Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rexabsle Structured version   Visualization version   GIF version

Theorem rexabsle 45334
Description: An indexed set of absolute values of real numbers is bounded if and only if the original values are bounded above and below. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
rexabsle.1 𝑥𝜑
rexabsle.2 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
Assertion
Ref Expression
rexabsle (𝜑 → (∃𝑦 ∈ ℝ ∀𝑥𝐴 (abs‘𝐵) ≤ 𝑦 ↔ (∃𝑤 ∈ ℝ ∀𝑥𝐴 𝐵𝑤 ∧ ∃𝑧 ∈ ℝ ∀𝑥𝐴 𝑧𝐵)))
Distinct variable groups:   𝑤,𝐴   𝑦,𝐴   𝑧,𝐴   𝑤,𝐵   𝑦,𝐵   𝑧,𝐵   𝑥,𝑤   𝑥,𝑦   𝑥,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧,𝑤)   𝐴(𝑥)   𝐵(𝑥)

Proof of Theorem rexabsle
Dummy variables 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfv 1913 . . . . 5 𝑥 𝑦 = 𝑎
2 breq2 5170 . . . . 5 (𝑦 = 𝑎 → ((abs‘𝐵) ≤ 𝑦 ↔ (abs‘𝐵) ≤ 𝑎))
31, 2ralbid 3279 . . . 4 (𝑦 = 𝑎 → (∀𝑥𝐴 (abs‘𝐵) ≤ 𝑦 ↔ ∀𝑥𝐴 (abs‘𝐵) ≤ 𝑎))
43cbvrexvw 3244 . . 3 (∃𝑦 ∈ ℝ ∀𝑥𝐴 (abs‘𝐵) ≤ 𝑦 ↔ ∃𝑎 ∈ ℝ ∀𝑥𝐴 (abs‘𝐵) ≤ 𝑎)
54a1i 11 . 2 (𝜑 → (∃𝑦 ∈ ℝ ∀𝑥𝐴 (abs‘𝐵) ≤ 𝑦 ↔ ∃𝑎 ∈ ℝ ∀𝑥𝐴 (abs‘𝐵) ≤ 𝑎))
6 rexabsle.1 . . 3 𝑥𝜑
7 rexabsle.2 . . 3 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
86, 7rexabslelem 45333 . 2 (𝜑 → (∃𝑎 ∈ ℝ ∀𝑥𝐴 (abs‘𝐵) ≤ 𝑎 ↔ (∃𝑏 ∈ ℝ ∀𝑥𝐴 𝐵𝑏 ∧ ∃𝑐 ∈ ℝ ∀𝑥𝐴 𝑐𝐵)))
9 breq2 5170 . . . . . 6 (𝑏 = 𝑤 → (𝐵𝑏𝐵𝑤))
109ralbidv 3184 . . . . 5 (𝑏 = 𝑤 → (∀𝑥𝐴 𝐵𝑏 ↔ ∀𝑥𝐴 𝐵𝑤))
1110cbvrexvw 3244 . . . 4 (∃𝑏 ∈ ℝ ∀𝑥𝐴 𝐵𝑏 ↔ ∃𝑤 ∈ ℝ ∀𝑥𝐴 𝐵𝑤)
12 breq1 5169 . . . . . 6 (𝑐 = 𝑧 → (𝑐𝐵𝑧𝐵))
1312ralbidv 3184 . . . . 5 (𝑐 = 𝑧 → (∀𝑥𝐴 𝑐𝐵 ↔ ∀𝑥𝐴 𝑧𝐵))
1413cbvrexvw 3244 . . . 4 (∃𝑐 ∈ ℝ ∀𝑥𝐴 𝑐𝐵 ↔ ∃𝑧 ∈ ℝ ∀𝑥𝐴 𝑧𝐵)
1511, 14anbi12i 627 . . 3 ((∃𝑏 ∈ ℝ ∀𝑥𝐴 𝐵𝑏 ∧ ∃𝑐 ∈ ℝ ∀𝑥𝐴 𝑐𝐵) ↔ (∃𝑤 ∈ ℝ ∀𝑥𝐴 𝐵𝑤 ∧ ∃𝑧 ∈ ℝ ∀𝑥𝐴 𝑧𝐵))
1615a1i 11 . 2 (𝜑 → ((∃𝑏 ∈ ℝ ∀𝑥𝐴 𝐵𝑏 ∧ ∃𝑐 ∈ ℝ ∀𝑥𝐴 𝑐𝐵) ↔ (∃𝑤 ∈ ℝ ∀𝑥𝐴 𝐵𝑤 ∧ ∃𝑧 ∈ ℝ ∀𝑥𝐴 𝑧𝐵)))
175, 8, 163bitrd 305 1 (𝜑 → (∃𝑦 ∈ ℝ ∀𝑥𝐴 (abs‘𝐵) ≤ 𝑦 ↔ (∃𝑤 ∈ ℝ ∀𝑥𝐴 𝐵𝑤 ∧ ∃𝑧 ∈ ℝ ∀𝑥𝐴 𝑧𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wnf 1781  wcel 2108  wral 3067  wrex 3076   class class class wbr 5166  cfv 6573  cr 11183  cle 11325  abscabs 15283
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-sup 9511  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-n0 12554  df-z 12640  df-uz 12904  df-rp 13058  df-seq 14053  df-exp 14113  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285
This theorem is referenced by:  rexabsle2  45342
  Copyright terms: Public domain W3C validator