Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > rexabsle | Structured version Visualization version GIF version |
Description: An indexed set of absolute values of real numbers is bounded if and only if the original values are bounded above and below. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
Ref | Expression |
---|---|
rexabsle.1 | ⊢ Ⅎ𝑥𝜑 |
rexabsle.2 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) |
Ref | Expression |
---|---|
rexabsle | ⊢ (𝜑 → (∃𝑦 ∈ ℝ ∀𝑥 ∈ 𝐴 (abs‘𝐵) ≤ 𝑦 ↔ (∃𝑤 ∈ ℝ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑤 ∧ ∃𝑧 ∈ ℝ ∀𝑥 ∈ 𝐴 𝑧 ≤ 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1922 | . . . . 5 ⊢ Ⅎ𝑥 𝑦 = 𝑎 | |
2 | breq2 5057 | . . . . 5 ⊢ (𝑦 = 𝑎 → ((abs‘𝐵) ≤ 𝑦 ↔ (abs‘𝐵) ≤ 𝑎)) | |
3 | 1, 2 | ralbid 3154 | . . . 4 ⊢ (𝑦 = 𝑎 → (∀𝑥 ∈ 𝐴 (abs‘𝐵) ≤ 𝑦 ↔ ∀𝑥 ∈ 𝐴 (abs‘𝐵) ≤ 𝑎)) |
4 | 3 | cbvrexvw 3359 | . . 3 ⊢ (∃𝑦 ∈ ℝ ∀𝑥 ∈ 𝐴 (abs‘𝐵) ≤ 𝑦 ↔ ∃𝑎 ∈ ℝ ∀𝑥 ∈ 𝐴 (abs‘𝐵) ≤ 𝑎) |
5 | 4 | a1i 11 | . 2 ⊢ (𝜑 → (∃𝑦 ∈ ℝ ∀𝑥 ∈ 𝐴 (abs‘𝐵) ≤ 𝑦 ↔ ∃𝑎 ∈ ℝ ∀𝑥 ∈ 𝐴 (abs‘𝐵) ≤ 𝑎)) |
6 | rexabsle.1 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
7 | rexabsle.2 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) | |
8 | 6, 7 | rexabslelem 42631 | . 2 ⊢ (𝜑 → (∃𝑎 ∈ ℝ ∀𝑥 ∈ 𝐴 (abs‘𝐵) ≤ 𝑎 ↔ (∃𝑏 ∈ ℝ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑏 ∧ ∃𝑐 ∈ ℝ ∀𝑥 ∈ 𝐴 𝑐 ≤ 𝐵))) |
9 | breq2 5057 | . . . . . 6 ⊢ (𝑏 = 𝑤 → (𝐵 ≤ 𝑏 ↔ 𝐵 ≤ 𝑤)) | |
10 | 9 | ralbidv 3118 | . . . . 5 ⊢ (𝑏 = 𝑤 → (∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑏 ↔ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑤)) |
11 | 10 | cbvrexvw 3359 | . . . 4 ⊢ (∃𝑏 ∈ ℝ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑏 ↔ ∃𝑤 ∈ ℝ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑤) |
12 | breq1 5056 | . . . . . 6 ⊢ (𝑐 = 𝑧 → (𝑐 ≤ 𝐵 ↔ 𝑧 ≤ 𝐵)) | |
13 | 12 | ralbidv 3118 | . . . . 5 ⊢ (𝑐 = 𝑧 → (∀𝑥 ∈ 𝐴 𝑐 ≤ 𝐵 ↔ ∀𝑥 ∈ 𝐴 𝑧 ≤ 𝐵)) |
14 | 13 | cbvrexvw 3359 | . . . 4 ⊢ (∃𝑐 ∈ ℝ ∀𝑥 ∈ 𝐴 𝑐 ≤ 𝐵 ↔ ∃𝑧 ∈ ℝ ∀𝑥 ∈ 𝐴 𝑧 ≤ 𝐵) |
15 | 11, 14 | anbi12i 630 | . . 3 ⊢ ((∃𝑏 ∈ ℝ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑏 ∧ ∃𝑐 ∈ ℝ ∀𝑥 ∈ 𝐴 𝑐 ≤ 𝐵) ↔ (∃𝑤 ∈ ℝ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑤 ∧ ∃𝑧 ∈ ℝ ∀𝑥 ∈ 𝐴 𝑧 ≤ 𝐵)) |
16 | 15 | a1i 11 | . 2 ⊢ (𝜑 → ((∃𝑏 ∈ ℝ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑏 ∧ ∃𝑐 ∈ ℝ ∀𝑥 ∈ 𝐴 𝑐 ≤ 𝐵) ↔ (∃𝑤 ∈ ℝ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑤 ∧ ∃𝑧 ∈ ℝ ∀𝑥 ∈ 𝐴 𝑧 ≤ 𝐵))) |
17 | 5, 8, 16 | 3bitrd 308 | 1 ⊢ (𝜑 → (∃𝑦 ∈ ℝ ∀𝑥 ∈ 𝐴 (abs‘𝐵) ≤ 𝑦 ↔ (∃𝑤 ∈ ℝ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑤 ∧ ∃𝑧 ∈ ℝ ∀𝑥 ∈ 𝐴 𝑧 ≤ 𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 = wceq 1543 Ⅎwnf 1791 ∈ wcel 2110 ∀wral 3061 ∃wrex 3062 class class class wbr 5053 ‘cfv 6380 ℝcr 10728 ≤ cle 10868 abscabs 14797 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 ax-cnex 10785 ax-resscn 10786 ax-1cn 10787 ax-icn 10788 ax-addcl 10789 ax-addrcl 10790 ax-mulcl 10791 ax-mulrcl 10792 ax-mulcom 10793 ax-addass 10794 ax-mulass 10795 ax-distr 10796 ax-i2m1 10797 ax-1ne0 10798 ax-1rid 10799 ax-rnegex 10800 ax-rrecex 10801 ax-cnre 10802 ax-pre-lttri 10803 ax-pre-lttrn 10804 ax-pre-ltadd 10805 ax-pre-mulgt0 10806 ax-pre-sup 10807 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-pss 3885 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-tp 4546 df-op 4548 df-uni 4820 df-iun 4906 df-br 5054 df-opab 5116 df-mpt 5136 df-tr 5162 df-id 5455 df-eprel 5460 df-po 5468 df-so 5469 df-fr 5509 df-we 5511 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-pred 6160 df-ord 6216 df-on 6217 df-lim 6218 df-suc 6219 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-riota 7170 df-ov 7216 df-oprab 7217 df-mpo 7218 df-om 7645 df-2nd 7762 df-wrecs 8047 df-recs 8108 df-rdg 8146 df-er 8391 df-en 8627 df-dom 8628 df-sdom 8629 df-sup 9058 df-pnf 10869 df-mnf 10870 df-xr 10871 df-ltxr 10872 df-le 10873 df-sub 11064 df-neg 11065 df-div 11490 df-nn 11831 df-2 11893 df-3 11894 df-n0 12091 df-z 12177 df-uz 12439 df-rp 12587 df-seq 13575 df-exp 13636 df-cj 14662 df-re 14663 df-im 14664 df-sqrt 14798 df-abs 14799 |
This theorem is referenced by: rexabsle2 42640 |
Copyright terms: Public domain | W3C validator |