Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  restuni6 Structured version   Visualization version   GIF version

Theorem restuni6 45246
Description: The underlying set of a subspace topology. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
restuni6.1 (𝜑𝐴𝑉)
restuni6.2 (𝜑𝐵𝑊)
Assertion
Ref Expression
restuni6 (𝜑 (𝐴t 𝐵) = ( 𝐴𝐵))

Proof of Theorem restuni6
StepHypRef Expression
1 restuni6.1 . . . 4 (𝜑𝐴𝑉)
2 restuni6.2 . . . 4 (𝜑𝐵𝑊)
3 eqid 2733 . . . . 5 𝐴 = 𝐴
43restin 23084 . . . 4 ((𝐴𝑉𝐵𝑊) → (𝐴t 𝐵) = (𝐴t (𝐵 𝐴)))
51, 2, 4syl2anc 584 . . 3 (𝜑 → (𝐴t 𝐵) = (𝐴t (𝐵 𝐴)))
65unieqd 4873 . 2 (𝜑 (𝐴t 𝐵) = (𝐴t (𝐵 𝐴)))
7 inss2 4187 . . . 4 (𝐵 𝐴) ⊆ 𝐴
87a1i 11 . . 3 (𝜑 → (𝐵 𝐴) ⊆ 𝐴)
91, 8restuni4 45245 . 2 (𝜑 (𝐴t (𝐵 𝐴)) = (𝐵 𝐴))
10 incom 4158 . . 3 (𝐵 𝐴) = ( 𝐴𝐵)
1110a1i 11 . 2 (𝜑 → (𝐵 𝐴) = ( 𝐴𝐵))
126, 9, 113eqtrd 2772 1 (𝜑 (𝐴t 𝐵) = ( 𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2113  cin 3897  wss 3898   cuni 4860  (class class class)co 7354  t crest 17328
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7676
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-iota 6444  df-fun 6490  df-fn 6491  df-f 6492  df-f1 6493  df-fo 6494  df-f1o 6495  df-fv 6496  df-ov 7357  df-oprab 7358  df-mpo 7359  df-rest 17330
This theorem is referenced by:  unirestss  45248
  Copyright terms: Public domain W3C validator