Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  restuni5 Structured version   Visualization version   GIF version

Theorem restuni5 45166
Description: The underlying set of a subspace induced by the t operator. The result can be applied, for instance, to topologies and sigma-algebras. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypothesis
Ref Expression
restuni5.1 𝑋 = 𝐽
Assertion
Ref Expression
restuni5 ((𝐽𝑉𝐴𝑋) → 𝐴 = (𝐽t 𝐴))

Proof of Theorem restuni5
StepHypRef Expression
1 simpl 482 . . 3 ((𝐽𝑉𝐴𝑋) → 𝐽𝑉)
2 id 22 . . . . 5 (𝐴𝑋𝐴𝑋)
3 restuni5.1 . . . . 5 𝑋 = 𝐽
42, 3sseqtrdi 3975 . . . 4 (𝐴𝑋𝐴 𝐽)
54adantl 481 . . 3 ((𝐽𝑉𝐴𝑋) → 𝐴 𝐽)
61, 5restuni4 45164 . 2 ((𝐽𝑉𝐴𝑋) → (𝐽t 𝐴) = 𝐴)
76eqcomd 2737 1 ((𝐽𝑉𝐴𝑋) → 𝐴 = (𝐽t 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  wss 3902   cuni 4859  (class class class)co 7346  t crest 17324
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-rest 17326
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator