Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  restuni6 Structured version   Visualization version   GIF version

Theorem restuni6 40838
Description: The underlying set of a subspace topology. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
restuni6.1 (𝜑𝐴𝑉)
restuni6.2 (𝜑𝐵𝑊)
Assertion
Ref Expression
restuni6 (𝜑 (𝐴t 𝐵) = ( 𝐴𝐵))

Proof of Theorem restuni6
StepHypRef Expression
1 restuni6.1 . . . 4 (𝜑𝐴𝑉)
2 restuni6.2 . . . 4 (𝜑𝐵𝑊)
3 eqid 2772 . . . . 5 𝐴 = 𝐴
43restin 21490 . . . 4 ((𝐴𝑉𝐵𝑊) → (𝐴t 𝐵) = (𝐴t (𝐵 𝐴)))
51, 2, 4syl2anc 576 . . 3 (𝜑 → (𝐴t 𝐵) = (𝐴t (𝐵 𝐴)))
65unieqd 4718 . 2 (𝜑 (𝐴t 𝐵) = (𝐴t (𝐵 𝐴)))
7 inss2 4087 . . . 4 (𝐵 𝐴) ⊆ 𝐴
87a1i 11 . . 3 (𝜑 → (𝐵 𝐴) ⊆ 𝐴)
91, 8restuni4 40837 . 2 (𝜑 (𝐴t (𝐵 𝐴)) = (𝐵 𝐴))
10 incom 4060 . . 3 (𝐵 𝐴) = ( 𝐴𝐵)
1110a1i 11 . 2 (𝜑 → (𝐵 𝐴) = ( 𝐴𝐵))
126, 9, 113eqtrd 2812 1 (𝜑 (𝐴t 𝐵) = ( 𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1507  wcel 2050  cin 3822  wss 3823   cuni 4708  (class class class)co 6974  t crest 16548
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2744  ax-rep 5045  ax-sep 5056  ax-nul 5063  ax-pow 5115  ax-pr 5182  ax-un 7277
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2584  df-clab 2753  df-cleq 2765  df-clel 2840  df-nfc 2912  df-ne 2962  df-ral 3087  df-rex 3088  df-reu 3089  df-rab 3091  df-v 3411  df-sbc 3676  df-csb 3781  df-dif 3826  df-un 3828  df-in 3830  df-ss 3837  df-nul 4173  df-if 4345  df-pw 4418  df-sn 4436  df-pr 4438  df-op 4442  df-uni 4709  df-iun 4790  df-br 4926  df-opab 4988  df-mpt 5005  df-id 5308  df-xp 5409  df-rel 5410  df-cnv 5411  df-co 5412  df-dm 5413  df-rn 5414  df-res 5415  df-ima 5416  df-iota 6149  df-fun 6187  df-fn 6188  df-f 6189  df-f1 6190  df-fo 6191  df-f1o 6192  df-fv 6193  df-ov 6977  df-oprab 6978  df-mpo 6979  df-rest 16550
This theorem is referenced by:  unirestss  40840
  Copyright terms: Public domain W3C validator