![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > rexabsle | Structured version Visualization version GIF version |
Description: An indexed set of absolute values of real numbers is bounded if and only if the original values are bounded above and below. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
Ref | Expression |
---|---|
rexabsle.1 | ⊢ Ⅎ𝑥𝜑 |
rexabsle.2 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) |
Ref | Expression |
---|---|
rexabsle | ⊢ (𝜑 → (∃𝑦 ∈ ℝ ∀𝑥 ∈ 𝐴 (abs‘𝐵) ≤ 𝑦 ↔ (∃𝑤 ∈ ℝ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑤 ∧ ∃𝑧 ∈ ℝ ∀𝑥 ∈ 𝐴 𝑧 ≤ 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1918 | . . . . 5 ⊢ Ⅎ𝑥 𝑦 = 𝑎 | |
2 | breq2 5110 | . . . . 5 ⊢ (𝑦 = 𝑎 → ((abs‘𝐵) ≤ 𝑦 ↔ (abs‘𝐵) ≤ 𝑎)) | |
3 | 1, 2 | ralbid 3255 | . . . 4 ⊢ (𝑦 = 𝑎 → (∀𝑥 ∈ 𝐴 (abs‘𝐵) ≤ 𝑦 ↔ ∀𝑥 ∈ 𝐴 (abs‘𝐵) ≤ 𝑎)) |
4 | 3 | cbvrexvw 3225 | . . 3 ⊢ (∃𝑦 ∈ ℝ ∀𝑥 ∈ 𝐴 (abs‘𝐵) ≤ 𝑦 ↔ ∃𝑎 ∈ ℝ ∀𝑥 ∈ 𝐴 (abs‘𝐵) ≤ 𝑎) |
5 | 4 | a1i 11 | . 2 ⊢ (𝜑 → (∃𝑦 ∈ ℝ ∀𝑥 ∈ 𝐴 (abs‘𝐵) ≤ 𝑦 ↔ ∃𝑎 ∈ ℝ ∀𝑥 ∈ 𝐴 (abs‘𝐵) ≤ 𝑎)) |
6 | rexabsle.1 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
7 | rexabsle.2 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) | |
8 | 6, 7 | rexabslelem 43739 | . 2 ⊢ (𝜑 → (∃𝑎 ∈ ℝ ∀𝑥 ∈ 𝐴 (abs‘𝐵) ≤ 𝑎 ↔ (∃𝑏 ∈ ℝ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑏 ∧ ∃𝑐 ∈ ℝ ∀𝑥 ∈ 𝐴 𝑐 ≤ 𝐵))) |
9 | breq2 5110 | . . . . . 6 ⊢ (𝑏 = 𝑤 → (𝐵 ≤ 𝑏 ↔ 𝐵 ≤ 𝑤)) | |
10 | 9 | ralbidv 3171 | . . . . 5 ⊢ (𝑏 = 𝑤 → (∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑏 ↔ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑤)) |
11 | 10 | cbvrexvw 3225 | . . . 4 ⊢ (∃𝑏 ∈ ℝ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑏 ↔ ∃𝑤 ∈ ℝ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑤) |
12 | breq1 5109 | . . . . . 6 ⊢ (𝑐 = 𝑧 → (𝑐 ≤ 𝐵 ↔ 𝑧 ≤ 𝐵)) | |
13 | 12 | ralbidv 3171 | . . . . 5 ⊢ (𝑐 = 𝑧 → (∀𝑥 ∈ 𝐴 𝑐 ≤ 𝐵 ↔ ∀𝑥 ∈ 𝐴 𝑧 ≤ 𝐵)) |
14 | 13 | cbvrexvw 3225 | . . . 4 ⊢ (∃𝑐 ∈ ℝ ∀𝑥 ∈ 𝐴 𝑐 ≤ 𝐵 ↔ ∃𝑧 ∈ ℝ ∀𝑥 ∈ 𝐴 𝑧 ≤ 𝐵) |
15 | 11, 14 | anbi12i 628 | . . 3 ⊢ ((∃𝑏 ∈ ℝ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑏 ∧ ∃𝑐 ∈ ℝ ∀𝑥 ∈ 𝐴 𝑐 ≤ 𝐵) ↔ (∃𝑤 ∈ ℝ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑤 ∧ ∃𝑧 ∈ ℝ ∀𝑥 ∈ 𝐴 𝑧 ≤ 𝐵)) |
16 | 15 | a1i 11 | . 2 ⊢ (𝜑 → ((∃𝑏 ∈ ℝ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑏 ∧ ∃𝑐 ∈ ℝ ∀𝑥 ∈ 𝐴 𝑐 ≤ 𝐵) ↔ (∃𝑤 ∈ ℝ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑤 ∧ ∃𝑧 ∈ ℝ ∀𝑥 ∈ 𝐴 𝑧 ≤ 𝐵))) |
17 | 5, 8, 16 | 3bitrd 305 | 1 ⊢ (𝜑 → (∃𝑦 ∈ ℝ ∀𝑥 ∈ 𝐴 (abs‘𝐵) ≤ 𝑦 ↔ (∃𝑤 ∈ ℝ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑤 ∧ ∃𝑧 ∈ ℝ ∀𝑥 ∈ 𝐴 𝑧 ≤ 𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 = wceq 1542 Ⅎwnf 1786 ∈ wcel 2107 ∀wral 3061 ∃wrex 3070 class class class wbr 5106 ‘cfv 6497 ℝcr 11055 ≤ cle 11195 abscabs 15125 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5257 ax-nul 5264 ax-pow 5321 ax-pr 5385 ax-un 7673 ax-cnex 11112 ax-resscn 11113 ax-1cn 11114 ax-icn 11115 ax-addcl 11116 ax-addrcl 11117 ax-mulcl 11118 ax-mulrcl 11119 ax-mulcom 11120 ax-addass 11121 ax-mulass 11122 ax-distr 11123 ax-i2m1 11124 ax-1ne0 11125 ax-1rid 11126 ax-rnegex 11127 ax-rrecex 11128 ax-cnre 11129 ax-pre-lttri 11130 ax-pre-lttrn 11131 ax-pre-ltadd 11132 ax-pre-mulgt0 11133 ax-pre-sup 11134 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3352 df-reu 3353 df-rab 3407 df-v 3446 df-sbc 3741 df-csb 3857 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3930 df-nul 4284 df-if 4488 df-pw 4563 df-sn 4588 df-pr 4590 df-op 4594 df-uni 4867 df-iun 4957 df-br 5107 df-opab 5169 df-mpt 5190 df-tr 5224 df-id 5532 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5589 df-we 5591 df-xp 5640 df-rel 5641 df-cnv 5642 df-co 5643 df-dm 5644 df-rn 5645 df-res 5646 df-ima 5647 df-pred 6254 df-ord 6321 df-on 6322 df-lim 6323 df-suc 6324 df-iota 6449 df-fun 6499 df-fn 6500 df-f 6501 df-f1 6502 df-fo 6503 df-f1o 6504 df-fv 6505 df-riota 7314 df-ov 7361 df-oprab 7362 df-mpo 7363 df-om 7804 df-2nd 7923 df-frecs 8213 df-wrecs 8244 df-recs 8318 df-rdg 8357 df-er 8651 df-en 8887 df-dom 8888 df-sdom 8889 df-sup 9383 df-pnf 11196 df-mnf 11197 df-xr 11198 df-ltxr 11199 df-le 11200 df-sub 11392 df-neg 11393 df-div 11818 df-nn 12159 df-2 12221 df-3 12222 df-n0 12419 df-z 12505 df-uz 12769 df-rp 12921 df-seq 13913 df-exp 13974 df-cj 14990 df-re 14991 df-im 14992 df-sqrt 15126 df-abs 15127 |
This theorem is referenced by: rexabsle2 43748 |
Copyright terms: Public domain | W3C validator |