Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rexabsle Structured version   Visualization version   GIF version

Theorem rexabsle 45430
Description: An indexed set of absolute values of real numbers is bounded if and only if the original values are bounded above and below. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
rexabsle.1 𝑥𝜑
rexabsle.2 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
Assertion
Ref Expression
rexabsle (𝜑 → (∃𝑦 ∈ ℝ ∀𝑥𝐴 (abs‘𝐵) ≤ 𝑦 ↔ (∃𝑤 ∈ ℝ ∀𝑥𝐴 𝐵𝑤 ∧ ∃𝑧 ∈ ℝ ∀𝑥𝐴 𝑧𝐵)))
Distinct variable groups:   𝑤,𝐴   𝑦,𝐴   𝑧,𝐴   𝑤,𝐵   𝑦,𝐵   𝑧,𝐵   𝑥,𝑤   𝑥,𝑦   𝑥,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧,𝑤)   𝐴(𝑥)   𝐵(𝑥)

Proof of Theorem rexabsle
Dummy variables 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfv 1914 . . . . 5 𝑥 𝑦 = 𝑎
2 breq2 5147 . . . . 5 (𝑦 = 𝑎 → ((abs‘𝐵) ≤ 𝑦 ↔ (abs‘𝐵) ≤ 𝑎))
31, 2ralbid 3273 . . . 4 (𝑦 = 𝑎 → (∀𝑥𝐴 (abs‘𝐵) ≤ 𝑦 ↔ ∀𝑥𝐴 (abs‘𝐵) ≤ 𝑎))
43cbvrexvw 3238 . . 3 (∃𝑦 ∈ ℝ ∀𝑥𝐴 (abs‘𝐵) ≤ 𝑦 ↔ ∃𝑎 ∈ ℝ ∀𝑥𝐴 (abs‘𝐵) ≤ 𝑎)
54a1i 11 . 2 (𝜑 → (∃𝑦 ∈ ℝ ∀𝑥𝐴 (abs‘𝐵) ≤ 𝑦 ↔ ∃𝑎 ∈ ℝ ∀𝑥𝐴 (abs‘𝐵) ≤ 𝑎))
6 rexabsle.1 . . 3 𝑥𝜑
7 rexabsle.2 . . 3 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
86, 7rexabslelem 45429 . 2 (𝜑 → (∃𝑎 ∈ ℝ ∀𝑥𝐴 (abs‘𝐵) ≤ 𝑎 ↔ (∃𝑏 ∈ ℝ ∀𝑥𝐴 𝐵𝑏 ∧ ∃𝑐 ∈ ℝ ∀𝑥𝐴 𝑐𝐵)))
9 breq2 5147 . . . . . 6 (𝑏 = 𝑤 → (𝐵𝑏𝐵𝑤))
109ralbidv 3178 . . . . 5 (𝑏 = 𝑤 → (∀𝑥𝐴 𝐵𝑏 ↔ ∀𝑥𝐴 𝐵𝑤))
1110cbvrexvw 3238 . . . 4 (∃𝑏 ∈ ℝ ∀𝑥𝐴 𝐵𝑏 ↔ ∃𝑤 ∈ ℝ ∀𝑥𝐴 𝐵𝑤)
12 breq1 5146 . . . . . 6 (𝑐 = 𝑧 → (𝑐𝐵𝑧𝐵))
1312ralbidv 3178 . . . . 5 (𝑐 = 𝑧 → (∀𝑥𝐴 𝑐𝐵 ↔ ∀𝑥𝐴 𝑧𝐵))
1413cbvrexvw 3238 . . . 4 (∃𝑐 ∈ ℝ ∀𝑥𝐴 𝑐𝐵 ↔ ∃𝑧 ∈ ℝ ∀𝑥𝐴 𝑧𝐵)
1511, 14anbi12i 628 . . 3 ((∃𝑏 ∈ ℝ ∀𝑥𝐴 𝐵𝑏 ∧ ∃𝑐 ∈ ℝ ∀𝑥𝐴 𝑐𝐵) ↔ (∃𝑤 ∈ ℝ ∀𝑥𝐴 𝐵𝑤 ∧ ∃𝑧 ∈ ℝ ∀𝑥𝐴 𝑧𝐵))
1615a1i 11 . 2 (𝜑 → ((∃𝑏 ∈ ℝ ∀𝑥𝐴 𝐵𝑏 ∧ ∃𝑐 ∈ ℝ ∀𝑥𝐴 𝑐𝐵) ↔ (∃𝑤 ∈ ℝ ∀𝑥𝐴 𝐵𝑤 ∧ ∃𝑧 ∈ ℝ ∀𝑥𝐴 𝑧𝐵)))
175, 8, 163bitrd 305 1 (𝜑 → (∃𝑦 ∈ ℝ ∀𝑥𝐴 (abs‘𝐵) ≤ 𝑦 ↔ (∃𝑤 ∈ ℝ ∀𝑥𝐴 𝐵𝑤 ∧ ∃𝑧 ∈ ℝ ∀𝑥𝐴 𝑧𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wnf 1783  wcel 2108  wral 3061  wrex 3070   class class class wbr 5143  cfv 6561  cr 11154  cle 11296  abscabs 15273
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-sup 9482  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-n0 12527  df-z 12614  df-uz 12879  df-rp 13035  df-seq 14043  df-exp 14103  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275
This theorem is referenced by:  rexabsle2  45438
  Copyright terms: Public domain W3C validator