| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rexabsle | Structured version Visualization version GIF version | ||
| Description: An indexed set of absolute values of real numbers is bounded if and only if the original values are bounded above and below. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| Ref | Expression |
|---|---|
| rexabsle.1 | ⊢ Ⅎ𝑥𝜑 |
| rexabsle.2 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) |
| Ref | Expression |
|---|---|
| rexabsle | ⊢ (𝜑 → (∃𝑦 ∈ ℝ ∀𝑥 ∈ 𝐴 (abs‘𝐵) ≤ 𝑦 ↔ (∃𝑤 ∈ ℝ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑤 ∧ ∃𝑧 ∈ ℝ ∀𝑥 ∈ 𝐴 𝑧 ≤ 𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1914 | . . . . 5 ⊢ Ⅎ𝑥 𝑦 = 𝑎 | |
| 2 | breq2 5147 | . . . . 5 ⊢ (𝑦 = 𝑎 → ((abs‘𝐵) ≤ 𝑦 ↔ (abs‘𝐵) ≤ 𝑎)) | |
| 3 | 1, 2 | ralbid 3273 | . . . 4 ⊢ (𝑦 = 𝑎 → (∀𝑥 ∈ 𝐴 (abs‘𝐵) ≤ 𝑦 ↔ ∀𝑥 ∈ 𝐴 (abs‘𝐵) ≤ 𝑎)) |
| 4 | 3 | cbvrexvw 3238 | . . 3 ⊢ (∃𝑦 ∈ ℝ ∀𝑥 ∈ 𝐴 (abs‘𝐵) ≤ 𝑦 ↔ ∃𝑎 ∈ ℝ ∀𝑥 ∈ 𝐴 (abs‘𝐵) ≤ 𝑎) |
| 5 | 4 | a1i 11 | . 2 ⊢ (𝜑 → (∃𝑦 ∈ ℝ ∀𝑥 ∈ 𝐴 (abs‘𝐵) ≤ 𝑦 ↔ ∃𝑎 ∈ ℝ ∀𝑥 ∈ 𝐴 (abs‘𝐵) ≤ 𝑎)) |
| 6 | rexabsle.1 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
| 7 | rexabsle.2 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) | |
| 8 | 6, 7 | rexabslelem 45429 | . 2 ⊢ (𝜑 → (∃𝑎 ∈ ℝ ∀𝑥 ∈ 𝐴 (abs‘𝐵) ≤ 𝑎 ↔ (∃𝑏 ∈ ℝ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑏 ∧ ∃𝑐 ∈ ℝ ∀𝑥 ∈ 𝐴 𝑐 ≤ 𝐵))) |
| 9 | breq2 5147 | . . . . . 6 ⊢ (𝑏 = 𝑤 → (𝐵 ≤ 𝑏 ↔ 𝐵 ≤ 𝑤)) | |
| 10 | 9 | ralbidv 3178 | . . . . 5 ⊢ (𝑏 = 𝑤 → (∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑏 ↔ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑤)) |
| 11 | 10 | cbvrexvw 3238 | . . . 4 ⊢ (∃𝑏 ∈ ℝ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑏 ↔ ∃𝑤 ∈ ℝ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑤) |
| 12 | breq1 5146 | . . . . . 6 ⊢ (𝑐 = 𝑧 → (𝑐 ≤ 𝐵 ↔ 𝑧 ≤ 𝐵)) | |
| 13 | 12 | ralbidv 3178 | . . . . 5 ⊢ (𝑐 = 𝑧 → (∀𝑥 ∈ 𝐴 𝑐 ≤ 𝐵 ↔ ∀𝑥 ∈ 𝐴 𝑧 ≤ 𝐵)) |
| 14 | 13 | cbvrexvw 3238 | . . . 4 ⊢ (∃𝑐 ∈ ℝ ∀𝑥 ∈ 𝐴 𝑐 ≤ 𝐵 ↔ ∃𝑧 ∈ ℝ ∀𝑥 ∈ 𝐴 𝑧 ≤ 𝐵) |
| 15 | 11, 14 | anbi12i 628 | . . 3 ⊢ ((∃𝑏 ∈ ℝ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑏 ∧ ∃𝑐 ∈ ℝ ∀𝑥 ∈ 𝐴 𝑐 ≤ 𝐵) ↔ (∃𝑤 ∈ ℝ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑤 ∧ ∃𝑧 ∈ ℝ ∀𝑥 ∈ 𝐴 𝑧 ≤ 𝐵)) |
| 16 | 15 | a1i 11 | . 2 ⊢ (𝜑 → ((∃𝑏 ∈ ℝ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑏 ∧ ∃𝑐 ∈ ℝ ∀𝑥 ∈ 𝐴 𝑐 ≤ 𝐵) ↔ (∃𝑤 ∈ ℝ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑤 ∧ ∃𝑧 ∈ ℝ ∀𝑥 ∈ 𝐴 𝑧 ≤ 𝐵))) |
| 17 | 5, 8, 16 | 3bitrd 305 | 1 ⊢ (𝜑 → (∃𝑦 ∈ ℝ ∀𝑥 ∈ 𝐴 (abs‘𝐵) ≤ 𝑦 ↔ (∃𝑤 ∈ ℝ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑤 ∧ ∃𝑧 ∈ ℝ ∀𝑥 ∈ 𝐴 𝑧 ≤ 𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 Ⅎwnf 1783 ∈ wcel 2108 ∀wral 3061 ∃wrex 3070 class class class wbr 5143 ‘cfv 6561 ℝcr 11154 ≤ cle 11296 abscabs 15273 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 ax-pre-sup 11233 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-2nd 8015 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-er 8745 df-en 8986 df-dom 8987 df-sdom 8988 df-sup 9482 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-div 11921 df-nn 12267 df-2 12329 df-3 12330 df-n0 12527 df-z 12614 df-uz 12879 df-rp 13035 df-seq 14043 df-exp 14103 df-cj 15138 df-re 15139 df-im 15140 df-sqrt 15274 df-abs 15275 |
| This theorem is referenced by: rexabsle2 45438 |
| Copyright terms: Public domain | W3C validator |