MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oawordex Structured version   Visualization version   GIF version

Theorem oawordex 8558
Description: Existence theorem for weak ordering of ordinal sum. Proposition 8.8 of [TakeutiZaring] p. 59 and its converse. See oawordeu 8556 for uniqueness. (Contributed by NM, 12-Dec-2004.)
Assertion
Ref Expression
oawordex ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴𝐵 ↔ ∃𝑥 ∈ On (𝐴 +o 𝑥) = 𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem oawordex
StepHypRef Expression
1 oawordeu 8556 . . . 4 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝐴𝐵) → ∃!𝑥 ∈ On (𝐴 +o 𝑥) = 𝐵)
21ex 412 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴𝐵 → ∃!𝑥 ∈ On (𝐴 +o 𝑥) = 𝐵))
3 reurex 3374 . . 3 (∃!𝑥 ∈ On (𝐴 +o 𝑥) = 𝐵 → ∃𝑥 ∈ On (𝐴 +o 𝑥) = 𝐵)
42, 3syl6 35 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴𝐵 → ∃𝑥 ∈ On (𝐴 +o 𝑥) = 𝐵))
5 oawordexr 8557 . . . 4 ((𝐴 ∈ On ∧ ∃𝑥 ∈ On (𝐴 +o 𝑥) = 𝐵) → 𝐴𝐵)
65ex 412 . . 3 (𝐴 ∈ On → (∃𝑥 ∈ On (𝐴 +o 𝑥) = 𝐵𝐴𝐵))
76adantr 480 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (∃𝑥 ∈ On (𝐴 +o 𝑥) = 𝐵𝐴𝐵))
84, 7impbid 211 1 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴𝐵 ↔ ∃𝑥 ∈ On (𝐴 +o 𝑥) = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1533  wcel 2098  wrex 3064  ∃!wreu 3368  wss 3943  Oncon0 6358  (class class class)co 7405   +o coa 8464
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pr 5420  ax-un 7722
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-ral 3056  df-rex 3065  df-rmo 3370  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-pss 3962  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-int 4944  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-pred 6294  df-ord 6361  df-on 6362  df-lim 6363  df-suc 6364  df-iota 6489  df-fun 6539  df-fn 6540  df-f 6541  df-f1 6542  df-fo 6543  df-f1o 6544  df-fv 6545  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7853  df-2nd 7975  df-frecs 8267  df-wrecs 8298  df-recs 8372  df-rdg 8411  df-oadd 8471
This theorem is referenced by:  oaordex  8559  oaass  8562  odi  8580  omeulem1  8583  oasubex  42609  oaabsb  42617  oawordex2  42649  oawordex3  42724
  Copyright terms: Public domain W3C validator