MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  modprm0 Structured version   Visualization version   GIF version

Theorem modprm0 16434
Description: For two positive integers less than a given prime number there is always a nonnegative integer (less than the given prime number) so that the sum of one of the two positive integers and the other of the positive integers multiplied by the nonnegative integer is 0 ( modulo the given prime number). (Contributed by Alexander van der Vekens, 17-May-2018.)
Assertion
Ref Expression
modprm0 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃)) → ∃𝑗 ∈ (0..^𝑃)((𝐼 + (𝑗 · 𝑁)) mod 𝑃) = 0)
Distinct variable groups:   𝑗,𝐼   𝑗,𝑁   𝑃,𝑗

Proof of Theorem modprm0
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 reumodprminv 16433 . . . 4 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃)) → ∃!𝑟 ∈ (1...(𝑃 − 1))((𝑁 · 𝑟) mod 𝑃) = 1)
2 reurex 3352 . . . 4 (∃!𝑟 ∈ (1...(𝑃 − 1))((𝑁 · 𝑟) mod 𝑃) = 1 → ∃𝑟 ∈ (1...(𝑃 − 1))((𝑁 · 𝑟) mod 𝑃) = 1)
3 prmz 16308 . . . . . . . . . . 11 (𝑃 ∈ ℙ → 𝑃 ∈ ℤ)
433ad2ant1 1131 . . . . . . . . . 10 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃)) → 𝑃 ∈ ℤ)
54adantl 481 . . . . . . . . 9 (((𝑟 ∈ (1...(𝑃 − 1)) ∧ ((𝑁 · 𝑟) mod 𝑃) = 1) ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃))) → 𝑃 ∈ ℤ)
6 elfzelz 13185 . . . . . . . . . . 11 (𝑟 ∈ (1...(𝑃 − 1)) → 𝑟 ∈ ℤ)
76adantr 480 . . . . . . . . . 10 ((𝑟 ∈ (1...(𝑃 − 1)) ∧ ((𝑁 · 𝑟) mod 𝑃) = 1) → 𝑟 ∈ ℤ)
8 elfzoelz 13316 . . . . . . . . . . 11 (𝐼 ∈ (1..^𝑃) → 𝐼 ∈ ℤ)
983ad2ant3 1133 . . . . . . . . . 10 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃)) → 𝐼 ∈ ℤ)
10 zmulcl 12299 . . . . . . . . . 10 ((𝑟 ∈ ℤ ∧ 𝐼 ∈ ℤ) → (𝑟 · 𝐼) ∈ ℤ)
117, 9, 10syl2an 595 . . . . . . . . 9 (((𝑟 ∈ (1...(𝑃 − 1)) ∧ ((𝑁 · 𝑟) mod 𝑃) = 1) ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃))) → (𝑟 · 𝐼) ∈ ℤ)
125, 11zsubcld 12360 . . . . . . . 8 (((𝑟 ∈ (1...(𝑃 − 1)) ∧ ((𝑁 · 𝑟) mod 𝑃) = 1) ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃))) → (𝑃 − (𝑟 · 𝐼)) ∈ ℤ)
13 prmnn 16307 . . . . . . . . . 10 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
14133ad2ant1 1131 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃)) → 𝑃 ∈ ℕ)
1514adantl 481 . . . . . . . 8 (((𝑟 ∈ (1...(𝑃 − 1)) ∧ ((𝑁 · 𝑟) mod 𝑃) = 1) ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃))) → 𝑃 ∈ ℕ)
16 zmodfzo 13542 . . . . . . . 8 (((𝑃 − (𝑟 · 𝐼)) ∈ ℤ ∧ 𝑃 ∈ ℕ) → ((𝑃 − (𝑟 · 𝐼)) mod 𝑃) ∈ (0..^𝑃))
1712, 15, 16syl2anc 583 . . . . . . 7 (((𝑟 ∈ (1...(𝑃 − 1)) ∧ ((𝑁 · 𝑟) mod 𝑃) = 1) ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃))) → ((𝑃 − (𝑟 · 𝐼)) mod 𝑃) ∈ (0..^𝑃))
188zred 12355 . . . . . . . . . . 11 (𝐼 ∈ (1..^𝑃) → 𝐼 ∈ ℝ)
19183ad2ant3 1133 . . . . . . . . . 10 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃)) → 𝐼 ∈ ℝ)
2019adantl 481 . . . . . . . . 9 (((𝑟 ∈ (1...(𝑃 − 1)) ∧ ((𝑁 · 𝑟) mod 𝑃) = 1) ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃))) → 𝐼 ∈ ℝ)
2113nnred 11918 . . . . . . . . . . . 12 (𝑃 ∈ ℙ → 𝑃 ∈ ℝ)
22213ad2ant1 1131 . . . . . . . . . . 11 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃)) → 𝑃 ∈ ℝ)
2322adantl 481 . . . . . . . . . 10 (((𝑟 ∈ (1...(𝑃 − 1)) ∧ ((𝑁 · 𝑟) mod 𝑃) = 1) ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃))) → 𝑃 ∈ ℝ)
246zred 12355 . . . . . . . . . . . 12 (𝑟 ∈ (1...(𝑃 − 1)) → 𝑟 ∈ ℝ)
2524adantr 480 . . . . . . . . . . 11 ((𝑟 ∈ (1...(𝑃 − 1)) ∧ ((𝑁 · 𝑟) mod 𝑃) = 1) → 𝑟 ∈ ℝ)
26 remulcl 10887 . . . . . . . . . . 11 ((𝑟 ∈ ℝ ∧ 𝐼 ∈ ℝ) → (𝑟 · 𝐼) ∈ ℝ)
2725, 19, 26syl2an 595 . . . . . . . . . 10 (((𝑟 ∈ (1...(𝑃 − 1)) ∧ ((𝑁 · 𝑟) mod 𝑃) = 1) ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃))) → (𝑟 · 𝐼) ∈ ℝ)
2823, 27resubcld 11333 . . . . . . . . 9 (((𝑟 ∈ (1...(𝑃 − 1)) ∧ ((𝑁 · 𝑟) mod 𝑃) = 1) ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃))) → (𝑃 − (𝑟 · 𝐼)) ∈ ℝ)
29 elfzoelz 13316 . . . . . . . . . . 11 (𝑁 ∈ (1..^𝑃) → 𝑁 ∈ ℤ)
30293ad2ant2 1132 . . . . . . . . . 10 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃)) → 𝑁 ∈ ℤ)
3130adantl 481 . . . . . . . . 9 (((𝑟 ∈ (1...(𝑃 − 1)) ∧ ((𝑁 · 𝑟) mod 𝑃) = 1) ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃))) → 𝑁 ∈ ℤ)
3213nnrpd 12699 . . . . . . . . . . 11 (𝑃 ∈ ℙ → 𝑃 ∈ ℝ+)
33323ad2ant1 1131 . . . . . . . . . 10 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃)) → 𝑃 ∈ ℝ+)
3433adantl 481 . . . . . . . . 9 (((𝑟 ∈ (1...(𝑃 − 1)) ∧ ((𝑁 · 𝑟) mod 𝑃) = 1) ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃))) → 𝑃 ∈ ℝ+)
35 modaddmulmod 13586 . . . . . . . . 9 (((𝐼 ∈ ℝ ∧ (𝑃 − (𝑟 · 𝐼)) ∈ ℝ ∧ 𝑁 ∈ ℤ) ∧ 𝑃 ∈ ℝ+) → ((𝐼 + (((𝑃 − (𝑟 · 𝐼)) mod 𝑃) · 𝑁)) mod 𝑃) = ((𝐼 + ((𝑃 − (𝑟 · 𝐼)) · 𝑁)) mod 𝑃))
3620, 28, 31, 34, 35syl31anc 1371 . . . . . . . 8 (((𝑟 ∈ (1...(𝑃 − 1)) ∧ ((𝑁 · 𝑟) mod 𝑃) = 1) ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃))) → ((𝐼 + (((𝑃 − (𝑟 · 𝐼)) mod 𝑃) · 𝑁)) mod 𝑃) = ((𝐼 + ((𝑃 − (𝑟 · 𝐼)) · 𝑁)) mod 𝑃))
3713nncnd 11919 . . . . . . . . . . . . 13 (𝑃 ∈ ℙ → 𝑃 ∈ ℂ)
38373ad2ant1 1131 . . . . . . . . . . . 12 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃)) → 𝑃 ∈ ℂ)
3938adantl 481 . . . . . . . . . . 11 (((𝑟 ∈ (1...(𝑃 − 1)) ∧ ((𝑁 · 𝑟) mod 𝑃) = 1) ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃))) → 𝑃 ∈ ℂ)
406zcnd 12356 . . . . . . . . . . . . 13 (𝑟 ∈ (1...(𝑃 − 1)) → 𝑟 ∈ ℂ)
4140adantr 480 . . . . . . . . . . . 12 ((𝑟 ∈ (1...(𝑃 − 1)) ∧ ((𝑁 · 𝑟) mod 𝑃) = 1) → 𝑟 ∈ ℂ)
428zcnd 12356 . . . . . . . . . . . . 13 (𝐼 ∈ (1..^𝑃) → 𝐼 ∈ ℂ)
43423ad2ant3 1133 . . . . . . . . . . . 12 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃)) → 𝐼 ∈ ℂ)
44 mulcl 10886 . . . . . . . . . . . 12 ((𝑟 ∈ ℂ ∧ 𝐼 ∈ ℂ) → (𝑟 · 𝐼) ∈ ℂ)
4541, 43, 44syl2an 595 . . . . . . . . . . 11 (((𝑟 ∈ (1...(𝑃 − 1)) ∧ ((𝑁 · 𝑟) mod 𝑃) = 1) ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃))) → (𝑟 · 𝐼) ∈ ℂ)
4629zcnd 12356 . . . . . . . . . . . . 13 (𝑁 ∈ (1..^𝑃) → 𝑁 ∈ ℂ)
47463ad2ant2 1132 . . . . . . . . . . . 12 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃)) → 𝑁 ∈ ℂ)
4847adantl 481 . . . . . . . . . . 11 (((𝑟 ∈ (1...(𝑃 − 1)) ∧ ((𝑁 · 𝑟) mod 𝑃) = 1) ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃))) → 𝑁 ∈ ℂ)
4939, 45, 48subdird 11362 . . . . . . . . . 10 (((𝑟 ∈ (1...(𝑃 − 1)) ∧ ((𝑁 · 𝑟) mod 𝑃) = 1) ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃))) → ((𝑃 − (𝑟 · 𝐼)) · 𝑁) = ((𝑃 · 𝑁) − ((𝑟 · 𝐼) · 𝑁)))
5049oveq2d 7271 . . . . . . . . 9 (((𝑟 ∈ (1...(𝑃 − 1)) ∧ ((𝑁 · 𝑟) mod 𝑃) = 1) ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃))) → (𝐼 + ((𝑃 − (𝑟 · 𝐼)) · 𝑁)) = (𝐼 + ((𝑃 · 𝑁) − ((𝑟 · 𝐼) · 𝑁))))
5150oveq1d 7270 . . . . . . . 8 (((𝑟 ∈ (1...(𝑃 − 1)) ∧ ((𝑁 · 𝑟) mod 𝑃) = 1) ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃))) → ((𝐼 + ((𝑃 − (𝑟 · 𝐼)) · 𝑁)) mod 𝑃) = ((𝐼 + ((𝑃 · 𝑁) − ((𝑟 · 𝐼) · 𝑁))) mod 𝑃))
52 mulcom 10888 . . . . . . . . . . . . . . . . . . 19 ((𝑃 ∈ ℂ ∧ 𝑁 ∈ ℂ) → (𝑃 · 𝑁) = (𝑁 · 𝑃))
5337, 46, 52syl2an 595 . . . . . . . . . . . . . . . . . 18 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃)) → (𝑃 · 𝑁) = (𝑁 · 𝑃))
5453oveq1d 7270 . . . . . . . . . . . . . . . . 17 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃)) → ((𝑃 · 𝑁) mod 𝑃) = ((𝑁 · 𝑃) mod 𝑃))
55 mulmod0 13525 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ ℤ ∧ 𝑃 ∈ ℝ+) → ((𝑁 · 𝑃) mod 𝑃) = 0)
5629, 32, 55syl2anr 596 . . . . . . . . . . . . . . . . 17 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃)) → ((𝑁 · 𝑃) mod 𝑃) = 0)
5754, 56eqtrd 2778 . . . . . . . . . . . . . . . 16 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃)) → ((𝑃 · 𝑁) mod 𝑃) = 0)
58573adant3 1130 . . . . . . . . . . . . . . 15 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃)) → ((𝑃 · 𝑁) mod 𝑃) = 0)
5958adantl 481 . . . . . . . . . . . . . 14 (((𝑟 ∈ (1...(𝑃 − 1)) ∧ ((𝑁 · 𝑟) mod 𝑃) = 1) ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃))) → ((𝑃 · 𝑁) mod 𝑃) = 0)
6041adantr 480 . . . . . . . . . . . . . . . . 17 (((𝑟 ∈ (1...(𝑃 − 1)) ∧ ((𝑁 · 𝑟) mod 𝑃) = 1) ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃))) → 𝑟 ∈ ℂ)
6143adantl 481 . . . . . . . . . . . . . . . . 17 (((𝑟 ∈ (1...(𝑃 − 1)) ∧ ((𝑁 · 𝑟) mod 𝑃) = 1) ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃))) → 𝐼 ∈ ℂ)
6260, 61, 48mul32d 11115 . . . . . . . . . . . . . . . 16 (((𝑟 ∈ (1...(𝑃 − 1)) ∧ ((𝑁 · 𝑟) mod 𝑃) = 1) ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃))) → ((𝑟 · 𝐼) · 𝑁) = ((𝑟 · 𝑁) · 𝐼))
6362oveq1d 7270 . . . . . . . . . . . . . . 15 (((𝑟 ∈ (1...(𝑃 − 1)) ∧ ((𝑁 · 𝑟) mod 𝑃) = 1) ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃))) → (((𝑟 · 𝐼) · 𝑁) mod 𝑃) = (((𝑟 · 𝑁) · 𝐼) mod 𝑃))
6429zred 12355 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ (1..^𝑃) → 𝑁 ∈ ℝ)
65643ad2ant2 1132 . . . . . . . . . . . . . . . . 17 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃)) → 𝑁 ∈ ℝ)
66 remulcl 10887 . . . . . . . . . . . . . . . . 17 ((𝑟 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝑟 · 𝑁) ∈ ℝ)
6725, 65, 66syl2an 595 . . . . . . . . . . . . . . . 16 (((𝑟 ∈ (1...(𝑃 − 1)) ∧ ((𝑁 · 𝑟) mod 𝑃) = 1) ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃))) → (𝑟 · 𝑁) ∈ ℝ)
689adantl 481 . . . . . . . . . . . . . . . 16 (((𝑟 ∈ (1...(𝑃 − 1)) ∧ ((𝑁 · 𝑟) mod 𝑃) = 1) ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃))) → 𝐼 ∈ ℤ)
69 modmulmod 13584 . . . . . . . . . . . . . . . 16 (((𝑟 · 𝑁) ∈ ℝ ∧ 𝐼 ∈ ℤ ∧ 𝑃 ∈ ℝ+) → ((((𝑟 · 𝑁) mod 𝑃) · 𝐼) mod 𝑃) = (((𝑟 · 𝑁) · 𝐼) mod 𝑃))
7067, 68, 34, 69syl3anc 1369 . . . . . . . . . . . . . . 15 (((𝑟 ∈ (1...(𝑃 − 1)) ∧ ((𝑁 · 𝑟) mod 𝑃) = 1) ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃))) → ((((𝑟 · 𝑁) mod 𝑃) · 𝐼) mod 𝑃) = (((𝑟 · 𝑁) · 𝐼) mod 𝑃))
7163, 70eqtr4d 2781 . . . . . . . . . . . . . 14 (((𝑟 ∈ (1...(𝑃 − 1)) ∧ ((𝑁 · 𝑟) mod 𝑃) = 1) ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃))) → (((𝑟 · 𝐼) · 𝑁) mod 𝑃) = ((((𝑟 · 𝑁) mod 𝑃) · 𝐼) mod 𝑃))
7259, 71oveq12d 7273 . . . . . . . . . . . . 13 (((𝑟 ∈ (1...(𝑃 − 1)) ∧ ((𝑁 · 𝑟) mod 𝑃) = 1) ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃))) → (((𝑃 · 𝑁) mod 𝑃) − (((𝑟 · 𝐼) · 𝑁) mod 𝑃)) = (0 − ((((𝑟 · 𝑁) mod 𝑃) · 𝐼) mod 𝑃)))
7372oveq1d 7270 . . . . . . . . . . . 12 (((𝑟 ∈ (1...(𝑃 − 1)) ∧ ((𝑁 · 𝑟) mod 𝑃) = 1) ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃))) → ((((𝑃 · 𝑁) mod 𝑃) − (((𝑟 · 𝐼) · 𝑁) mod 𝑃)) mod 𝑃) = ((0 − ((((𝑟 · 𝑁) mod 𝑃) · 𝐼) mod 𝑃)) mod 𝑃))
74 remulcl 10887 . . . . . . . . . . . . . . . 16 ((𝑃 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝑃 · 𝑁) ∈ ℝ)
7521, 64, 74syl2an 595 . . . . . . . . . . . . . . 15 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃)) → (𝑃 · 𝑁) ∈ ℝ)
76753adant3 1130 . . . . . . . . . . . . . 14 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃)) → (𝑃 · 𝑁) ∈ ℝ)
7776adantl 481 . . . . . . . . . . . . 13 (((𝑟 ∈ (1...(𝑃 − 1)) ∧ ((𝑁 · 𝑟) mod 𝑃) = 1) ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃))) → (𝑃 · 𝑁) ∈ ℝ)
7865adantl 481 . . . . . . . . . . . . . 14 (((𝑟 ∈ (1...(𝑃 − 1)) ∧ ((𝑁 · 𝑟) mod 𝑃) = 1) ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃))) → 𝑁 ∈ ℝ)
7927, 78remulcld 10936 . . . . . . . . . . . . 13 (((𝑟 ∈ (1...(𝑃 − 1)) ∧ ((𝑁 · 𝑟) mod 𝑃) = 1) ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃))) → ((𝑟 · 𝐼) · 𝑁) ∈ ℝ)
80 modsubmodmod 13578 . . . . . . . . . . . . 13 (((𝑃 · 𝑁) ∈ ℝ ∧ ((𝑟 · 𝐼) · 𝑁) ∈ ℝ ∧ 𝑃 ∈ ℝ+) → ((((𝑃 · 𝑁) mod 𝑃) − (((𝑟 · 𝐼) · 𝑁) mod 𝑃)) mod 𝑃) = (((𝑃 · 𝑁) − ((𝑟 · 𝐼) · 𝑁)) mod 𝑃))
8177, 79, 34, 80syl3anc 1369 . . . . . . . . . . . 12 (((𝑟 ∈ (1...(𝑃 − 1)) ∧ ((𝑁 · 𝑟) mod 𝑃) = 1) ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃))) → ((((𝑃 · 𝑁) mod 𝑃) − (((𝑟 · 𝐼) · 𝑁) mod 𝑃)) mod 𝑃) = (((𝑃 · 𝑁) − ((𝑟 · 𝐼) · 𝑁)) mod 𝑃))
82 mulcom 10888 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑁 ∈ ℂ ∧ 𝑟 ∈ ℂ) → (𝑁 · 𝑟) = (𝑟 · 𝑁))
8347, 40, 82syl2anr 596 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑟 ∈ (1...(𝑃 − 1)) ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃))) → (𝑁 · 𝑟) = (𝑟 · 𝑁))
8483oveq1d 7270 . . . . . . . . . . . . . . . . . . . . 21 ((𝑟 ∈ (1...(𝑃 − 1)) ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃))) → ((𝑁 · 𝑟) mod 𝑃) = ((𝑟 · 𝑁) mod 𝑃))
8584eqeq1d 2740 . . . . . . . . . . . . . . . . . . . 20 ((𝑟 ∈ (1...(𝑃 − 1)) ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃))) → (((𝑁 · 𝑟) mod 𝑃) = 1 ↔ ((𝑟 · 𝑁) mod 𝑃) = 1))
8685biimpd 228 . . . . . . . . . . . . . . . . . . 19 ((𝑟 ∈ (1...(𝑃 − 1)) ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃))) → (((𝑁 · 𝑟) mod 𝑃) = 1 → ((𝑟 · 𝑁) mod 𝑃) = 1))
8786impancom 451 . . . . . . . . . . . . . . . . . 18 ((𝑟 ∈ (1...(𝑃 − 1)) ∧ ((𝑁 · 𝑟) mod 𝑃) = 1) → ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃)) → ((𝑟 · 𝑁) mod 𝑃) = 1))
8887imp 406 . . . . . . . . . . . . . . . . 17 (((𝑟 ∈ (1...(𝑃 − 1)) ∧ ((𝑁 · 𝑟) mod 𝑃) = 1) ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃))) → ((𝑟 · 𝑁) mod 𝑃) = 1)
8988oveq1d 7270 . . . . . . . . . . . . . . . 16 (((𝑟 ∈ (1...(𝑃 − 1)) ∧ ((𝑁 · 𝑟) mod 𝑃) = 1) ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃))) → (((𝑟 · 𝑁) mod 𝑃) · 𝐼) = (1 · 𝐼))
9089oveq1d 7270 . . . . . . . . . . . . . . 15 (((𝑟 ∈ (1...(𝑃 − 1)) ∧ ((𝑁 · 𝑟) mod 𝑃) = 1) ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃))) → ((((𝑟 · 𝑁) mod 𝑃) · 𝐼) mod 𝑃) = ((1 · 𝐼) mod 𝑃))
9190oveq2d 7271 . . . . . . . . . . . . . 14 (((𝑟 ∈ (1...(𝑃 − 1)) ∧ ((𝑁 · 𝑟) mod 𝑃) = 1) ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃))) → (0 − ((((𝑟 · 𝑁) mod 𝑃) · 𝐼) mod 𝑃)) = (0 − ((1 · 𝐼) mod 𝑃)))
9291oveq1d 7270 . . . . . . . . . . . . 13 (((𝑟 ∈ (1...(𝑃 − 1)) ∧ ((𝑁 · 𝑟) mod 𝑃) = 1) ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃))) → ((0 − ((((𝑟 · 𝑁) mod 𝑃) · 𝐼) mod 𝑃)) mod 𝑃) = ((0 − ((1 · 𝐼) mod 𝑃)) mod 𝑃))
9361mulid2d 10924 . . . . . . . . . . . . . . . . 17 (((𝑟 ∈ (1...(𝑃 − 1)) ∧ ((𝑁 · 𝑟) mod 𝑃) = 1) ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃))) → (1 · 𝐼) = 𝐼)
9493oveq1d 7270 . . . . . . . . . . . . . . . 16 (((𝑟 ∈ (1...(𝑃 − 1)) ∧ ((𝑁 · 𝑟) mod 𝑃) = 1) ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃))) → ((1 · 𝐼) mod 𝑃) = (𝐼 mod 𝑃))
9532, 18anim12ci 613 . . . . . . . . . . . . . . . . . . . 20 ((𝑃 ∈ ℙ ∧ 𝐼 ∈ (1..^𝑃)) → (𝐼 ∈ ℝ ∧ 𝑃 ∈ ℝ+))
96 elfzo2 13319 . . . . . . . . . . . . . . . . . . . . . 22 (𝐼 ∈ (1..^𝑃) ↔ (𝐼 ∈ (ℤ‘1) ∧ 𝑃 ∈ ℤ ∧ 𝐼 < 𝑃))
97 eluz2 12517 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝐼 ∈ (ℤ‘1) ↔ (1 ∈ ℤ ∧ 𝐼 ∈ ℤ ∧ 1 ≤ 𝐼))
98 0red 10909 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝐼 ∈ ℤ → 0 ∈ ℝ)
99 1red 10907 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝐼 ∈ ℤ → 1 ∈ ℝ)
100 zre 12253 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝐼 ∈ ℤ → 𝐼 ∈ ℝ)
10198, 99, 1003jca 1126 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝐼 ∈ ℤ → (0 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝐼 ∈ ℝ))
102101adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝐼 ∈ ℤ ∧ 1 ≤ 𝐼) → (0 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝐼 ∈ ℝ))
103 0le1 11428 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 0 ≤ 1
104103a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝐼 ∈ ℤ → 0 ≤ 1)
105104anim1i 614 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝐼 ∈ ℤ ∧ 1 ≤ 𝐼) → (0 ≤ 1 ∧ 1 ≤ 𝐼))
106 letr 10999 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((0 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝐼 ∈ ℝ) → ((0 ≤ 1 ∧ 1 ≤ 𝐼) → 0 ≤ 𝐼))
107102, 105, 106sylc 65 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝐼 ∈ ℤ ∧ 1 ≤ 𝐼) → 0 ≤ 𝐼)
1081073adant1 1128 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((1 ∈ ℤ ∧ 𝐼 ∈ ℤ ∧ 1 ≤ 𝐼) → 0 ≤ 𝐼)
10997, 108sylbi 216 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐼 ∈ (ℤ‘1) → 0 ≤ 𝐼)
1101093ad2ant1 1131 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐼 ∈ (ℤ‘1) ∧ 𝑃 ∈ ℤ ∧ 𝐼 < 𝑃) → 0 ≤ 𝐼)
111 simp3 1136 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐼 ∈ (ℤ‘1) ∧ 𝑃 ∈ ℤ ∧ 𝐼 < 𝑃) → 𝐼 < 𝑃)
112110, 111jca 511 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐼 ∈ (ℤ‘1) ∧ 𝑃 ∈ ℤ ∧ 𝐼 < 𝑃) → (0 ≤ 𝐼𝐼 < 𝑃))
11396, 112sylbi 216 . . . . . . . . . . . . . . . . . . . . 21 (𝐼 ∈ (1..^𝑃) → (0 ≤ 𝐼𝐼 < 𝑃))
114113adantl 481 . . . . . . . . . . . . . . . . . . . 20 ((𝑃 ∈ ℙ ∧ 𝐼 ∈ (1..^𝑃)) → (0 ≤ 𝐼𝐼 < 𝑃))
11595, 114jca 511 . . . . . . . . . . . . . . . . . . 19 ((𝑃 ∈ ℙ ∧ 𝐼 ∈ (1..^𝑃)) → ((𝐼 ∈ ℝ ∧ 𝑃 ∈ ℝ+) ∧ (0 ≤ 𝐼𝐼 < 𝑃)))
1161153adant2 1129 . . . . . . . . . . . . . . . . . 18 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃)) → ((𝐼 ∈ ℝ ∧ 𝑃 ∈ ℝ+) ∧ (0 ≤ 𝐼𝐼 < 𝑃)))
117116adantl 481 . . . . . . . . . . . . . . . . 17 (((𝑟 ∈ (1...(𝑃 − 1)) ∧ ((𝑁 · 𝑟) mod 𝑃) = 1) ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃))) → ((𝐼 ∈ ℝ ∧ 𝑃 ∈ ℝ+) ∧ (0 ≤ 𝐼𝐼 < 𝑃)))
118 modid 13544 . . . . . . . . . . . . . . . . 17 (((𝐼 ∈ ℝ ∧ 𝑃 ∈ ℝ+) ∧ (0 ≤ 𝐼𝐼 < 𝑃)) → (𝐼 mod 𝑃) = 𝐼)
119117, 118syl 17 . . . . . . . . . . . . . . . 16 (((𝑟 ∈ (1...(𝑃 − 1)) ∧ ((𝑁 · 𝑟) mod 𝑃) = 1) ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃))) → (𝐼 mod 𝑃) = 𝐼)
12094, 119eqtrd 2778 . . . . . . . . . . . . . . 15 (((𝑟 ∈ (1...(𝑃 − 1)) ∧ ((𝑁 · 𝑟) mod 𝑃) = 1) ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃))) → ((1 · 𝐼) mod 𝑃) = 𝐼)
121120oveq2d 7271 . . . . . . . . . . . . . 14 (((𝑟 ∈ (1...(𝑃 − 1)) ∧ ((𝑁 · 𝑟) mod 𝑃) = 1) ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃))) → (0 − ((1 · 𝐼) mod 𝑃)) = (0 − 𝐼))
122121oveq1d 7270 . . . . . . . . . . . . 13 (((𝑟 ∈ (1...(𝑃 − 1)) ∧ ((𝑁 · 𝑟) mod 𝑃) = 1) ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃))) → ((0 − ((1 · 𝐼) mod 𝑃)) mod 𝑃) = ((0 − 𝐼) mod 𝑃))
12392, 122eqtrd 2778 . . . . . . . . . . . 12 (((𝑟 ∈ (1...(𝑃 − 1)) ∧ ((𝑁 · 𝑟) mod 𝑃) = 1) ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃))) → ((0 − ((((𝑟 · 𝑁) mod 𝑃) · 𝐼) mod 𝑃)) mod 𝑃) = ((0 − 𝐼) mod 𝑃))
12473, 81, 1233eqtr3d 2786 . . . . . . . . . . 11 (((𝑟 ∈ (1...(𝑃 − 1)) ∧ ((𝑁 · 𝑟) mod 𝑃) = 1) ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃))) → (((𝑃 · 𝑁) − ((𝑟 · 𝐼) · 𝑁)) mod 𝑃) = ((0 − 𝐼) mod 𝑃))
125124oveq2d 7271 . . . . . . . . . 10 (((𝑟 ∈ (1...(𝑃 − 1)) ∧ ((𝑁 · 𝑟) mod 𝑃) = 1) ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃))) → (𝐼 + (((𝑃 · 𝑁) − ((𝑟 · 𝐼) · 𝑁)) mod 𝑃)) = (𝐼 + ((0 − 𝐼) mod 𝑃)))
126125oveq1d 7270 . . . . . . . . 9 (((𝑟 ∈ (1...(𝑃 − 1)) ∧ ((𝑁 · 𝑟) mod 𝑃) = 1) ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃))) → ((𝐼 + (((𝑃 · 𝑁) − ((𝑟 · 𝐼) · 𝑁)) mod 𝑃)) mod 𝑃) = ((𝐼 + ((0 − 𝐼) mod 𝑃)) mod 𝑃))
12777, 79resubcld 11333 . . . . . . . . . 10 (((𝑟 ∈ (1...(𝑃 − 1)) ∧ ((𝑁 · 𝑟) mod 𝑃) = 1) ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃))) → ((𝑃 · 𝑁) − ((𝑟 · 𝐼) · 𝑁)) ∈ ℝ)
128 modadd2mod 13569 . . . . . . . . . 10 ((((𝑃 · 𝑁) − ((𝑟 · 𝐼) · 𝑁)) ∈ ℝ ∧ 𝐼 ∈ ℝ ∧ 𝑃 ∈ ℝ+) → ((𝐼 + (((𝑃 · 𝑁) − ((𝑟 · 𝐼) · 𝑁)) mod 𝑃)) mod 𝑃) = ((𝐼 + ((𝑃 · 𝑁) − ((𝑟 · 𝐼) · 𝑁))) mod 𝑃))
129127, 20, 34, 128syl3anc 1369 . . . . . . . . 9 (((𝑟 ∈ (1...(𝑃 − 1)) ∧ ((𝑁 · 𝑟) mod 𝑃) = 1) ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃))) → ((𝐼 + (((𝑃 · 𝑁) − ((𝑟 · 𝐼) · 𝑁)) mod 𝑃)) mod 𝑃) = ((𝐼 + ((𝑃 · 𝑁) − ((𝑟 · 𝐼) · 𝑁))) mod 𝑃))
130 0red 10909 . . . . . . . . . . . . . . . 16 (𝐼 ∈ (1..^𝑃) → 0 ∈ ℝ)
131130, 18resubcld 11333 . . . . . . . . . . . . . . 15 (𝐼 ∈ (1..^𝑃) → (0 − 𝐼) ∈ ℝ)
132131adantl 481 . . . . . . . . . . . . . 14 ((𝑃 ∈ ℙ ∧ 𝐼 ∈ (1..^𝑃)) → (0 − 𝐼) ∈ ℝ)
13318adantl 481 . . . . . . . . . . . . . 14 ((𝑃 ∈ ℙ ∧ 𝐼 ∈ (1..^𝑃)) → 𝐼 ∈ ℝ)
13432adantr 480 . . . . . . . . . . . . . 14 ((𝑃 ∈ ℙ ∧ 𝐼 ∈ (1..^𝑃)) → 𝑃 ∈ ℝ+)
135132, 133, 1343jca 1126 . . . . . . . . . . . . 13 ((𝑃 ∈ ℙ ∧ 𝐼 ∈ (1..^𝑃)) → ((0 − 𝐼) ∈ ℝ ∧ 𝐼 ∈ ℝ ∧ 𝑃 ∈ ℝ+))
1361353adant2 1129 . . . . . . . . . . . 12 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃)) → ((0 − 𝐼) ∈ ℝ ∧ 𝐼 ∈ ℝ ∧ 𝑃 ∈ ℝ+))
137136adantl 481 . . . . . . . . . . 11 (((𝑟 ∈ (1...(𝑃 − 1)) ∧ ((𝑁 · 𝑟) mod 𝑃) = 1) ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃))) → ((0 − 𝐼) ∈ ℝ ∧ 𝐼 ∈ ℝ ∧ 𝑃 ∈ ℝ+))
138 modadd2mod 13569 . . . . . . . . . . 11 (((0 − 𝐼) ∈ ℝ ∧ 𝐼 ∈ ℝ ∧ 𝑃 ∈ ℝ+) → ((𝐼 + ((0 − 𝐼) mod 𝑃)) mod 𝑃) = ((𝐼 + (0 − 𝐼)) mod 𝑃))
139137, 138syl 17 . . . . . . . . . 10 (((𝑟 ∈ (1...(𝑃 − 1)) ∧ ((𝑁 · 𝑟) mod 𝑃) = 1) ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃))) → ((𝐼 + ((0 − 𝐼) mod 𝑃)) mod 𝑃) = ((𝐼 + (0 − 𝐼)) mod 𝑃))
140 0cnd 10899 . . . . . . . . . . . . . 14 (𝐼 ∈ (1..^𝑃) → 0 ∈ ℂ)
14142, 140pncan3d 11265 . . . . . . . . . . . . 13 (𝐼 ∈ (1..^𝑃) → (𝐼 + (0 − 𝐼)) = 0)
1421413ad2ant3 1133 . . . . . . . . . . . 12 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃)) → (𝐼 + (0 − 𝐼)) = 0)
143142adantl 481 . . . . . . . . . . 11 (((𝑟 ∈ (1...(𝑃 − 1)) ∧ ((𝑁 · 𝑟) mod 𝑃) = 1) ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃))) → (𝐼 + (0 − 𝐼)) = 0)
144143oveq1d 7270 . . . . . . . . . 10 (((𝑟 ∈ (1...(𝑃 − 1)) ∧ ((𝑁 · 𝑟) mod 𝑃) = 1) ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃))) → ((𝐼 + (0 − 𝐼)) mod 𝑃) = (0 mod 𝑃))
145 0mod 13550 . . . . . . . . . . . . 13 (𝑃 ∈ ℝ+ → (0 mod 𝑃) = 0)
14632, 145syl 17 . . . . . . . . . . . 12 (𝑃 ∈ ℙ → (0 mod 𝑃) = 0)
1471463ad2ant1 1131 . . . . . . . . . . 11 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃)) → (0 mod 𝑃) = 0)
148147adantl 481 . . . . . . . . . 10 (((𝑟 ∈ (1...(𝑃 − 1)) ∧ ((𝑁 · 𝑟) mod 𝑃) = 1) ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃))) → (0 mod 𝑃) = 0)
149139, 144, 1483eqtrd 2782 . . . . . . . . 9 (((𝑟 ∈ (1...(𝑃 − 1)) ∧ ((𝑁 · 𝑟) mod 𝑃) = 1) ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃))) → ((𝐼 + ((0 − 𝐼) mod 𝑃)) mod 𝑃) = 0)
150126, 129, 1493eqtr3d 2786 . . . . . . . 8 (((𝑟 ∈ (1...(𝑃 − 1)) ∧ ((𝑁 · 𝑟) mod 𝑃) = 1) ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃))) → ((𝐼 + ((𝑃 · 𝑁) − ((𝑟 · 𝐼) · 𝑁))) mod 𝑃) = 0)
15136, 51, 1503eqtrd 2782 . . . . . . 7 (((𝑟 ∈ (1...(𝑃 − 1)) ∧ ((𝑁 · 𝑟) mod 𝑃) = 1) ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃))) → ((𝐼 + (((𝑃 − (𝑟 · 𝐼)) mod 𝑃) · 𝑁)) mod 𝑃) = 0)
152 oveq1 7262 . . . . . . . . . . 11 (𝑗 = ((𝑃 − (𝑟 · 𝐼)) mod 𝑃) → (𝑗 · 𝑁) = (((𝑃 − (𝑟 · 𝐼)) mod 𝑃) · 𝑁))
153152oveq2d 7271 . . . . . . . . . 10 (𝑗 = ((𝑃 − (𝑟 · 𝐼)) mod 𝑃) → (𝐼 + (𝑗 · 𝑁)) = (𝐼 + (((𝑃 − (𝑟 · 𝐼)) mod 𝑃) · 𝑁)))
154153oveq1d 7270 . . . . . . . . 9 (𝑗 = ((𝑃 − (𝑟 · 𝐼)) mod 𝑃) → ((𝐼 + (𝑗 · 𝑁)) mod 𝑃) = ((𝐼 + (((𝑃 − (𝑟 · 𝐼)) mod 𝑃) · 𝑁)) mod 𝑃))
155154eqeq1d 2740 . . . . . . . 8 (𝑗 = ((𝑃 − (𝑟 · 𝐼)) mod 𝑃) → (((𝐼 + (𝑗 · 𝑁)) mod 𝑃) = 0 ↔ ((𝐼 + (((𝑃 − (𝑟 · 𝐼)) mod 𝑃) · 𝑁)) mod 𝑃) = 0))
156155rspcev 3552 . . . . . . 7 ((((𝑃 − (𝑟 · 𝐼)) mod 𝑃) ∈ (0..^𝑃) ∧ ((𝐼 + (((𝑃 − (𝑟 · 𝐼)) mod 𝑃) · 𝑁)) mod 𝑃) = 0) → ∃𝑗 ∈ (0..^𝑃)((𝐼 + (𝑗 · 𝑁)) mod 𝑃) = 0)
15717, 151, 156syl2anc 583 . . . . . 6 (((𝑟 ∈ (1...(𝑃 − 1)) ∧ ((𝑁 · 𝑟) mod 𝑃) = 1) ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃))) → ∃𝑗 ∈ (0..^𝑃)((𝐼 + (𝑗 · 𝑁)) mod 𝑃) = 0)
158157ex 412 . . . . 5 ((𝑟 ∈ (1...(𝑃 − 1)) ∧ ((𝑁 · 𝑟) mod 𝑃) = 1) → ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃)) → ∃𝑗 ∈ (0..^𝑃)((𝐼 + (𝑗 · 𝑁)) mod 𝑃) = 0))
159158rexlimiva 3209 . . . 4 (∃𝑟 ∈ (1...(𝑃 − 1))((𝑁 · 𝑟) mod 𝑃) = 1 → ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃)) → ∃𝑗 ∈ (0..^𝑃)((𝐼 + (𝑗 · 𝑁)) mod 𝑃) = 0))
1601, 2, 1593syl 18 . . 3 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃)) → ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃)) → ∃𝑗 ∈ (0..^𝑃)((𝐼 + (𝑗 · 𝑁)) mod 𝑃) = 0))
1611603adant3 1130 . 2 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃)) → ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃)) → ∃𝑗 ∈ (0..^𝑃)((𝐼 + (𝑗 · 𝑁)) mod 𝑃) = 0))
162161pm2.43i 52 1 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃)) → ∃𝑗 ∈ (0..^𝑃)((𝐼 + (𝑗 · 𝑁)) mod 𝑃) = 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1539  wcel 2108  wrex 3064  ∃!wreu 3065   class class class wbr 5070  cfv 6418  (class class class)co 7255  cc 10800  cr 10801  0cc0 10802  1c1 10803   + caddc 10805   · cmul 10807   < clt 10940  cle 10941  cmin 11135  cn 11903  cz 12249  cuz 12511  +crp 12659  ...cfz 13168  ..^cfzo 13311   mod cmo 13517  cprime 16304
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-2o 8268  df-oadd 8271  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-sup 9131  df-inf 9132  df-dju 9590  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-n0 12164  df-xnn0 12236  df-z 12250  df-uz 12512  df-rp 12660  df-fz 13169  df-fzo 13312  df-fl 13440  df-mod 13518  df-seq 13650  df-exp 13711  df-hash 13973  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-dvds 15892  df-gcd 16130  df-prm 16305  df-phi 16395
This theorem is referenced by:  nnnn0modprm0  16435
  Copyright terms: Public domain W3C validator