for cnfcom3c 9659. (Contributed by Mario Carneiro, 30-May-2015.) (Revised by AV, 4-Jul-2019.)
Hypotheses
Ref Expression
cnfcom3c.s 𝑆 = dom (ω CNF 𝐴)
cnfcom3c.f 𝐹 = ((ω CNF 𝐴)‘𝑏)
cnfcom3c.g 𝐺 = OrdIso( E , (𝐹 supp ∅))
cnfcom3c.h 𝐻 = seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (𝑀 +o 𝑧)), ∅)
cnfcom3c.t 𝑇 = seqω((𝑘 ∈ V, 𝑓 ∈ V ↦ 𝐾), ∅)
cnfcom3c.m 𝑀 = ((ω ↑o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘)))
cnfcom3c.k 𝐾 = ((𝑥𝑀 ↦ (dom 𝑓 +o 𝑥)) ∪ (𝑥 ∈ dom 𝑓 ↦ (𝑀 +o 𝑥)))
cnfcom3c.w 𝑊 = (𝐺 dom 𝐺)
cnfcom3c.x 𝑋 = (𝑢 ∈ (𝐹𝑊), 𝑣 ∈ (ω ↑o 𝑊) ↦ (((𝐹𝑊) ·o 𝑣) +o 𝑢))
cnfcom3c.y 𝑌 = (𝑢 ∈ (𝐹𝑊), 𝑣 ∈ (ω ↑o 𝑊) ↦ (((ω ↑o 𝑊) ·o 𝑢) +o 𝑣))
cnfcom3c.n 𝑁 = ((𝑋𝑌) ∘ (𝑇‘dom 𝐺))
cnfcom3c.l 𝐿 = (𝑏 ∈ (ω ↑o 𝐴) ↦ 𝑁)
Assertion
Ref Expression
cnfcom3clem (𝐴 ∈ On → ∃𝑔𝑏𝐴 (ω ⊆ 𝑏 → ∃𝑤 ∈ (On ∖ 1o)(𝑔𝑏):𝑏1-1-onto→(ω ↑o 𝑤)))
Distinct variable groups:   𝑔,𝑏,𝑘,𝑢,𝑣,𝑤,𝑥,𝑧,𝐴   𝑢,𝐾,𝑣   𝑔,𝐿,𝑤   𝑥,𝑀   𝑢,𝑇,𝑣,𝑧   𝑓,𝑘,𝑢,𝑣,𝑥,𝑧,𝐹   𝑓,𝐺,𝑘,𝑢,𝑣,𝑥,𝑧   𝑓,𝐻,𝑢,𝑣,𝑥   𝑆,𝑘,𝑧   𝑢,𝑊,𝑣,𝑤,𝑥
Allowed substitution hints:   𝐴(𝑓)   𝑆(𝑥,𝑤,𝑣,𝑢,𝑓,𝑔,𝑏)   𝑇(𝑥,𝑤,𝑓,𝑔,𝑘,𝑏)   𝐹(𝑤,𝑔,𝑏)   𝐺(𝑤,𝑔,𝑏)   𝐻(𝑧,𝑤,𝑔,𝑘,𝑏)   𝐾(𝑥,𝑧,𝑤,𝑓,𝑔,𝑘,𝑏)   𝐿(𝑥,𝑧,𝑣,𝑢,𝑓,𝑘,𝑏)   𝑀(𝑧,𝑤,𝑣,𝑢,𝑓,𝑔,𝑘,𝑏)   𝑁(𝑥,𝑧,𝑤,𝑣,𝑢,𝑓,𝑔,𝑘,𝑏)   𝑊(𝑧,𝑓,𝑔,𝑘,𝑏)   𝑋(𝑥,𝑧,𝑤,𝑣,𝑢,𝑓,𝑔,𝑘,𝑏)   𝑌(𝑥,𝑧,𝑤,𝑣,𝑢,𝑓,𝑔,𝑘,𝑏)

Proof of Theorem cnfcom3clem
StepHypRef Expression
1 cnfcom3c.s . . . . . 6 𝑆 = dom (ω CNF 𝐴)
2 simp1 1136 . . . . . 6 ((𝐴 ∈ On ∧ 𝑏𝐴 ∧ ω ⊆ 𝑏) → 𝐴 ∈ On)
3 omelon 9599 . . . . . . . . 9 ω ∈ On
4 1onn 8604 . . . . . . . . 9 1o ∈ ω
5 ondif2 8466 . . . . . . . . 9 (ω ∈ (On ∖ 2o) ↔ (ω ∈ On ∧ 1o ∈ ω))
63, 4, 5mpbir2an 711 . . . . . . . 8 ω ∈ (On ∖ 2o)
7 oeworde 8557 . . . . . . . 8 ((ω ∈ (On ∖ 2o) ∧ 𝐴 ∈ On) → 𝐴 ⊆ (ω ↑o 𝐴))
86, 2, 7sylancr 587 . . . . . . 7 ((𝐴 ∈ On ∧ 𝑏𝐴 ∧ ω ⊆ 𝑏) → 𝐴 ⊆ (ω ↑o 𝐴))
9 simp2 1137 . . . . . . 7 ((𝐴 ∈ On ∧ 𝑏𝐴 ∧ ω ⊆ 𝑏) → 𝑏𝐴)
108, 9sseldd 3947 . . . . . 6 ((𝐴 ∈ On ∧ 𝑏𝐴 ∧ ω ⊆ 𝑏) → 𝑏 ∈ (ω ↑o 𝐴))
11 cnfcom3c.f . . . . . 6 𝐹 = ((ω CNF 𝐴)‘𝑏)
12 cnfcom3c.g . . . . . 6 𝐺 = OrdIso( E , (𝐹 supp ∅))
13 cnfcom3c.h . . . . . 6 𝐻 = seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (𝑀 +o 𝑧)), ∅)
14 cnfcom3c.t . . . . . 6 𝑇 = seqω((𝑘 ∈ V, 𝑓 ∈ V ↦ 𝐾), ∅)
15 cnfcom3c.m . . . . . 6 𝑀 = ((ω ↑o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘)))
16 cnfcom3c.k . . . . . 6 𝐾 = ((𝑥𝑀 ↦ (dom 𝑓 +o 𝑥)) ∪ (𝑥 ∈ dom 𝑓 ↦ (𝑀 +o 𝑥)))
17 cnfcom3c.w . . . . . 6 𝑊 = (𝐺 dom 𝐺)
18 simp3 1138 . . . . . 6 ((𝐴 ∈ On ∧ 𝑏𝐴 ∧ ω ⊆ 𝑏) → ω ⊆ 𝑏)
191, 2, 10, 11, 12, 13, 14, 15, 16, 17, 18cnfcom3lem 9656 . . . . 5 ((𝐴 ∈ On ∧ 𝑏𝐴 ∧ ω ⊆ 𝑏) → 𝑊 ∈ (On ∖ 1o))
20 cnfcom3c.x . . . . . . 7 𝑋 = (𝑢 ∈ (𝐹𝑊), 𝑣 ∈ (ω ↑o 𝑊) ↦ (((𝐹𝑊) ·o 𝑣) +o 𝑢))
21 cnfcom3c.y . . . . . . 7 𝑌 = (𝑢 ∈ (𝐹𝑊), 𝑣 ∈ (ω ↑o 𝑊) ↦ (((ω ↑o 𝑊) ·o 𝑢) +o 𝑣))
22 cnfcom3c.n . . . . . . 7 𝑁 = ((𝑋𝑌) ∘ (𝑇‘dom 𝐺))
231, 2, 10, 11, 12, 13, 14, 15, 16, 17, 18, 20, 21, 22cnfcom3 9657 . . . . . 6 ((𝐴 ∈ On ∧ 𝑏𝐴 ∧ ω ⊆ 𝑏) → 𝑁:𝑏1-1-onto→(ω ↑o 𝑊))
24 f1of 6800 . . . . . . . . . 10 (𝑁:𝑏1-1-onto→(ω ↑o 𝑊) → 𝑁:𝑏⟶(ω ↑o 𝑊))
2523, 24syl 17 . . . . . . . . 9 ((𝐴 ∈ On ∧ 𝑏𝐴 ∧ ω ⊆ 𝑏) → 𝑁:𝑏⟶(ω ↑o 𝑊))
2625, 9fexd 7201 . . . . . . . 8 ((𝐴 ∈ On ∧ 𝑏𝐴 ∧ ω ⊆ 𝑏) → 𝑁 ∈ V)
27 cnfcom3c.l . . . . . . . . 9 𝐿 = (𝑏 ∈ (ω ↑o 𝐴) ↦ 𝑁)
2827fvmpt2 6979 . . . . . . . 8 ((𝑏 ∈ (ω ↑o 𝐴) ∧ 𝑁 ∈ V) → (𝐿𝑏) = 𝑁)
2910, 26, 28syl2anc 584 . . . . . . 7 ((𝐴 ∈ On ∧ 𝑏𝐴 ∧ ω ⊆ 𝑏) → (𝐿𝑏) = 𝑁)
3029f1oeq1d 6795 . . . . . 6 ((𝐴 ∈ On ∧ 𝑏𝐴 ∧ ω ⊆ 𝑏) → ((𝐿𝑏):𝑏1-1-onto→(ω ↑o 𝑊) ↔ 𝑁:𝑏1-1-onto→(ω ↑o 𝑊)))
3123, 30mpbird 257 . . . . 5 ((𝐴 ∈ On ∧ 𝑏𝐴 ∧ ω ⊆ 𝑏) → (𝐿𝑏):𝑏1-1-onto→(ω ↑o 𝑊))
32 oveq2 7395 . . . . . . 7 (𝑤 = 𝑊 → (ω ↑o 𝑤) = (ω ↑o 𝑊))
3332f1oeq3d 6797 . . . . . 6 (𝑤 = 𝑊 → ((𝐿𝑏):𝑏1-1-onto→(ω ↑o 𝑤) ↔ (𝐿𝑏):𝑏1-1-onto→(ω ↑o 𝑊)))
3433rspcev 3588 . . . . 5 ((𝑊 ∈ (On ∖ 1o) ∧ (𝐿𝑏):𝑏1-1-onto→(ω ↑o 𝑊)) → ∃𝑤 ∈ (On ∖ 1o)(𝐿𝑏):𝑏1-1-onto→(ω ↑o 𝑤))
3519, 31, 34syl2anc 584 . . . 4 ((𝐴 ∈ On ∧ 𝑏𝐴 ∧ ω ⊆ 𝑏) → ∃𝑤 ∈ (On ∖ 1o)(𝐿𝑏):𝑏1-1-onto→(ω ↑o 𝑤))
36353expia 1121 . . 3 ((𝐴 ∈ On ∧ 𝑏𝐴) → (ω ⊆ 𝑏 → ∃𝑤 ∈ (On ∖ 1o)(𝐿𝑏):𝑏1-1-onto→(ω ↑o 𝑤)))
3736ralrimiva 3125 . 2 (𝐴 ∈ On → ∀𝑏𝐴 (ω ⊆ 𝑏 → ∃𝑤 ∈ (On ∖ 1o)(𝐿𝑏):𝑏1-1-onto→(ω ↑o 𝑤)))
38 ovex 7420 . . . . 5 (ω ↑o 𝐴) ∈ V
3938mptex 7197 . . . 4 (𝑏 ∈ (ω ↑o 𝐴) ↦ 𝑁) ∈ V
4027, 39eqeltri 2824 . . 3 𝐿 ∈ V
41 nfmpt1 5206 . . . . . 6 𝑏(𝑏 ∈ (ω ↑o 𝐴) ↦ 𝑁)
4227, 41nfcxfr 2889 . . . . 5 𝑏𝐿
4342nfeq2 2909 . . . 4 𝑏 𝑔 = 𝐿
44 fveq1 6857 . . . . . . 7 (𝑔 = 𝐿 → (𝑔𝑏) = (𝐿𝑏))
4544f1oeq1d 6795 . . . . . 6 (𝑔 = 𝐿 → ((𝑔𝑏):𝑏1-1-onto→(ω ↑o 𝑤) ↔ (𝐿𝑏):𝑏1-1-onto→(ω ↑o 𝑤)))
4645rexbidv 3157 . . . . 5 (𝑔 = 𝐿 → (∃𝑤 ∈ (On ∖ 1o)(𝑔𝑏):𝑏1-1-onto→(ω ↑o 𝑤) ↔ ∃𝑤 ∈ (On ∖ 1o)(𝐿𝑏):𝑏1-1-onto→(ω ↑o 𝑤)))
4746imbi2d 340 . . . 4 (𝑔 = 𝐿 → ((ω ⊆ 𝑏 → ∃𝑤 ∈ (On ∖ 1o)(𝑔𝑏):𝑏1-1-onto→(ω ↑o 𝑤)) ↔ (ω ⊆ 𝑏 → ∃𝑤 ∈ (On ∖ 1o)(𝐿𝑏):𝑏1-1-onto→(ω ↑o 𝑤))))
4843, 47ralbid 3250 . . 3 (𝑔 = 𝐿 → (∀𝑏𝐴 (ω ⊆ 𝑏 → ∃𝑤 ∈ (On ∖ 1o)(𝑔𝑏):𝑏1-1-onto→(ω ↑o 𝑤)) ↔ ∀𝑏𝐴 (ω ⊆ 𝑏 → ∃𝑤 ∈ (On ∖ 1o)(𝐿𝑏):𝑏1-1-onto→(ω ↑o 𝑤))))
4940, 48spcev 3572 . 2 (∀𝑏𝐴 (ω ⊆ 𝑏 → ∃𝑤 ∈ (On ∖ 1o)(𝐿𝑏):𝑏1-1-onto→(ω ↑o 𝑤)) → ∃𝑔𝑏𝐴 (ω ⊆ 𝑏 → ∃𝑤 ∈ (On ∖ 1o)(𝑔𝑏):𝑏1-1-onto→(ω ↑o 𝑤)))
5037, 49syl 17 1 (𝐴 ∈ On → ∃𝑔𝑏𝐴 (ω ⊆ 𝑏 → ∃𝑤 ∈ (On ∖ 1o)(𝑔𝑏):𝑏1-1-onto→(ω ↑o 𝑤)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1540  wex 1779  wcel 2109  wral 3044  wrex 3053  Vcvv 3447  cdif 3911  cun 3912  wss 3914  c0 4296   cuni 4871  cmpt 5188   E cep 5537  ccnv 5637  dom cdm 5638  ccom 5642  Oncon0 6332  wf 6507  1-1-ontowf1o 6510  cfv 6511  (class class class)co 7387  cmpo 7389  ωcom 7842   supp csupp 8139  seqωcseqom 8415  1oc1o 8427  2oc2o 8428   +o coa 8431   ·o comu 8432  o coe 8433  OrdIsocoi 9462   CNF ccnf 9614
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-supp 8140  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-seqom 8416  df-1o 8434  df-2o 8435  df-oadd 8438  df-omul 8439  df-oexp 8440  df-er 8671  df-map 8801  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fsupp 9313  df-oi 9463  df-cnf 9615
This theorem is referenced by:  cnfcom3c  9659
  Copyright terms: Public domain W3C validator