Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  restuni5 Structured version   Visualization version   GIF version

Theorem restuni5 45117
Description: The underlying set of a subspace induced by the t operator. The result can be applied, for instance, to topologies and sigma-algebras. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypothesis
Ref Expression
restuni5.1 𝑋 = 𝐽
Assertion
Ref Expression
restuni5 ((𝐽𝑉𝐴𝑋) → 𝐴 = (𝐽t 𝐴))

Proof of Theorem restuni5
StepHypRef Expression
1 simpl 482 . . 3 ((𝐽𝑉𝐴𝑋) → 𝐽𝑉)
2 id 22 . . . . 5 (𝐴𝑋𝐴𝑋)
3 restuni5.1 . . . . 5 𝑋 = 𝐽
42, 3sseqtrdi 3987 . . . 4 (𝐴𝑋𝐴 𝐽)
54adantl 481 . . 3 ((𝐽𝑉𝐴𝑋) → 𝐴 𝐽)
61, 5restuni4 45115 . 2 ((𝐽𝑉𝐴𝑋) → (𝐽t 𝐴) = 𝐴)
76eqcomd 2735 1 ((𝐽𝑉𝐴𝑋) → 𝐴 = (𝐽t 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wss 3914   cuni 4871  (class class class)co 7387  t crest 17383
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-rest 17385
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator