![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > restuni5 | Structured version Visualization version GIF version |
Description: The underlying set of a subspace induced by the ↾t operator. The result can be applied, for instance, to topologies and sigma-algebras. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
Ref | Expression |
---|---|
restuni5.1 | ⊢ 𝑋 = ∪ 𝐽 |
Ref | Expression |
---|---|
restuni5 | ⊢ ((𝐽 ∈ 𝑉 ∧ 𝐴 ⊆ 𝑋) → 𝐴 = ∪ (𝐽 ↾t 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 482 | . . 3 ⊢ ((𝐽 ∈ 𝑉 ∧ 𝐴 ⊆ 𝑋) → 𝐽 ∈ 𝑉) | |
2 | id 22 | . . . . 5 ⊢ (𝐴 ⊆ 𝑋 → 𝐴 ⊆ 𝑋) | |
3 | restuni5.1 | . . . . 5 ⊢ 𝑋 = ∪ 𝐽 | |
4 | 2, 3 | sseqtrdi 4027 | . . . 4 ⊢ (𝐴 ⊆ 𝑋 → 𝐴 ⊆ ∪ 𝐽) |
5 | 4 | adantl 481 | . . 3 ⊢ ((𝐽 ∈ 𝑉 ∧ 𝐴 ⊆ 𝑋) → 𝐴 ⊆ ∪ 𝐽) |
6 | 1, 5 | restuni4 44367 | . 2 ⊢ ((𝐽 ∈ 𝑉 ∧ 𝐴 ⊆ 𝑋) → ∪ (𝐽 ↾t 𝐴) = 𝐴) |
7 | 6 | eqcomd 2732 | 1 ⊢ ((𝐽 ∈ 𝑉 ∧ 𝐴 ⊆ 𝑋) → 𝐴 = ∪ (𝐽 ↾t 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1533 ∈ wcel 2098 ⊆ wss 3943 ∪ cuni 4902 (class class class)co 7404 ↾t crest 17372 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pr 5420 ax-un 7721 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-ral 3056 df-rex 3065 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-if 4524 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-id 5567 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-iota 6488 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-ov 7407 df-oprab 7408 df-mpo 7409 df-rest 17374 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |