![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > oawordex | Structured version Visualization version GIF version |
Description: Existence theorem for weak ordering of ordinal sum. Proposition 8.8 of [TakeutiZaring] p. 59 and its converse. See oawordeu 8554 for uniqueness. (Contributed by NM, 12-Dec-2004.) |
Ref | Expression |
---|---|
oawordex | ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ⊆ 𝐵 ↔ ∃𝑥 ∈ On (𝐴 +o 𝑥) = 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oawordeu 8554 | . . . 4 ⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝐴 ⊆ 𝐵) → ∃!𝑥 ∈ On (𝐴 +o 𝑥) = 𝐵) | |
2 | 1 | ex 413 | . . 3 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ⊆ 𝐵 → ∃!𝑥 ∈ On (𝐴 +o 𝑥) = 𝐵)) |
3 | reurex 3380 | . . 3 ⊢ (∃!𝑥 ∈ On (𝐴 +o 𝑥) = 𝐵 → ∃𝑥 ∈ On (𝐴 +o 𝑥) = 𝐵) | |
4 | 2, 3 | syl6 35 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ⊆ 𝐵 → ∃𝑥 ∈ On (𝐴 +o 𝑥) = 𝐵)) |
5 | oawordexr 8555 | . . . 4 ⊢ ((𝐴 ∈ On ∧ ∃𝑥 ∈ On (𝐴 +o 𝑥) = 𝐵) → 𝐴 ⊆ 𝐵) | |
6 | 5 | ex 413 | . . 3 ⊢ (𝐴 ∈ On → (∃𝑥 ∈ On (𝐴 +o 𝑥) = 𝐵 → 𝐴 ⊆ 𝐵)) |
7 | 6 | adantr 481 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (∃𝑥 ∈ On (𝐴 +o 𝑥) = 𝐵 → 𝐴 ⊆ 𝐵)) |
8 | 4, 7 | impbid 211 | 1 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ⊆ 𝐵 ↔ ∃𝑥 ∈ On (𝐴 +o 𝑥) = 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1541 ∈ wcel 2106 ∃wrex 3070 ∃!wreu 3374 ⊆ wss 3948 Oncon0 6364 (class class class)co 7408 +o coa 8462 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pr 5427 ax-un 7724 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7411 df-oprab 7412 df-mpo 7413 df-om 7855 df-2nd 7975 df-frecs 8265 df-wrecs 8296 df-recs 8370 df-rdg 8409 df-oadd 8469 |
This theorem is referenced by: oaordex 8557 oaass 8560 odi 8578 omeulem1 8581 oasubex 42026 oaabsb 42034 oawordex2 42066 oawordex3 42141 |
Copyright terms: Public domain | W3C validator |