MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  modprm0 Structured version   Visualization version   GIF version

Theorem modprm0 16847
Description: For two positive integers less than a given prime number there is always a nonnegative integer (less than the given prime number) so that the sum of one of the two positive integers and the other of the positive integers multiplied by the nonnegative integer is 0 ( modulo the given prime number). (Contributed by Alexander van der Vekens, 17-May-2018.)
Assertion
Ref Expression
modprm0 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃)) → ∃𝑗 ∈ (0..^𝑃)((𝐼 + (𝑗 · 𝑁)) mod 𝑃) = 0)
Distinct variable groups:   𝑗,𝐼   𝑗,𝑁   𝑃,𝑗

Proof of Theorem modprm0
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 reumodprminv 16846 . . . 4 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃)) → ∃!𝑟 ∈ (1...(𝑃 − 1))((𝑁 · 𝑟) mod 𝑃) = 1)
2 reurex 3387 . . . 4 (∃!𝑟 ∈ (1...(𝑃 − 1))((𝑁 · 𝑟) mod 𝑃) = 1 → ∃𝑟 ∈ (1...(𝑃 − 1))((𝑁 · 𝑟) mod 𝑃) = 1)
3 prmz 16716 . . . . . . . . . . 11 (𝑃 ∈ ℙ → 𝑃 ∈ ℤ)
433ad2ant1 1133 . . . . . . . . . 10 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃)) → 𝑃 ∈ ℤ)
54adantl 481 . . . . . . . . 9 (((𝑟 ∈ (1...(𝑃 − 1)) ∧ ((𝑁 · 𝑟) mod 𝑃) = 1) ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃))) → 𝑃 ∈ ℤ)
6 elfzelz 13580 . . . . . . . . . . 11 (𝑟 ∈ (1...(𝑃 − 1)) → 𝑟 ∈ ℤ)
76adantr 480 . . . . . . . . . 10 ((𝑟 ∈ (1...(𝑃 − 1)) ∧ ((𝑁 · 𝑟) mod 𝑃) = 1) → 𝑟 ∈ ℤ)
8 elfzoelz 13712 . . . . . . . . . . 11 (𝐼 ∈ (1..^𝑃) → 𝐼 ∈ ℤ)
983ad2ant3 1135 . . . . . . . . . 10 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃)) → 𝐼 ∈ ℤ)
10 zmulcl 12688 . . . . . . . . . 10 ((𝑟 ∈ ℤ ∧ 𝐼 ∈ ℤ) → (𝑟 · 𝐼) ∈ ℤ)
117, 9, 10syl2an 595 . . . . . . . . 9 (((𝑟 ∈ (1...(𝑃 − 1)) ∧ ((𝑁 · 𝑟) mod 𝑃) = 1) ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃))) → (𝑟 · 𝐼) ∈ ℤ)
125, 11zsubcld 12748 . . . . . . . 8 (((𝑟 ∈ (1...(𝑃 − 1)) ∧ ((𝑁 · 𝑟) mod 𝑃) = 1) ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃))) → (𝑃 − (𝑟 · 𝐼)) ∈ ℤ)
13 prmnn 16715 . . . . . . . . . 10 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
14133ad2ant1 1133 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃)) → 𝑃 ∈ ℕ)
1514adantl 481 . . . . . . . 8 (((𝑟 ∈ (1...(𝑃 − 1)) ∧ ((𝑁 · 𝑟) mod 𝑃) = 1) ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃))) → 𝑃 ∈ ℕ)
16 zmodfzo 13941 . . . . . . . 8 (((𝑃 − (𝑟 · 𝐼)) ∈ ℤ ∧ 𝑃 ∈ ℕ) → ((𝑃 − (𝑟 · 𝐼)) mod 𝑃) ∈ (0..^𝑃))
1712, 15, 16syl2anc 583 . . . . . . 7 (((𝑟 ∈ (1...(𝑃 − 1)) ∧ ((𝑁 · 𝑟) mod 𝑃) = 1) ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃))) → ((𝑃 − (𝑟 · 𝐼)) mod 𝑃) ∈ (0..^𝑃))
188zred 12743 . . . . . . . . . . 11 (𝐼 ∈ (1..^𝑃) → 𝐼 ∈ ℝ)
19183ad2ant3 1135 . . . . . . . . . 10 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃)) → 𝐼 ∈ ℝ)
2019adantl 481 . . . . . . . . 9 (((𝑟 ∈ (1...(𝑃 − 1)) ∧ ((𝑁 · 𝑟) mod 𝑃) = 1) ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃))) → 𝐼 ∈ ℝ)
2113nnred 12304 . . . . . . . . . . . 12 (𝑃 ∈ ℙ → 𝑃 ∈ ℝ)
22213ad2ant1 1133 . . . . . . . . . . 11 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃)) → 𝑃 ∈ ℝ)
2322adantl 481 . . . . . . . . . 10 (((𝑟 ∈ (1...(𝑃 − 1)) ∧ ((𝑁 · 𝑟) mod 𝑃) = 1) ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃))) → 𝑃 ∈ ℝ)
246zred 12743 . . . . . . . . . . . 12 (𝑟 ∈ (1...(𝑃 − 1)) → 𝑟 ∈ ℝ)
2524adantr 480 . . . . . . . . . . 11 ((𝑟 ∈ (1...(𝑃 − 1)) ∧ ((𝑁 · 𝑟) mod 𝑃) = 1) → 𝑟 ∈ ℝ)
26 remulcl 11265 . . . . . . . . . . 11 ((𝑟 ∈ ℝ ∧ 𝐼 ∈ ℝ) → (𝑟 · 𝐼) ∈ ℝ)
2725, 19, 26syl2an 595 . . . . . . . . . 10 (((𝑟 ∈ (1...(𝑃 − 1)) ∧ ((𝑁 · 𝑟) mod 𝑃) = 1) ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃))) → (𝑟 · 𝐼) ∈ ℝ)
2823, 27resubcld 11714 . . . . . . . . 9 (((𝑟 ∈ (1...(𝑃 − 1)) ∧ ((𝑁 · 𝑟) mod 𝑃) = 1) ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃))) → (𝑃 − (𝑟 · 𝐼)) ∈ ℝ)
29 elfzoelz 13712 . . . . . . . . . . 11 (𝑁 ∈ (1..^𝑃) → 𝑁 ∈ ℤ)
30293ad2ant2 1134 . . . . . . . . . 10 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃)) → 𝑁 ∈ ℤ)
3130adantl 481 . . . . . . . . 9 (((𝑟 ∈ (1...(𝑃 − 1)) ∧ ((𝑁 · 𝑟) mod 𝑃) = 1) ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃))) → 𝑁 ∈ ℤ)
3213nnrpd 13093 . . . . . . . . . . 11 (𝑃 ∈ ℙ → 𝑃 ∈ ℝ+)
33323ad2ant1 1133 . . . . . . . . . 10 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃)) → 𝑃 ∈ ℝ+)
3433adantl 481 . . . . . . . . 9 (((𝑟 ∈ (1...(𝑃 − 1)) ∧ ((𝑁 · 𝑟) mod 𝑃) = 1) ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃))) → 𝑃 ∈ ℝ+)
35 modaddmulmod 13985 . . . . . . . . 9 (((𝐼 ∈ ℝ ∧ (𝑃 − (𝑟 · 𝐼)) ∈ ℝ ∧ 𝑁 ∈ ℤ) ∧ 𝑃 ∈ ℝ+) → ((𝐼 + (((𝑃 − (𝑟 · 𝐼)) mod 𝑃) · 𝑁)) mod 𝑃) = ((𝐼 + ((𝑃 − (𝑟 · 𝐼)) · 𝑁)) mod 𝑃))
3620, 28, 31, 34, 35syl31anc 1373 . . . . . . . 8 (((𝑟 ∈ (1...(𝑃 − 1)) ∧ ((𝑁 · 𝑟) mod 𝑃) = 1) ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃))) → ((𝐼 + (((𝑃 − (𝑟 · 𝐼)) mod 𝑃) · 𝑁)) mod 𝑃) = ((𝐼 + ((𝑃 − (𝑟 · 𝐼)) · 𝑁)) mod 𝑃))
3713nncnd 12305 . . . . . . . . . . . . 13 (𝑃 ∈ ℙ → 𝑃 ∈ ℂ)
38373ad2ant1 1133 . . . . . . . . . . . 12 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃)) → 𝑃 ∈ ℂ)
3938adantl 481 . . . . . . . . . . 11 (((𝑟 ∈ (1...(𝑃 − 1)) ∧ ((𝑁 · 𝑟) mod 𝑃) = 1) ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃))) → 𝑃 ∈ ℂ)
406zcnd 12744 . . . . . . . . . . . . 13 (𝑟 ∈ (1...(𝑃 − 1)) → 𝑟 ∈ ℂ)
4140adantr 480 . . . . . . . . . . . 12 ((𝑟 ∈ (1...(𝑃 − 1)) ∧ ((𝑁 · 𝑟) mod 𝑃) = 1) → 𝑟 ∈ ℂ)
428zcnd 12744 . . . . . . . . . . . . 13 (𝐼 ∈ (1..^𝑃) → 𝐼 ∈ ℂ)
43423ad2ant3 1135 . . . . . . . . . . . 12 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃)) → 𝐼 ∈ ℂ)
44 mulcl 11264 . . . . . . . . . . . 12 ((𝑟 ∈ ℂ ∧ 𝐼 ∈ ℂ) → (𝑟 · 𝐼) ∈ ℂ)
4541, 43, 44syl2an 595 . . . . . . . . . . 11 (((𝑟 ∈ (1...(𝑃 − 1)) ∧ ((𝑁 · 𝑟) mod 𝑃) = 1) ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃))) → (𝑟 · 𝐼) ∈ ℂ)
4629zcnd 12744 . . . . . . . . . . . . 13 (𝑁 ∈ (1..^𝑃) → 𝑁 ∈ ℂ)
47463ad2ant2 1134 . . . . . . . . . . . 12 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃)) → 𝑁 ∈ ℂ)
4847adantl 481 . . . . . . . . . . 11 (((𝑟 ∈ (1...(𝑃 − 1)) ∧ ((𝑁 · 𝑟) mod 𝑃) = 1) ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃))) → 𝑁 ∈ ℂ)
4939, 45, 48subdird 11743 . . . . . . . . . 10 (((𝑟 ∈ (1...(𝑃 − 1)) ∧ ((𝑁 · 𝑟) mod 𝑃) = 1) ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃))) → ((𝑃 − (𝑟 · 𝐼)) · 𝑁) = ((𝑃 · 𝑁) − ((𝑟 · 𝐼) · 𝑁)))
5049oveq2d 7461 . . . . . . . . 9 (((𝑟 ∈ (1...(𝑃 − 1)) ∧ ((𝑁 · 𝑟) mod 𝑃) = 1) ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃))) → (𝐼 + ((𝑃 − (𝑟 · 𝐼)) · 𝑁)) = (𝐼 + ((𝑃 · 𝑁) − ((𝑟 · 𝐼) · 𝑁))))
5150oveq1d 7460 . . . . . . . 8 (((𝑟 ∈ (1...(𝑃 − 1)) ∧ ((𝑁 · 𝑟) mod 𝑃) = 1) ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃))) → ((𝐼 + ((𝑃 − (𝑟 · 𝐼)) · 𝑁)) mod 𝑃) = ((𝐼 + ((𝑃 · 𝑁) − ((𝑟 · 𝐼) · 𝑁))) mod 𝑃))
52 mulcom 11266 . . . . . . . . . . . . . . . . . . 19 ((𝑃 ∈ ℂ ∧ 𝑁 ∈ ℂ) → (𝑃 · 𝑁) = (𝑁 · 𝑃))
5337, 46, 52syl2an 595 . . . . . . . . . . . . . . . . . 18 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃)) → (𝑃 · 𝑁) = (𝑁 · 𝑃))
5453oveq1d 7460 . . . . . . . . . . . . . . . . 17 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃)) → ((𝑃 · 𝑁) mod 𝑃) = ((𝑁 · 𝑃) mod 𝑃))
55 mulmod0 13924 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ ℤ ∧ 𝑃 ∈ ℝ+) → ((𝑁 · 𝑃) mod 𝑃) = 0)
5629, 32, 55syl2anr 596 . . . . . . . . . . . . . . . . 17 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃)) → ((𝑁 · 𝑃) mod 𝑃) = 0)
5754, 56eqtrd 2774 . . . . . . . . . . . . . . . 16 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃)) → ((𝑃 · 𝑁) mod 𝑃) = 0)
58573adant3 1132 . . . . . . . . . . . . . . 15 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃)) → ((𝑃 · 𝑁) mod 𝑃) = 0)
5958adantl 481 . . . . . . . . . . . . . 14 (((𝑟 ∈ (1...(𝑃 − 1)) ∧ ((𝑁 · 𝑟) mod 𝑃) = 1) ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃))) → ((𝑃 · 𝑁) mod 𝑃) = 0)
6041adantr 480 . . . . . . . . . . . . . . . . 17 (((𝑟 ∈ (1...(𝑃 − 1)) ∧ ((𝑁 · 𝑟) mod 𝑃) = 1) ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃))) → 𝑟 ∈ ℂ)
6143adantl 481 . . . . . . . . . . . . . . . . 17 (((𝑟 ∈ (1...(𝑃 − 1)) ∧ ((𝑁 · 𝑟) mod 𝑃) = 1) ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃))) → 𝐼 ∈ ℂ)
6260, 61, 48mul32d 11496 . . . . . . . . . . . . . . . 16 (((𝑟 ∈ (1...(𝑃 − 1)) ∧ ((𝑁 · 𝑟) mod 𝑃) = 1) ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃))) → ((𝑟 · 𝐼) · 𝑁) = ((𝑟 · 𝑁) · 𝐼))
6362oveq1d 7460 . . . . . . . . . . . . . . 15 (((𝑟 ∈ (1...(𝑃 − 1)) ∧ ((𝑁 · 𝑟) mod 𝑃) = 1) ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃))) → (((𝑟 · 𝐼) · 𝑁) mod 𝑃) = (((𝑟 · 𝑁) · 𝐼) mod 𝑃))
6429zred 12743 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ (1..^𝑃) → 𝑁 ∈ ℝ)
65643ad2ant2 1134 . . . . . . . . . . . . . . . . 17 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃)) → 𝑁 ∈ ℝ)
66 remulcl 11265 . . . . . . . . . . . . . . . . 17 ((𝑟 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝑟 · 𝑁) ∈ ℝ)
6725, 65, 66syl2an 595 . . . . . . . . . . . . . . . 16 (((𝑟 ∈ (1...(𝑃 − 1)) ∧ ((𝑁 · 𝑟) mod 𝑃) = 1) ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃))) → (𝑟 · 𝑁) ∈ ℝ)
689adantl 481 . . . . . . . . . . . . . . . 16 (((𝑟 ∈ (1...(𝑃 − 1)) ∧ ((𝑁 · 𝑟) mod 𝑃) = 1) ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃))) → 𝐼 ∈ ℤ)
69 modmulmod 13983 . . . . . . . . . . . . . . . 16 (((𝑟 · 𝑁) ∈ ℝ ∧ 𝐼 ∈ ℤ ∧ 𝑃 ∈ ℝ+) → ((((𝑟 · 𝑁) mod 𝑃) · 𝐼) mod 𝑃) = (((𝑟 · 𝑁) · 𝐼) mod 𝑃))
7067, 68, 34, 69syl3anc 1371 . . . . . . . . . . . . . . 15 (((𝑟 ∈ (1...(𝑃 − 1)) ∧ ((𝑁 · 𝑟) mod 𝑃) = 1) ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃))) → ((((𝑟 · 𝑁) mod 𝑃) · 𝐼) mod 𝑃) = (((𝑟 · 𝑁) · 𝐼) mod 𝑃))
7163, 70eqtr4d 2777 . . . . . . . . . . . . . 14 (((𝑟 ∈ (1...(𝑃 − 1)) ∧ ((𝑁 · 𝑟) mod 𝑃) = 1) ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃))) → (((𝑟 · 𝐼) · 𝑁) mod 𝑃) = ((((𝑟 · 𝑁) mod 𝑃) · 𝐼) mod 𝑃))
7259, 71oveq12d 7463 . . . . . . . . . . . . 13 (((𝑟 ∈ (1...(𝑃 − 1)) ∧ ((𝑁 · 𝑟) mod 𝑃) = 1) ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃))) → (((𝑃 · 𝑁) mod 𝑃) − (((𝑟 · 𝐼) · 𝑁) mod 𝑃)) = (0 − ((((𝑟 · 𝑁) mod 𝑃) · 𝐼) mod 𝑃)))
7372oveq1d 7460 . . . . . . . . . . . 12 (((𝑟 ∈ (1...(𝑃 − 1)) ∧ ((𝑁 · 𝑟) mod 𝑃) = 1) ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃))) → ((((𝑃 · 𝑁) mod 𝑃) − (((𝑟 · 𝐼) · 𝑁) mod 𝑃)) mod 𝑃) = ((0 − ((((𝑟 · 𝑁) mod 𝑃) · 𝐼) mod 𝑃)) mod 𝑃))
74 remulcl 11265 . . . . . . . . . . . . . . . 16 ((𝑃 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝑃 · 𝑁) ∈ ℝ)
7521, 64, 74syl2an 595 . . . . . . . . . . . . . . 15 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃)) → (𝑃 · 𝑁) ∈ ℝ)
76753adant3 1132 . . . . . . . . . . . . . 14 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃)) → (𝑃 · 𝑁) ∈ ℝ)
7776adantl 481 . . . . . . . . . . . . 13 (((𝑟 ∈ (1...(𝑃 − 1)) ∧ ((𝑁 · 𝑟) mod 𝑃) = 1) ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃))) → (𝑃 · 𝑁) ∈ ℝ)
7865adantl 481 . . . . . . . . . . . . . 14 (((𝑟 ∈ (1...(𝑃 − 1)) ∧ ((𝑁 · 𝑟) mod 𝑃) = 1) ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃))) → 𝑁 ∈ ℝ)
7927, 78remulcld 11316 . . . . . . . . . . . . 13 (((𝑟 ∈ (1...(𝑃 − 1)) ∧ ((𝑁 · 𝑟) mod 𝑃) = 1) ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃))) → ((𝑟 · 𝐼) · 𝑁) ∈ ℝ)
80 modsubmodmod 13977 . . . . . . . . . . . . 13 (((𝑃 · 𝑁) ∈ ℝ ∧ ((𝑟 · 𝐼) · 𝑁) ∈ ℝ ∧ 𝑃 ∈ ℝ+) → ((((𝑃 · 𝑁) mod 𝑃) − (((𝑟 · 𝐼) · 𝑁) mod 𝑃)) mod 𝑃) = (((𝑃 · 𝑁) − ((𝑟 · 𝐼) · 𝑁)) mod 𝑃))
8177, 79, 34, 80syl3anc 1371 . . . . . . . . . . . 12 (((𝑟 ∈ (1...(𝑃 − 1)) ∧ ((𝑁 · 𝑟) mod 𝑃) = 1) ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃))) → ((((𝑃 · 𝑁) mod 𝑃) − (((𝑟 · 𝐼) · 𝑁) mod 𝑃)) mod 𝑃) = (((𝑃 · 𝑁) − ((𝑟 · 𝐼) · 𝑁)) mod 𝑃))
82 mulcom 11266 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑁 ∈ ℂ ∧ 𝑟 ∈ ℂ) → (𝑁 · 𝑟) = (𝑟 · 𝑁))
8347, 40, 82syl2anr 596 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑟 ∈ (1...(𝑃 − 1)) ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃))) → (𝑁 · 𝑟) = (𝑟 · 𝑁))
8483oveq1d 7460 . . . . . . . . . . . . . . . . . . . . 21 ((𝑟 ∈ (1...(𝑃 − 1)) ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃))) → ((𝑁 · 𝑟) mod 𝑃) = ((𝑟 · 𝑁) mod 𝑃))
8584eqeq1d 2736 . . . . . . . . . . . . . . . . . . . 20 ((𝑟 ∈ (1...(𝑃 − 1)) ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃))) → (((𝑁 · 𝑟) mod 𝑃) = 1 ↔ ((𝑟 · 𝑁) mod 𝑃) = 1))
8685biimpd 229 . . . . . . . . . . . . . . . . . . 19 ((𝑟 ∈ (1...(𝑃 − 1)) ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃))) → (((𝑁 · 𝑟) mod 𝑃) = 1 → ((𝑟 · 𝑁) mod 𝑃) = 1))
8786impancom 451 . . . . . . . . . . . . . . . . . 18 ((𝑟 ∈ (1...(𝑃 − 1)) ∧ ((𝑁 · 𝑟) mod 𝑃) = 1) → ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃)) → ((𝑟 · 𝑁) mod 𝑃) = 1))
8887imp 406 . . . . . . . . . . . . . . . . 17 (((𝑟 ∈ (1...(𝑃 − 1)) ∧ ((𝑁 · 𝑟) mod 𝑃) = 1) ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃))) → ((𝑟 · 𝑁) mod 𝑃) = 1)
8988oveq1d 7460 . . . . . . . . . . . . . . . 16 (((𝑟 ∈ (1...(𝑃 − 1)) ∧ ((𝑁 · 𝑟) mod 𝑃) = 1) ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃))) → (((𝑟 · 𝑁) mod 𝑃) · 𝐼) = (1 · 𝐼))
9089oveq1d 7460 . . . . . . . . . . . . . . 15 (((𝑟 ∈ (1...(𝑃 − 1)) ∧ ((𝑁 · 𝑟) mod 𝑃) = 1) ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃))) → ((((𝑟 · 𝑁) mod 𝑃) · 𝐼) mod 𝑃) = ((1 · 𝐼) mod 𝑃))
9190oveq2d 7461 . . . . . . . . . . . . . 14 (((𝑟 ∈ (1...(𝑃 − 1)) ∧ ((𝑁 · 𝑟) mod 𝑃) = 1) ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃))) → (0 − ((((𝑟 · 𝑁) mod 𝑃) · 𝐼) mod 𝑃)) = (0 − ((1 · 𝐼) mod 𝑃)))
9291oveq1d 7460 . . . . . . . . . . . . 13 (((𝑟 ∈ (1...(𝑃 − 1)) ∧ ((𝑁 · 𝑟) mod 𝑃) = 1) ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃))) → ((0 − ((((𝑟 · 𝑁) mod 𝑃) · 𝐼) mod 𝑃)) mod 𝑃) = ((0 − ((1 · 𝐼) mod 𝑃)) mod 𝑃))
9361mullidd 11304 . . . . . . . . . . . . . . . . 17 (((𝑟 ∈ (1...(𝑃 − 1)) ∧ ((𝑁 · 𝑟) mod 𝑃) = 1) ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃))) → (1 · 𝐼) = 𝐼)
9493oveq1d 7460 . . . . . . . . . . . . . . . 16 (((𝑟 ∈ (1...(𝑃 − 1)) ∧ ((𝑁 · 𝑟) mod 𝑃) = 1) ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃))) → ((1 · 𝐼) mod 𝑃) = (𝐼 mod 𝑃))
9532, 18anim12ci 613 . . . . . . . . . . . . . . . . . . . 20 ((𝑃 ∈ ℙ ∧ 𝐼 ∈ (1..^𝑃)) → (𝐼 ∈ ℝ ∧ 𝑃 ∈ ℝ+))
96 elfzo2 13715 . . . . . . . . . . . . . . . . . . . . . 22 (𝐼 ∈ (1..^𝑃) ↔ (𝐼 ∈ (ℤ‘1) ∧ 𝑃 ∈ ℤ ∧ 𝐼 < 𝑃))
97 eluz2 12905 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝐼 ∈ (ℤ‘1) ↔ (1 ∈ ℤ ∧ 𝐼 ∈ ℤ ∧ 1 ≤ 𝐼))
98 0red 11289 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝐼 ∈ ℤ → 0 ∈ ℝ)
99 1red 11287 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝐼 ∈ ℤ → 1 ∈ ℝ)
100 zre 12639 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝐼 ∈ ℤ → 𝐼 ∈ ℝ)
10198, 99, 1003jca 1128 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝐼 ∈ ℤ → (0 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝐼 ∈ ℝ))
102101adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝐼 ∈ ℤ ∧ 1 ≤ 𝐼) → (0 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝐼 ∈ ℝ))
103 0le1 11809 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 0 ≤ 1
104103a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝐼 ∈ ℤ → 0 ≤ 1)
105104anim1i 614 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝐼 ∈ ℤ ∧ 1 ≤ 𝐼) → (0 ≤ 1 ∧ 1 ≤ 𝐼))
106 letr 11380 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((0 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝐼 ∈ ℝ) → ((0 ≤ 1 ∧ 1 ≤ 𝐼) → 0 ≤ 𝐼))
107102, 105, 106sylc 65 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝐼 ∈ ℤ ∧ 1 ≤ 𝐼) → 0 ≤ 𝐼)
1081073adant1 1130 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((1 ∈ ℤ ∧ 𝐼 ∈ ℤ ∧ 1 ≤ 𝐼) → 0 ≤ 𝐼)
10997, 108sylbi 217 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐼 ∈ (ℤ‘1) → 0 ≤ 𝐼)
1101093ad2ant1 1133 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐼 ∈ (ℤ‘1) ∧ 𝑃 ∈ ℤ ∧ 𝐼 < 𝑃) → 0 ≤ 𝐼)
111 simp3 1138 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐼 ∈ (ℤ‘1) ∧ 𝑃 ∈ ℤ ∧ 𝐼 < 𝑃) → 𝐼 < 𝑃)
112110, 111jca 511 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐼 ∈ (ℤ‘1) ∧ 𝑃 ∈ ℤ ∧ 𝐼 < 𝑃) → (0 ≤ 𝐼𝐼 < 𝑃))
11396, 112sylbi 217 . . . . . . . . . . . . . . . . . . . . 21 (𝐼 ∈ (1..^𝑃) → (0 ≤ 𝐼𝐼 < 𝑃))
114113adantl 481 . . . . . . . . . . . . . . . . . . . 20 ((𝑃 ∈ ℙ ∧ 𝐼 ∈ (1..^𝑃)) → (0 ≤ 𝐼𝐼 < 𝑃))
11595, 114jca 511 . . . . . . . . . . . . . . . . . . 19 ((𝑃 ∈ ℙ ∧ 𝐼 ∈ (1..^𝑃)) → ((𝐼 ∈ ℝ ∧ 𝑃 ∈ ℝ+) ∧ (0 ≤ 𝐼𝐼 < 𝑃)))
1161153adant2 1131 . . . . . . . . . . . . . . . . . 18 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃)) → ((𝐼 ∈ ℝ ∧ 𝑃 ∈ ℝ+) ∧ (0 ≤ 𝐼𝐼 < 𝑃)))
117116adantl 481 . . . . . . . . . . . . . . . . 17 (((𝑟 ∈ (1...(𝑃 − 1)) ∧ ((𝑁 · 𝑟) mod 𝑃) = 1) ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃))) → ((𝐼 ∈ ℝ ∧ 𝑃 ∈ ℝ+) ∧ (0 ≤ 𝐼𝐼 < 𝑃)))
118 modid 13943 . . . . . . . . . . . . . . . . 17 (((𝐼 ∈ ℝ ∧ 𝑃 ∈ ℝ+) ∧ (0 ≤ 𝐼𝐼 < 𝑃)) → (𝐼 mod 𝑃) = 𝐼)
119117, 118syl 17 . . . . . . . . . . . . . . . 16 (((𝑟 ∈ (1...(𝑃 − 1)) ∧ ((𝑁 · 𝑟) mod 𝑃) = 1) ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃))) → (𝐼 mod 𝑃) = 𝐼)
12094, 119eqtrd 2774 . . . . . . . . . . . . . . 15 (((𝑟 ∈ (1...(𝑃 − 1)) ∧ ((𝑁 · 𝑟) mod 𝑃) = 1) ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃))) → ((1 · 𝐼) mod 𝑃) = 𝐼)
121120oveq2d 7461 . . . . . . . . . . . . . 14 (((𝑟 ∈ (1...(𝑃 − 1)) ∧ ((𝑁 · 𝑟) mod 𝑃) = 1) ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃))) → (0 − ((1 · 𝐼) mod 𝑃)) = (0 − 𝐼))
122121oveq1d 7460 . . . . . . . . . . . . 13 (((𝑟 ∈ (1...(𝑃 − 1)) ∧ ((𝑁 · 𝑟) mod 𝑃) = 1) ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃))) → ((0 − ((1 · 𝐼) mod 𝑃)) mod 𝑃) = ((0 − 𝐼) mod 𝑃))
12392, 122eqtrd 2774 . . . . . . . . . . . 12 (((𝑟 ∈ (1...(𝑃 − 1)) ∧ ((𝑁 · 𝑟) mod 𝑃) = 1) ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃))) → ((0 − ((((𝑟 · 𝑁) mod 𝑃) · 𝐼) mod 𝑃)) mod 𝑃) = ((0 − 𝐼) mod 𝑃))
12473, 81, 1233eqtr3d 2782 . . . . . . . . . . 11 (((𝑟 ∈ (1...(𝑃 − 1)) ∧ ((𝑁 · 𝑟) mod 𝑃) = 1) ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃))) → (((𝑃 · 𝑁) − ((𝑟 · 𝐼) · 𝑁)) mod 𝑃) = ((0 − 𝐼) mod 𝑃))
125124oveq2d 7461 . . . . . . . . . 10 (((𝑟 ∈ (1...(𝑃 − 1)) ∧ ((𝑁 · 𝑟) mod 𝑃) = 1) ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃))) → (𝐼 + (((𝑃 · 𝑁) − ((𝑟 · 𝐼) · 𝑁)) mod 𝑃)) = (𝐼 + ((0 − 𝐼) mod 𝑃)))
126125oveq1d 7460 . . . . . . . . 9 (((𝑟 ∈ (1...(𝑃 − 1)) ∧ ((𝑁 · 𝑟) mod 𝑃) = 1) ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃))) → ((𝐼 + (((𝑃 · 𝑁) − ((𝑟 · 𝐼) · 𝑁)) mod 𝑃)) mod 𝑃) = ((𝐼 + ((0 − 𝐼) mod 𝑃)) mod 𝑃))
12777, 79resubcld 11714 . . . . . . . . . 10 (((𝑟 ∈ (1...(𝑃 − 1)) ∧ ((𝑁 · 𝑟) mod 𝑃) = 1) ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃))) → ((𝑃 · 𝑁) − ((𝑟 · 𝐼) · 𝑁)) ∈ ℝ)
128 modadd2mod 13968 . . . . . . . . . 10 ((((𝑃 · 𝑁) − ((𝑟 · 𝐼) · 𝑁)) ∈ ℝ ∧ 𝐼 ∈ ℝ ∧ 𝑃 ∈ ℝ+) → ((𝐼 + (((𝑃 · 𝑁) − ((𝑟 · 𝐼) · 𝑁)) mod 𝑃)) mod 𝑃) = ((𝐼 + ((𝑃 · 𝑁) − ((𝑟 · 𝐼) · 𝑁))) mod 𝑃))
129127, 20, 34, 128syl3anc 1371 . . . . . . . . 9 (((𝑟 ∈ (1...(𝑃 − 1)) ∧ ((𝑁 · 𝑟) mod 𝑃) = 1) ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃))) → ((𝐼 + (((𝑃 · 𝑁) − ((𝑟 · 𝐼) · 𝑁)) mod 𝑃)) mod 𝑃) = ((𝐼 + ((𝑃 · 𝑁) − ((𝑟 · 𝐼) · 𝑁))) mod 𝑃))
130 0red 11289 . . . . . . . . . . . . . . . 16 (𝐼 ∈ (1..^𝑃) → 0 ∈ ℝ)
131130, 18resubcld 11714 . . . . . . . . . . . . . . 15 (𝐼 ∈ (1..^𝑃) → (0 − 𝐼) ∈ ℝ)
132131adantl 481 . . . . . . . . . . . . . 14 ((𝑃 ∈ ℙ ∧ 𝐼 ∈ (1..^𝑃)) → (0 − 𝐼) ∈ ℝ)
13318adantl 481 . . . . . . . . . . . . . 14 ((𝑃 ∈ ℙ ∧ 𝐼 ∈ (1..^𝑃)) → 𝐼 ∈ ℝ)
13432adantr 480 . . . . . . . . . . . . . 14 ((𝑃 ∈ ℙ ∧ 𝐼 ∈ (1..^𝑃)) → 𝑃 ∈ ℝ+)
135132, 133, 1343jca 1128 . . . . . . . . . . . . 13 ((𝑃 ∈ ℙ ∧ 𝐼 ∈ (1..^𝑃)) → ((0 − 𝐼) ∈ ℝ ∧ 𝐼 ∈ ℝ ∧ 𝑃 ∈ ℝ+))
1361353adant2 1131 . . . . . . . . . . . 12 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃)) → ((0 − 𝐼) ∈ ℝ ∧ 𝐼 ∈ ℝ ∧ 𝑃 ∈ ℝ+))
137136adantl 481 . . . . . . . . . . 11 (((𝑟 ∈ (1...(𝑃 − 1)) ∧ ((𝑁 · 𝑟) mod 𝑃) = 1) ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃))) → ((0 − 𝐼) ∈ ℝ ∧ 𝐼 ∈ ℝ ∧ 𝑃 ∈ ℝ+))
138 modadd2mod 13968 . . . . . . . . . . 11 (((0 − 𝐼) ∈ ℝ ∧ 𝐼 ∈ ℝ ∧ 𝑃 ∈ ℝ+) → ((𝐼 + ((0 − 𝐼) mod 𝑃)) mod 𝑃) = ((𝐼 + (0 − 𝐼)) mod 𝑃))
139137, 138syl 17 . . . . . . . . . 10 (((𝑟 ∈ (1...(𝑃 − 1)) ∧ ((𝑁 · 𝑟) mod 𝑃) = 1) ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃))) → ((𝐼 + ((0 − 𝐼) mod 𝑃)) mod 𝑃) = ((𝐼 + (0 − 𝐼)) mod 𝑃))
140 0cnd 11279 . . . . . . . . . . . . . 14 (𝐼 ∈ (1..^𝑃) → 0 ∈ ℂ)
14142, 140pncan3d 11646 . . . . . . . . . . . . 13 (𝐼 ∈ (1..^𝑃) → (𝐼 + (0 − 𝐼)) = 0)
1421413ad2ant3 1135 . . . . . . . . . . . 12 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃)) → (𝐼 + (0 − 𝐼)) = 0)
143142adantl 481 . . . . . . . . . . 11 (((𝑟 ∈ (1...(𝑃 − 1)) ∧ ((𝑁 · 𝑟) mod 𝑃) = 1) ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃))) → (𝐼 + (0 − 𝐼)) = 0)
144143oveq1d 7460 . . . . . . . . . 10 (((𝑟 ∈ (1...(𝑃 − 1)) ∧ ((𝑁 · 𝑟) mod 𝑃) = 1) ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃))) → ((𝐼 + (0 − 𝐼)) mod 𝑃) = (0 mod 𝑃))
145 0mod 13949 . . . . . . . . . . . . 13 (𝑃 ∈ ℝ+ → (0 mod 𝑃) = 0)
14632, 145syl 17 . . . . . . . . . . . 12 (𝑃 ∈ ℙ → (0 mod 𝑃) = 0)
1471463ad2ant1 1133 . . . . . . . . . . 11 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃)) → (0 mod 𝑃) = 0)
148147adantl 481 . . . . . . . . . 10 (((𝑟 ∈ (1...(𝑃 − 1)) ∧ ((𝑁 · 𝑟) mod 𝑃) = 1) ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃))) → (0 mod 𝑃) = 0)
149139, 144, 1483eqtrd 2778 . . . . . . . . 9 (((𝑟 ∈ (1...(𝑃 − 1)) ∧ ((𝑁 · 𝑟) mod 𝑃) = 1) ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃))) → ((𝐼 + ((0 − 𝐼) mod 𝑃)) mod 𝑃) = 0)
150126, 129, 1493eqtr3d 2782 . . . . . . . 8 (((𝑟 ∈ (1...(𝑃 − 1)) ∧ ((𝑁 · 𝑟) mod 𝑃) = 1) ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃))) → ((𝐼 + ((𝑃 · 𝑁) − ((𝑟 · 𝐼) · 𝑁))) mod 𝑃) = 0)
15136, 51, 1503eqtrd 2778 . . . . . . 7 (((𝑟 ∈ (1...(𝑃 − 1)) ∧ ((𝑁 · 𝑟) mod 𝑃) = 1) ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃))) → ((𝐼 + (((𝑃 − (𝑟 · 𝐼)) mod 𝑃) · 𝑁)) mod 𝑃) = 0)
152 oveq1 7452 . . . . . . . . . . 11 (𝑗 = ((𝑃 − (𝑟 · 𝐼)) mod 𝑃) → (𝑗 · 𝑁) = (((𝑃 − (𝑟 · 𝐼)) mod 𝑃) · 𝑁))
153152oveq2d 7461 . . . . . . . . . 10 (𝑗 = ((𝑃 − (𝑟 · 𝐼)) mod 𝑃) → (𝐼 + (𝑗 · 𝑁)) = (𝐼 + (((𝑃 − (𝑟 · 𝐼)) mod 𝑃) · 𝑁)))
154153oveq1d 7460 . . . . . . . . 9 (𝑗 = ((𝑃 − (𝑟 · 𝐼)) mod 𝑃) → ((𝐼 + (𝑗 · 𝑁)) mod 𝑃) = ((𝐼 + (((𝑃 − (𝑟 · 𝐼)) mod 𝑃) · 𝑁)) mod 𝑃))
155154eqeq1d 2736 . . . . . . . 8 (𝑗 = ((𝑃 − (𝑟 · 𝐼)) mod 𝑃) → (((𝐼 + (𝑗 · 𝑁)) mod 𝑃) = 0 ↔ ((𝐼 + (((𝑃 − (𝑟 · 𝐼)) mod 𝑃) · 𝑁)) mod 𝑃) = 0))
156155rspcev 3631 . . . . . . 7 ((((𝑃 − (𝑟 · 𝐼)) mod 𝑃) ∈ (0..^𝑃) ∧ ((𝐼 + (((𝑃 − (𝑟 · 𝐼)) mod 𝑃) · 𝑁)) mod 𝑃) = 0) → ∃𝑗 ∈ (0..^𝑃)((𝐼 + (𝑗 · 𝑁)) mod 𝑃) = 0)
15717, 151, 156syl2anc 583 . . . . . 6 (((𝑟 ∈ (1...(𝑃 − 1)) ∧ ((𝑁 · 𝑟) mod 𝑃) = 1) ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃))) → ∃𝑗 ∈ (0..^𝑃)((𝐼 + (𝑗 · 𝑁)) mod 𝑃) = 0)
158157ex 412 . . . . 5 ((𝑟 ∈ (1...(𝑃 − 1)) ∧ ((𝑁 · 𝑟) mod 𝑃) = 1) → ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃)) → ∃𝑗 ∈ (0..^𝑃)((𝐼 + (𝑗 · 𝑁)) mod 𝑃) = 0))
159158rexlimiva 3149 . . . 4 (∃𝑟 ∈ (1...(𝑃 − 1))((𝑁 · 𝑟) mod 𝑃) = 1 → ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃)) → ∃𝑗 ∈ (0..^𝑃)((𝐼 + (𝑗 · 𝑁)) mod 𝑃) = 0))
1601, 2, 1593syl 18 . . 3 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃)) → ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃)) → ∃𝑗 ∈ (0..^𝑃)((𝐼 + (𝑗 · 𝑁)) mod 𝑃) = 0))
1611603adant3 1132 . 2 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃)) → ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃)) → ∃𝑗 ∈ (0..^𝑃)((𝐼 + (𝑗 · 𝑁)) mod 𝑃) = 0))
162161pm2.43i 52 1 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃)) → ∃𝑗 ∈ (0..^𝑃)((𝐼 + (𝑗 · 𝑁)) mod 𝑃) = 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1537  wcel 2103  wrex 3072  ∃!wreu 3381   class class class wbr 5169  cfv 6572  (class class class)co 7445  cc 11178  cr 11179  0cc0 11180  1c1 11181   + caddc 11183   · cmul 11185   < clt 11320  cle 11321  cmin 11516  cn 12289  cz 12635  cuz 12899  +crp 13053  ...cfz 13563  ..^cfzo 13707   mod cmo 13916  cprime 16712
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2105  ax-9 2113  ax-10 2136  ax-11 2153  ax-12 2173  ax-ext 2705  ax-rep 5306  ax-sep 5320  ax-nul 5327  ax-pow 5386  ax-pr 5450  ax-un 7766  ax-cnex 11236  ax-resscn 11237  ax-1cn 11238  ax-icn 11239  ax-addcl 11240  ax-addrcl 11241  ax-mulcl 11242  ax-mulrcl 11243  ax-mulcom 11244  ax-addass 11245  ax-mulass 11246  ax-distr 11247  ax-i2m1 11248  ax-1ne0 11249  ax-1rid 11250  ax-rnegex 11251  ax-rrecex 11252  ax-cnre 11253  ax-pre-lttri 11254  ax-pre-lttrn 11255  ax-pre-ltadd 11256  ax-pre-mulgt0 11257  ax-pre-sup 11258
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2890  df-ne 2943  df-nel 3049  df-ral 3064  df-rex 3073  df-rmo 3383  df-reu 3384  df-rab 3439  df-v 3484  df-sbc 3799  df-csb 3916  df-dif 3973  df-un 3975  df-in 3977  df-ss 3987  df-pss 3990  df-nul 4348  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4973  df-iun 5021  df-br 5170  df-opab 5232  df-mpt 5253  df-tr 5287  df-id 5597  df-eprel 5603  df-po 5611  df-so 5612  df-fr 5654  df-we 5656  df-xp 5705  df-rel 5706  df-cnv 5707  df-co 5708  df-dm 5709  df-rn 5710  df-res 5711  df-ima 5712  df-pred 6331  df-ord 6397  df-on 6398  df-lim 6399  df-suc 6400  df-iota 6524  df-fun 6574  df-fn 6575  df-f 6576  df-f1 6577  df-fo 6578  df-f1o 6579  df-fv 6580  df-riota 7401  df-ov 7448  df-oprab 7449  df-mpo 7450  df-om 7900  df-1st 8026  df-2nd 8027  df-frecs 8318  df-wrecs 8349  df-recs 8423  df-rdg 8462  df-1o 8518  df-2o 8519  df-oadd 8522  df-er 8759  df-en 9000  df-dom 9001  df-sdom 9002  df-fin 9003  df-sup 9507  df-inf 9508  df-dju 9966  df-card 10004  df-pnf 11322  df-mnf 11323  df-xr 11324  df-ltxr 11325  df-le 11326  df-sub 11518  df-neg 11519  df-div 11944  df-nn 12290  df-2 12352  df-3 12353  df-n0 12550  df-xnn0 12622  df-z 12636  df-uz 12900  df-rp 13054  df-fz 13564  df-fzo 13708  df-fl 13839  df-mod 13917  df-seq 14049  df-exp 14109  df-hash 14376  df-cj 15144  df-re 15145  df-im 15146  df-sqrt 15280  df-abs 15281  df-dvds 16297  df-gcd 16535  df-prm 16713  df-phi 16808
This theorem is referenced by:  nnnn0modprm0  16848
  Copyright terms: Public domain W3C validator