![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > rexabsle | Structured version Visualization version GIF version |
Description: An indexed set of absolute values of real numbers is bounded if and only if the original values are bounded above and below. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
Ref | Expression |
---|---|
rexabsle.1 | ⊢ Ⅎ𝑥𝜑 |
rexabsle.2 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) |
Ref | Expression |
---|---|
rexabsle | ⊢ (𝜑 → (∃𝑦 ∈ ℝ ∀𝑥 ∈ 𝐴 (abs‘𝐵) ≤ 𝑦 ↔ (∃𝑤 ∈ ℝ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑤 ∧ ∃𝑧 ∈ ℝ ∀𝑥 ∈ 𝐴 𝑧 ≤ 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1917 | . . . . 5 ⊢ Ⅎ𝑥 𝑦 = 𝑎 | |
2 | breq2 5152 | . . . . 5 ⊢ (𝑦 = 𝑎 → ((abs‘𝐵) ≤ 𝑦 ↔ (abs‘𝐵) ≤ 𝑎)) | |
3 | 1, 2 | ralbid 3270 | . . . 4 ⊢ (𝑦 = 𝑎 → (∀𝑥 ∈ 𝐴 (abs‘𝐵) ≤ 𝑦 ↔ ∀𝑥 ∈ 𝐴 (abs‘𝐵) ≤ 𝑎)) |
4 | 3 | cbvrexvw 3235 | . . 3 ⊢ (∃𝑦 ∈ ℝ ∀𝑥 ∈ 𝐴 (abs‘𝐵) ≤ 𝑦 ↔ ∃𝑎 ∈ ℝ ∀𝑥 ∈ 𝐴 (abs‘𝐵) ≤ 𝑎) |
5 | 4 | a1i 11 | . 2 ⊢ (𝜑 → (∃𝑦 ∈ ℝ ∀𝑥 ∈ 𝐴 (abs‘𝐵) ≤ 𝑦 ↔ ∃𝑎 ∈ ℝ ∀𝑥 ∈ 𝐴 (abs‘𝐵) ≤ 𝑎)) |
6 | rexabsle.1 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
7 | rexabsle.2 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) | |
8 | 6, 7 | rexabslelem 44118 | . 2 ⊢ (𝜑 → (∃𝑎 ∈ ℝ ∀𝑥 ∈ 𝐴 (abs‘𝐵) ≤ 𝑎 ↔ (∃𝑏 ∈ ℝ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑏 ∧ ∃𝑐 ∈ ℝ ∀𝑥 ∈ 𝐴 𝑐 ≤ 𝐵))) |
9 | breq2 5152 | . . . . . 6 ⊢ (𝑏 = 𝑤 → (𝐵 ≤ 𝑏 ↔ 𝐵 ≤ 𝑤)) | |
10 | 9 | ralbidv 3177 | . . . . 5 ⊢ (𝑏 = 𝑤 → (∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑏 ↔ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑤)) |
11 | 10 | cbvrexvw 3235 | . . . 4 ⊢ (∃𝑏 ∈ ℝ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑏 ↔ ∃𝑤 ∈ ℝ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑤) |
12 | breq1 5151 | . . . . . 6 ⊢ (𝑐 = 𝑧 → (𝑐 ≤ 𝐵 ↔ 𝑧 ≤ 𝐵)) | |
13 | 12 | ralbidv 3177 | . . . . 5 ⊢ (𝑐 = 𝑧 → (∀𝑥 ∈ 𝐴 𝑐 ≤ 𝐵 ↔ ∀𝑥 ∈ 𝐴 𝑧 ≤ 𝐵)) |
14 | 13 | cbvrexvw 3235 | . . . 4 ⊢ (∃𝑐 ∈ ℝ ∀𝑥 ∈ 𝐴 𝑐 ≤ 𝐵 ↔ ∃𝑧 ∈ ℝ ∀𝑥 ∈ 𝐴 𝑧 ≤ 𝐵) |
15 | 11, 14 | anbi12i 627 | . . 3 ⊢ ((∃𝑏 ∈ ℝ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑏 ∧ ∃𝑐 ∈ ℝ ∀𝑥 ∈ 𝐴 𝑐 ≤ 𝐵) ↔ (∃𝑤 ∈ ℝ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑤 ∧ ∃𝑧 ∈ ℝ ∀𝑥 ∈ 𝐴 𝑧 ≤ 𝐵)) |
16 | 15 | a1i 11 | . 2 ⊢ (𝜑 → ((∃𝑏 ∈ ℝ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑏 ∧ ∃𝑐 ∈ ℝ ∀𝑥 ∈ 𝐴 𝑐 ≤ 𝐵) ↔ (∃𝑤 ∈ ℝ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑤 ∧ ∃𝑧 ∈ ℝ ∀𝑥 ∈ 𝐴 𝑧 ≤ 𝐵))) |
17 | 5, 8, 16 | 3bitrd 304 | 1 ⊢ (𝜑 → (∃𝑦 ∈ ℝ ∀𝑥 ∈ 𝐴 (abs‘𝐵) ≤ 𝑦 ↔ (∃𝑤 ∈ ℝ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑤 ∧ ∃𝑧 ∈ ℝ ∀𝑥 ∈ 𝐴 𝑧 ≤ 𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1541 Ⅎwnf 1785 ∈ wcel 2106 ∀wral 3061 ∃wrex 3070 class class class wbr 5148 ‘cfv 6543 ℝcr 11108 ≤ cle 11248 abscabs 15180 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 ax-cnex 11165 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 ax-pre-sup 11187 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7364 df-ov 7411 df-oprab 7412 df-mpo 7413 df-om 7855 df-2nd 7975 df-frecs 8265 df-wrecs 8296 df-recs 8370 df-rdg 8409 df-er 8702 df-en 8939 df-dom 8940 df-sdom 8941 df-sup 9436 df-pnf 11249 df-mnf 11250 df-xr 11251 df-ltxr 11252 df-le 11253 df-sub 11445 df-neg 11446 df-div 11871 df-nn 12212 df-2 12274 df-3 12275 df-n0 12472 df-z 12558 df-uz 12822 df-rp 12974 df-seq 13966 df-exp 14027 df-cj 15045 df-re 15046 df-im 15047 df-sqrt 15181 df-abs 15182 |
This theorem is referenced by: rexabsle2 44127 |
Copyright terms: Public domain | W3C validator |