Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > restuni6 | Structured version Visualization version GIF version |
Description: The underlying set of a subspace topology. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
Ref | Expression |
---|---|
restuni6.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
restuni6.2 | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
Ref | Expression |
---|---|
restuni6 | ⊢ (𝜑 → ∪ (𝐴 ↾t 𝐵) = (∪ 𝐴 ∩ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | restuni6.1 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
2 | restuni6.2 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
3 | eqid 2737 | . . . . 5 ⊢ ∪ 𝐴 = ∪ 𝐴 | |
4 | 3 | restin 22063 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ↾t 𝐵) = (𝐴 ↾t (𝐵 ∩ ∪ 𝐴))) |
5 | 1, 2, 4 | syl2anc 587 | . . 3 ⊢ (𝜑 → (𝐴 ↾t 𝐵) = (𝐴 ↾t (𝐵 ∩ ∪ 𝐴))) |
6 | 5 | unieqd 4833 | . 2 ⊢ (𝜑 → ∪ (𝐴 ↾t 𝐵) = ∪ (𝐴 ↾t (𝐵 ∩ ∪ 𝐴))) |
7 | inss2 4144 | . . . 4 ⊢ (𝐵 ∩ ∪ 𝐴) ⊆ ∪ 𝐴 | |
8 | 7 | a1i 11 | . . 3 ⊢ (𝜑 → (𝐵 ∩ ∪ 𝐴) ⊆ ∪ 𝐴) |
9 | 1, 8 | restuni4 42343 | . 2 ⊢ (𝜑 → ∪ (𝐴 ↾t (𝐵 ∩ ∪ 𝐴)) = (𝐵 ∩ ∪ 𝐴)) |
10 | incom 4115 | . . 3 ⊢ (𝐵 ∩ ∪ 𝐴) = (∪ 𝐴 ∩ 𝐵) | |
11 | 10 | a1i 11 | . 2 ⊢ (𝜑 → (𝐵 ∩ ∪ 𝐴) = (∪ 𝐴 ∩ 𝐵)) |
12 | 6, 9, 11 | 3eqtrd 2781 | 1 ⊢ (𝜑 → ∪ (𝐴 ↾t 𝐵) = (∪ 𝐴 ∩ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1543 ∈ wcel 2110 ∩ cin 3865 ⊆ wss 3866 ∪ cuni 4819 (class class class)co 7213 ↾t crest 16925 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-rep 5179 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-ral 3066 df-rex 3067 df-reu 3068 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-op 4548 df-uni 4820 df-iun 4906 df-br 5054 df-opab 5116 df-mpt 5136 df-id 5455 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-ov 7216 df-oprab 7217 df-mpo 7218 df-rest 16927 |
This theorem is referenced by: unirestss 42346 |
Copyright terms: Public domain | W3C validator |