Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  restuni6 Structured version   Visualization version   GIF version

Theorem restuni6 45024
Description: The underlying set of a subspace topology. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
restuni6.1 (𝜑𝐴𝑉)
restuni6.2 (𝜑𝐵𝑊)
Assertion
Ref Expression
restuni6 (𝜑 (𝐴t 𝐵) = ( 𝐴𝐵))

Proof of Theorem restuni6
StepHypRef Expression
1 restuni6.1 . . . 4 (𝜑𝐴𝑉)
2 restuni6.2 . . . 4 (𝜑𝐵𝑊)
3 eqid 2740 . . . . 5 𝐴 = 𝐴
43restin 23195 . . . 4 ((𝐴𝑉𝐵𝑊) → (𝐴t 𝐵) = (𝐴t (𝐵 𝐴)))
51, 2, 4syl2anc 583 . . 3 (𝜑 → (𝐴t 𝐵) = (𝐴t (𝐵 𝐴)))
65unieqd 4944 . 2 (𝜑 (𝐴t 𝐵) = (𝐴t (𝐵 𝐴)))
7 inss2 4259 . . . 4 (𝐵 𝐴) ⊆ 𝐴
87a1i 11 . . 3 (𝜑 → (𝐵 𝐴) ⊆ 𝐴)
91, 8restuni4 45023 . 2 (𝜑 (𝐴t (𝐵 𝐴)) = (𝐵 𝐴))
10 incom 4230 . . 3 (𝐵 𝐴) = ( 𝐴𝐵)
1110a1i 11 . 2 (𝜑 → (𝐵 𝐴) = ( 𝐴𝐵))
126, 9, 113eqtrd 2784 1 (𝜑 (𝐴t 𝐵) = ( 𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2108  cin 3975  wss 3976   cuni 4931  (class class class)co 7448  t crest 17480
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-rest 17482
This theorem is referenced by:  unirestss  45026
  Copyright terms: Public domain W3C validator