MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  modprm0 Structured version   Visualization version   GIF version

Theorem modprm0 16717
Description: For two positive integers less than a given prime number there is always a nonnegative integer (less than the given prime number) so that the sum of one of the two positive integers and the other of the positive integers multiplied by the nonnegative integer is 0 ( modulo the given prime number). (Contributed by Alexander van der Vekens, 17-May-2018.)
Assertion
Ref Expression
modprm0 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃)) → ∃𝑗 ∈ (0..^𝑃)((𝐼 + (𝑗 · 𝑁)) mod 𝑃) = 0)
Distinct variable groups:   𝑗,𝐼   𝑗,𝑁   𝑃,𝑗

Proof of Theorem modprm0
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 reumodprminv 16716 . . . 4 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃)) → ∃!𝑟 ∈ (1...(𝑃 − 1))((𝑁 · 𝑟) mod 𝑃) = 1)
2 reurex 3347 . . . 4 (∃!𝑟 ∈ (1...(𝑃 − 1))((𝑁 · 𝑟) mod 𝑃) = 1 → ∃𝑟 ∈ (1...(𝑃 − 1))((𝑁 · 𝑟) mod 𝑃) = 1)
3 prmz 16586 . . . . . . . . . . 11 (𝑃 ∈ ℙ → 𝑃 ∈ ℤ)
433ad2ant1 1133 . . . . . . . . . 10 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃)) → 𝑃 ∈ ℤ)
54adantl 481 . . . . . . . . 9 (((𝑟 ∈ (1...(𝑃 − 1)) ∧ ((𝑁 · 𝑟) mod 𝑃) = 1) ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃))) → 𝑃 ∈ ℤ)
6 elfzelz 13427 . . . . . . . . . . 11 (𝑟 ∈ (1...(𝑃 − 1)) → 𝑟 ∈ ℤ)
76adantr 480 . . . . . . . . . 10 ((𝑟 ∈ (1...(𝑃 − 1)) ∧ ((𝑁 · 𝑟) mod 𝑃) = 1) → 𝑟 ∈ ℤ)
8 elfzoelz 13562 . . . . . . . . . . 11 (𝐼 ∈ (1..^𝑃) → 𝐼 ∈ ℤ)
983ad2ant3 1135 . . . . . . . . . 10 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃)) → 𝐼 ∈ ℤ)
10 zmulcl 12524 . . . . . . . . . 10 ((𝑟 ∈ ℤ ∧ 𝐼 ∈ ℤ) → (𝑟 · 𝐼) ∈ ℤ)
117, 9, 10syl2an 596 . . . . . . . . 9 (((𝑟 ∈ (1...(𝑃 − 1)) ∧ ((𝑁 · 𝑟) mod 𝑃) = 1) ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃))) → (𝑟 · 𝐼) ∈ ℤ)
125, 11zsubcld 12585 . . . . . . . 8 (((𝑟 ∈ (1...(𝑃 − 1)) ∧ ((𝑁 · 𝑟) mod 𝑃) = 1) ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃))) → (𝑃 − (𝑟 · 𝐼)) ∈ ℤ)
13 prmnn 16585 . . . . . . . . . 10 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
14133ad2ant1 1133 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃)) → 𝑃 ∈ ℕ)
1514adantl 481 . . . . . . . 8 (((𝑟 ∈ (1...(𝑃 − 1)) ∧ ((𝑁 · 𝑟) mod 𝑃) = 1) ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃))) → 𝑃 ∈ ℕ)
16 zmodfzo 13798 . . . . . . . 8 (((𝑃 − (𝑟 · 𝐼)) ∈ ℤ ∧ 𝑃 ∈ ℕ) → ((𝑃 − (𝑟 · 𝐼)) mod 𝑃) ∈ (0..^𝑃))
1712, 15, 16syl2anc 584 . . . . . . 7 (((𝑟 ∈ (1...(𝑃 − 1)) ∧ ((𝑁 · 𝑟) mod 𝑃) = 1) ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃))) → ((𝑃 − (𝑟 · 𝐼)) mod 𝑃) ∈ (0..^𝑃))
188zred 12580 . . . . . . . . . . 11 (𝐼 ∈ (1..^𝑃) → 𝐼 ∈ ℝ)
19183ad2ant3 1135 . . . . . . . . . 10 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃)) → 𝐼 ∈ ℝ)
2019adantl 481 . . . . . . . . 9 (((𝑟 ∈ (1...(𝑃 − 1)) ∧ ((𝑁 · 𝑟) mod 𝑃) = 1) ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃))) → 𝐼 ∈ ℝ)
2113nnred 12143 . . . . . . . . . . . 12 (𝑃 ∈ ℙ → 𝑃 ∈ ℝ)
22213ad2ant1 1133 . . . . . . . . . . 11 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃)) → 𝑃 ∈ ℝ)
2322adantl 481 . . . . . . . . . 10 (((𝑟 ∈ (1...(𝑃 − 1)) ∧ ((𝑁 · 𝑟) mod 𝑃) = 1) ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃))) → 𝑃 ∈ ℝ)
246zred 12580 . . . . . . . . . . . 12 (𝑟 ∈ (1...(𝑃 − 1)) → 𝑟 ∈ ℝ)
2524adantr 480 . . . . . . . . . . 11 ((𝑟 ∈ (1...(𝑃 − 1)) ∧ ((𝑁 · 𝑟) mod 𝑃) = 1) → 𝑟 ∈ ℝ)
26 remulcl 11094 . . . . . . . . . . 11 ((𝑟 ∈ ℝ ∧ 𝐼 ∈ ℝ) → (𝑟 · 𝐼) ∈ ℝ)
2725, 19, 26syl2an 596 . . . . . . . . . 10 (((𝑟 ∈ (1...(𝑃 − 1)) ∧ ((𝑁 · 𝑟) mod 𝑃) = 1) ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃))) → (𝑟 · 𝐼) ∈ ℝ)
2823, 27resubcld 11548 . . . . . . . . 9 (((𝑟 ∈ (1...(𝑃 − 1)) ∧ ((𝑁 · 𝑟) mod 𝑃) = 1) ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃))) → (𝑃 − (𝑟 · 𝐼)) ∈ ℝ)
29 elfzoelz 13562 . . . . . . . . . . 11 (𝑁 ∈ (1..^𝑃) → 𝑁 ∈ ℤ)
30293ad2ant2 1134 . . . . . . . . . 10 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃)) → 𝑁 ∈ ℤ)
3130adantl 481 . . . . . . . . 9 (((𝑟 ∈ (1...(𝑃 − 1)) ∧ ((𝑁 · 𝑟) mod 𝑃) = 1) ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃))) → 𝑁 ∈ ℤ)
3213nnrpd 12935 . . . . . . . . . . 11 (𝑃 ∈ ℙ → 𝑃 ∈ ℝ+)
33323ad2ant1 1133 . . . . . . . . . 10 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃)) → 𝑃 ∈ ℝ+)
3433adantl 481 . . . . . . . . 9 (((𝑟 ∈ (1...(𝑃 − 1)) ∧ ((𝑁 · 𝑟) mod 𝑃) = 1) ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃))) → 𝑃 ∈ ℝ+)
35 modaddmulmod 13845 . . . . . . . . 9 (((𝐼 ∈ ℝ ∧ (𝑃 − (𝑟 · 𝐼)) ∈ ℝ ∧ 𝑁 ∈ ℤ) ∧ 𝑃 ∈ ℝ+) → ((𝐼 + (((𝑃 − (𝑟 · 𝐼)) mod 𝑃) · 𝑁)) mod 𝑃) = ((𝐼 + ((𝑃 − (𝑟 · 𝐼)) · 𝑁)) mod 𝑃))
3620, 28, 31, 34, 35syl31anc 1375 . . . . . . . 8 (((𝑟 ∈ (1...(𝑃 − 1)) ∧ ((𝑁 · 𝑟) mod 𝑃) = 1) ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃))) → ((𝐼 + (((𝑃 − (𝑟 · 𝐼)) mod 𝑃) · 𝑁)) mod 𝑃) = ((𝐼 + ((𝑃 − (𝑟 · 𝐼)) · 𝑁)) mod 𝑃))
3713nncnd 12144 . . . . . . . . . . . . 13 (𝑃 ∈ ℙ → 𝑃 ∈ ℂ)
38373ad2ant1 1133 . . . . . . . . . . . 12 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃)) → 𝑃 ∈ ℂ)
3938adantl 481 . . . . . . . . . . 11 (((𝑟 ∈ (1...(𝑃 − 1)) ∧ ((𝑁 · 𝑟) mod 𝑃) = 1) ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃))) → 𝑃 ∈ ℂ)
406zcnd 12581 . . . . . . . . . . . . 13 (𝑟 ∈ (1...(𝑃 − 1)) → 𝑟 ∈ ℂ)
4140adantr 480 . . . . . . . . . . . 12 ((𝑟 ∈ (1...(𝑃 − 1)) ∧ ((𝑁 · 𝑟) mod 𝑃) = 1) → 𝑟 ∈ ℂ)
428zcnd 12581 . . . . . . . . . . . . 13 (𝐼 ∈ (1..^𝑃) → 𝐼 ∈ ℂ)
43423ad2ant3 1135 . . . . . . . . . . . 12 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃)) → 𝐼 ∈ ℂ)
44 mulcl 11093 . . . . . . . . . . . 12 ((𝑟 ∈ ℂ ∧ 𝐼 ∈ ℂ) → (𝑟 · 𝐼) ∈ ℂ)
4541, 43, 44syl2an 596 . . . . . . . . . . 11 (((𝑟 ∈ (1...(𝑃 − 1)) ∧ ((𝑁 · 𝑟) mod 𝑃) = 1) ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃))) → (𝑟 · 𝐼) ∈ ℂ)
4629zcnd 12581 . . . . . . . . . . . . 13 (𝑁 ∈ (1..^𝑃) → 𝑁 ∈ ℂ)
47463ad2ant2 1134 . . . . . . . . . . . 12 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃)) → 𝑁 ∈ ℂ)
4847adantl 481 . . . . . . . . . . 11 (((𝑟 ∈ (1...(𝑃 − 1)) ∧ ((𝑁 · 𝑟) mod 𝑃) = 1) ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃))) → 𝑁 ∈ ℂ)
4939, 45, 48subdird 11577 . . . . . . . . . 10 (((𝑟 ∈ (1...(𝑃 − 1)) ∧ ((𝑁 · 𝑟) mod 𝑃) = 1) ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃))) → ((𝑃 − (𝑟 · 𝐼)) · 𝑁) = ((𝑃 · 𝑁) − ((𝑟 · 𝐼) · 𝑁)))
5049oveq2d 7365 . . . . . . . . 9 (((𝑟 ∈ (1...(𝑃 − 1)) ∧ ((𝑁 · 𝑟) mod 𝑃) = 1) ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃))) → (𝐼 + ((𝑃 − (𝑟 · 𝐼)) · 𝑁)) = (𝐼 + ((𝑃 · 𝑁) − ((𝑟 · 𝐼) · 𝑁))))
5150oveq1d 7364 . . . . . . . 8 (((𝑟 ∈ (1...(𝑃 − 1)) ∧ ((𝑁 · 𝑟) mod 𝑃) = 1) ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃))) → ((𝐼 + ((𝑃 − (𝑟 · 𝐼)) · 𝑁)) mod 𝑃) = ((𝐼 + ((𝑃 · 𝑁) − ((𝑟 · 𝐼) · 𝑁))) mod 𝑃))
52 mulcom 11095 . . . . . . . . . . . . . . . . . . 19 ((𝑃 ∈ ℂ ∧ 𝑁 ∈ ℂ) → (𝑃 · 𝑁) = (𝑁 · 𝑃))
5337, 46, 52syl2an 596 . . . . . . . . . . . . . . . . . 18 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃)) → (𝑃 · 𝑁) = (𝑁 · 𝑃))
5453oveq1d 7364 . . . . . . . . . . . . . . . . 17 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃)) → ((𝑃 · 𝑁) mod 𝑃) = ((𝑁 · 𝑃) mod 𝑃))
55 mulmod0 13781 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ ℤ ∧ 𝑃 ∈ ℝ+) → ((𝑁 · 𝑃) mod 𝑃) = 0)
5629, 32, 55syl2anr 597 . . . . . . . . . . . . . . . . 17 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃)) → ((𝑁 · 𝑃) mod 𝑃) = 0)
5754, 56eqtrd 2764 . . . . . . . . . . . . . . . 16 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃)) → ((𝑃 · 𝑁) mod 𝑃) = 0)
58573adant3 1132 . . . . . . . . . . . . . . 15 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃)) → ((𝑃 · 𝑁) mod 𝑃) = 0)
5958adantl 481 . . . . . . . . . . . . . 14 (((𝑟 ∈ (1...(𝑃 − 1)) ∧ ((𝑁 · 𝑟) mod 𝑃) = 1) ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃))) → ((𝑃 · 𝑁) mod 𝑃) = 0)
6041adantr 480 . . . . . . . . . . . . . . . . 17 (((𝑟 ∈ (1...(𝑃 − 1)) ∧ ((𝑁 · 𝑟) mod 𝑃) = 1) ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃))) → 𝑟 ∈ ℂ)
6143adantl 481 . . . . . . . . . . . . . . . . 17 (((𝑟 ∈ (1...(𝑃 − 1)) ∧ ((𝑁 · 𝑟) mod 𝑃) = 1) ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃))) → 𝐼 ∈ ℂ)
6260, 61, 48mul32d 11326 . . . . . . . . . . . . . . . 16 (((𝑟 ∈ (1...(𝑃 − 1)) ∧ ((𝑁 · 𝑟) mod 𝑃) = 1) ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃))) → ((𝑟 · 𝐼) · 𝑁) = ((𝑟 · 𝑁) · 𝐼))
6362oveq1d 7364 . . . . . . . . . . . . . . 15 (((𝑟 ∈ (1...(𝑃 − 1)) ∧ ((𝑁 · 𝑟) mod 𝑃) = 1) ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃))) → (((𝑟 · 𝐼) · 𝑁) mod 𝑃) = (((𝑟 · 𝑁) · 𝐼) mod 𝑃))
6429zred 12580 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ (1..^𝑃) → 𝑁 ∈ ℝ)
65643ad2ant2 1134 . . . . . . . . . . . . . . . . 17 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃)) → 𝑁 ∈ ℝ)
66 remulcl 11094 . . . . . . . . . . . . . . . . 17 ((𝑟 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝑟 · 𝑁) ∈ ℝ)
6725, 65, 66syl2an 596 . . . . . . . . . . . . . . . 16 (((𝑟 ∈ (1...(𝑃 − 1)) ∧ ((𝑁 · 𝑟) mod 𝑃) = 1) ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃))) → (𝑟 · 𝑁) ∈ ℝ)
689adantl 481 . . . . . . . . . . . . . . . 16 (((𝑟 ∈ (1...(𝑃 − 1)) ∧ ((𝑁 · 𝑟) mod 𝑃) = 1) ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃))) → 𝐼 ∈ ℤ)
69 modmulmod 13843 . . . . . . . . . . . . . . . 16 (((𝑟 · 𝑁) ∈ ℝ ∧ 𝐼 ∈ ℤ ∧ 𝑃 ∈ ℝ+) → ((((𝑟 · 𝑁) mod 𝑃) · 𝐼) mod 𝑃) = (((𝑟 · 𝑁) · 𝐼) mod 𝑃))
7067, 68, 34, 69syl3anc 1373 . . . . . . . . . . . . . . 15 (((𝑟 ∈ (1...(𝑃 − 1)) ∧ ((𝑁 · 𝑟) mod 𝑃) = 1) ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃))) → ((((𝑟 · 𝑁) mod 𝑃) · 𝐼) mod 𝑃) = (((𝑟 · 𝑁) · 𝐼) mod 𝑃))
7163, 70eqtr4d 2767 . . . . . . . . . . . . . 14 (((𝑟 ∈ (1...(𝑃 − 1)) ∧ ((𝑁 · 𝑟) mod 𝑃) = 1) ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃))) → (((𝑟 · 𝐼) · 𝑁) mod 𝑃) = ((((𝑟 · 𝑁) mod 𝑃) · 𝐼) mod 𝑃))
7259, 71oveq12d 7367 . . . . . . . . . . . . 13 (((𝑟 ∈ (1...(𝑃 − 1)) ∧ ((𝑁 · 𝑟) mod 𝑃) = 1) ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃))) → (((𝑃 · 𝑁) mod 𝑃) − (((𝑟 · 𝐼) · 𝑁) mod 𝑃)) = (0 − ((((𝑟 · 𝑁) mod 𝑃) · 𝐼) mod 𝑃)))
7372oveq1d 7364 . . . . . . . . . . . 12 (((𝑟 ∈ (1...(𝑃 − 1)) ∧ ((𝑁 · 𝑟) mod 𝑃) = 1) ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃))) → ((((𝑃 · 𝑁) mod 𝑃) − (((𝑟 · 𝐼) · 𝑁) mod 𝑃)) mod 𝑃) = ((0 − ((((𝑟 · 𝑁) mod 𝑃) · 𝐼) mod 𝑃)) mod 𝑃))
74 remulcl 11094 . . . . . . . . . . . . . . . 16 ((𝑃 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝑃 · 𝑁) ∈ ℝ)
7521, 64, 74syl2an 596 . . . . . . . . . . . . . . 15 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃)) → (𝑃 · 𝑁) ∈ ℝ)
76753adant3 1132 . . . . . . . . . . . . . 14 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃)) → (𝑃 · 𝑁) ∈ ℝ)
7776adantl 481 . . . . . . . . . . . . 13 (((𝑟 ∈ (1...(𝑃 − 1)) ∧ ((𝑁 · 𝑟) mod 𝑃) = 1) ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃))) → (𝑃 · 𝑁) ∈ ℝ)
7865adantl 481 . . . . . . . . . . . . . 14 (((𝑟 ∈ (1...(𝑃 − 1)) ∧ ((𝑁 · 𝑟) mod 𝑃) = 1) ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃))) → 𝑁 ∈ ℝ)
7927, 78remulcld 11145 . . . . . . . . . . . . 13 (((𝑟 ∈ (1...(𝑃 − 1)) ∧ ((𝑁 · 𝑟) mod 𝑃) = 1) ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃))) → ((𝑟 · 𝐼) · 𝑁) ∈ ℝ)
80 modsubmodmod 13837 . . . . . . . . . . . . 13 (((𝑃 · 𝑁) ∈ ℝ ∧ ((𝑟 · 𝐼) · 𝑁) ∈ ℝ ∧ 𝑃 ∈ ℝ+) → ((((𝑃 · 𝑁) mod 𝑃) − (((𝑟 · 𝐼) · 𝑁) mod 𝑃)) mod 𝑃) = (((𝑃 · 𝑁) − ((𝑟 · 𝐼) · 𝑁)) mod 𝑃))
8177, 79, 34, 80syl3anc 1373 . . . . . . . . . . . 12 (((𝑟 ∈ (1...(𝑃 − 1)) ∧ ((𝑁 · 𝑟) mod 𝑃) = 1) ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃))) → ((((𝑃 · 𝑁) mod 𝑃) − (((𝑟 · 𝐼) · 𝑁) mod 𝑃)) mod 𝑃) = (((𝑃 · 𝑁) − ((𝑟 · 𝐼) · 𝑁)) mod 𝑃))
82 mulcom 11095 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑁 ∈ ℂ ∧ 𝑟 ∈ ℂ) → (𝑁 · 𝑟) = (𝑟 · 𝑁))
8347, 40, 82syl2anr 597 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑟 ∈ (1...(𝑃 − 1)) ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃))) → (𝑁 · 𝑟) = (𝑟 · 𝑁))
8483oveq1d 7364 . . . . . . . . . . . . . . . . . . . . 21 ((𝑟 ∈ (1...(𝑃 − 1)) ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃))) → ((𝑁 · 𝑟) mod 𝑃) = ((𝑟 · 𝑁) mod 𝑃))
8584eqeq1d 2731 . . . . . . . . . . . . . . . . . . . 20 ((𝑟 ∈ (1...(𝑃 − 1)) ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃))) → (((𝑁 · 𝑟) mod 𝑃) = 1 ↔ ((𝑟 · 𝑁) mod 𝑃) = 1))
8685biimpd 229 . . . . . . . . . . . . . . . . . . 19 ((𝑟 ∈ (1...(𝑃 − 1)) ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃))) → (((𝑁 · 𝑟) mod 𝑃) = 1 → ((𝑟 · 𝑁) mod 𝑃) = 1))
8786impancom 451 . . . . . . . . . . . . . . . . . 18 ((𝑟 ∈ (1...(𝑃 − 1)) ∧ ((𝑁 · 𝑟) mod 𝑃) = 1) → ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃)) → ((𝑟 · 𝑁) mod 𝑃) = 1))
8887imp 406 . . . . . . . . . . . . . . . . 17 (((𝑟 ∈ (1...(𝑃 − 1)) ∧ ((𝑁 · 𝑟) mod 𝑃) = 1) ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃))) → ((𝑟 · 𝑁) mod 𝑃) = 1)
8988oveq1d 7364 . . . . . . . . . . . . . . . 16 (((𝑟 ∈ (1...(𝑃 − 1)) ∧ ((𝑁 · 𝑟) mod 𝑃) = 1) ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃))) → (((𝑟 · 𝑁) mod 𝑃) · 𝐼) = (1 · 𝐼))
9089oveq1d 7364 . . . . . . . . . . . . . . 15 (((𝑟 ∈ (1...(𝑃 − 1)) ∧ ((𝑁 · 𝑟) mod 𝑃) = 1) ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃))) → ((((𝑟 · 𝑁) mod 𝑃) · 𝐼) mod 𝑃) = ((1 · 𝐼) mod 𝑃))
9190oveq2d 7365 . . . . . . . . . . . . . 14 (((𝑟 ∈ (1...(𝑃 − 1)) ∧ ((𝑁 · 𝑟) mod 𝑃) = 1) ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃))) → (0 − ((((𝑟 · 𝑁) mod 𝑃) · 𝐼) mod 𝑃)) = (0 − ((1 · 𝐼) mod 𝑃)))
9291oveq1d 7364 . . . . . . . . . . . . 13 (((𝑟 ∈ (1...(𝑃 − 1)) ∧ ((𝑁 · 𝑟) mod 𝑃) = 1) ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃))) → ((0 − ((((𝑟 · 𝑁) mod 𝑃) · 𝐼) mod 𝑃)) mod 𝑃) = ((0 − ((1 · 𝐼) mod 𝑃)) mod 𝑃))
9361mullidd 11133 . . . . . . . . . . . . . . . . 17 (((𝑟 ∈ (1...(𝑃 − 1)) ∧ ((𝑁 · 𝑟) mod 𝑃) = 1) ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃))) → (1 · 𝐼) = 𝐼)
9493oveq1d 7364 . . . . . . . . . . . . . . . 16 (((𝑟 ∈ (1...(𝑃 − 1)) ∧ ((𝑁 · 𝑟) mod 𝑃) = 1) ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃))) → ((1 · 𝐼) mod 𝑃) = (𝐼 mod 𝑃))
9532, 18anim12ci 614 . . . . . . . . . . . . . . . . . . . 20 ((𝑃 ∈ ℙ ∧ 𝐼 ∈ (1..^𝑃)) → (𝐼 ∈ ℝ ∧ 𝑃 ∈ ℝ+))
96 elfzo2 13565 . . . . . . . . . . . . . . . . . . . . . 22 (𝐼 ∈ (1..^𝑃) ↔ (𝐼 ∈ (ℤ‘1) ∧ 𝑃 ∈ ℤ ∧ 𝐼 < 𝑃))
97 eluz2 12741 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝐼 ∈ (ℤ‘1) ↔ (1 ∈ ℤ ∧ 𝐼 ∈ ℤ ∧ 1 ≤ 𝐼))
98 0red 11118 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝐼 ∈ ℤ → 0 ∈ ℝ)
99 1red 11116 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝐼 ∈ ℤ → 1 ∈ ℝ)
100 zre 12475 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝐼 ∈ ℤ → 𝐼 ∈ ℝ)
10198, 99, 1003jca 1128 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝐼 ∈ ℤ → (0 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝐼 ∈ ℝ))
102101adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝐼 ∈ ℤ ∧ 1 ≤ 𝐼) → (0 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝐼 ∈ ℝ))
103 0le1 11643 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 0 ≤ 1
104103a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝐼 ∈ ℤ → 0 ≤ 1)
105104anim1i 615 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝐼 ∈ ℤ ∧ 1 ≤ 𝐼) → (0 ≤ 1 ∧ 1 ≤ 𝐼))
106 letr 11210 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((0 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝐼 ∈ ℝ) → ((0 ≤ 1 ∧ 1 ≤ 𝐼) → 0 ≤ 𝐼))
107102, 105, 106sylc 65 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝐼 ∈ ℤ ∧ 1 ≤ 𝐼) → 0 ≤ 𝐼)
1081073adant1 1130 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((1 ∈ ℤ ∧ 𝐼 ∈ ℤ ∧ 1 ≤ 𝐼) → 0 ≤ 𝐼)
10997, 108sylbi 217 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐼 ∈ (ℤ‘1) → 0 ≤ 𝐼)
1101093ad2ant1 1133 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐼 ∈ (ℤ‘1) ∧ 𝑃 ∈ ℤ ∧ 𝐼 < 𝑃) → 0 ≤ 𝐼)
111 simp3 1138 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐼 ∈ (ℤ‘1) ∧ 𝑃 ∈ ℤ ∧ 𝐼 < 𝑃) → 𝐼 < 𝑃)
112110, 111jca 511 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐼 ∈ (ℤ‘1) ∧ 𝑃 ∈ ℤ ∧ 𝐼 < 𝑃) → (0 ≤ 𝐼𝐼 < 𝑃))
11396, 112sylbi 217 . . . . . . . . . . . . . . . . . . . . 21 (𝐼 ∈ (1..^𝑃) → (0 ≤ 𝐼𝐼 < 𝑃))
114113adantl 481 . . . . . . . . . . . . . . . . . . . 20 ((𝑃 ∈ ℙ ∧ 𝐼 ∈ (1..^𝑃)) → (0 ≤ 𝐼𝐼 < 𝑃))
11595, 114jca 511 . . . . . . . . . . . . . . . . . . 19 ((𝑃 ∈ ℙ ∧ 𝐼 ∈ (1..^𝑃)) → ((𝐼 ∈ ℝ ∧ 𝑃 ∈ ℝ+) ∧ (0 ≤ 𝐼𝐼 < 𝑃)))
1161153adant2 1131 . . . . . . . . . . . . . . . . . 18 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃)) → ((𝐼 ∈ ℝ ∧ 𝑃 ∈ ℝ+) ∧ (0 ≤ 𝐼𝐼 < 𝑃)))
117116adantl 481 . . . . . . . . . . . . . . . . 17 (((𝑟 ∈ (1...(𝑃 − 1)) ∧ ((𝑁 · 𝑟) mod 𝑃) = 1) ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃))) → ((𝐼 ∈ ℝ ∧ 𝑃 ∈ ℝ+) ∧ (0 ≤ 𝐼𝐼 < 𝑃)))
118 modid 13800 . . . . . . . . . . . . . . . . 17 (((𝐼 ∈ ℝ ∧ 𝑃 ∈ ℝ+) ∧ (0 ≤ 𝐼𝐼 < 𝑃)) → (𝐼 mod 𝑃) = 𝐼)
119117, 118syl 17 . . . . . . . . . . . . . . . 16 (((𝑟 ∈ (1...(𝑃 − 1)) ∧ ((𝑁 · 𝑟) mod 𝑃) = 1) ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃))) → (𝐼 mod 𝑃) = 𝐼)
12094, 119eqtrd 2764 . . . . . . . . . . . . . . 15 (((𝑟 ∈ (1...(𝑃 − 1)) ∧ ((𝑁 · 𝑟) mod 𝑃) = 1) ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃))) → ((1 · 𝐼) mod 𝑃) = 𝐼)
121120oveq2d 7365 . . . . . . . . . . . . . 14 (((𝑟 ∈ (1...(𝑃 − 1)) ∧ ((𝑁 · 𝑟) mod 𝑃) = 1) ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃))) → (0 − ((1 · 𝐼) mod 𝑃)) = (0 − 𝐼))
122121oveq1d 7364 . . . . . . . . . . . . 13 (((𝑟 ∈ (1...(𝑃 − 1)) ∧ ((𝑁 · 𝑟) mod 𝑃) = 1) ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃))) → ((0 − ((1 · 𝐼) mod 𝑃)) mod 𝑃) = ((0 − 𝐼) mod 𝑃))
12392, 122eqtrd 2764 . . . . . . . . . . . 12 (((𝑟 ∈ (1...(𝑃 − 1)) ∧ ((𝑁 · 𝑟) mod 𝑃) = 1) ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃))) → ((0 − ((((𝑟 · 𝑁) mod 𝑃) · 𝐼) mod 𝑃)) mod 𝑃) = ((0 − 𝐼) mod 𝑃))
12473, 81, 1233eqtr3d 2772 . . . . . . . . . . 11 (((𝑟 ∈ (1...(𝑃 − 1)) ∧ ((𝑁 · 𝑟) mod 𝑃) = 1) ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃))) → (((𝑃 · 𝑁) − ((𝑟 · 𝐼) · 𝑁)) mod 𝑃) = ((0 − 𝐼) mod 𝑃))
125124oveq2d 7365 . . . . . . . . . 10 (((𝑟 ∈ (1...(𝑃 − 1)) ∧ ((𝑁 · 𝑟) mod 𝑃) = 1) ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃))) → (𝐼 + (((𝑃 · 𝑁) − ((𝑟 · 𝐼) · 𝑁)) mod 𝑃)) = (𝐼 + ((0 − 𝐼) mod 𝑃)))
126125oveq1d 7364 . . . . . . . . 9 (((𝑟 ∈ (1...(𝑃 − 1)) ∧ ((𝑁 · 𝑟) mod 𝑃) = 1) ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃))) → ((𝐼 + (((𝑃 · 𝑁) − ((𝑟 · 𝐼) · 𝑁)) mod 𝑃)) mod 𝑃) = ((𝐼 + ((0 − 𝐼) mod 𝑃)) mod 𝑃))
12777, 79resubcld 11548 . . . . . . . . . 10 (((𝑟 ∈ (1...(𝑃 − 1)) ∧ ((𝑁 · 𝑟) mod 𝑃) = 1) ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃))) → ((𝑃 · 𝑁) − ((𝑟 · 𝐼) · 𝑁)) ∈ ℝ)
128 modadd2mod 13828 . . . . . . . . . 10 ((((𝑃 · 𝑁) − ((𝑟 · 𝐼) · 𝑁)) ∈ ℝ ∧ 𝐼 ∈ ℝ ∧ 𝑃 ∈ ℝ+) → ((𝐼 + (((𝑃 · 𝑁) − ((𝑟 · 𝐼) · 𝑁)) mod 𝑃)) mod 𝑃) = ((𝐼 + ((𝑃 · 𝑁) − ((𝑟 · 𝐼) · 𝑁))) mod 𝑃))
129127, 20, 34, 128syl3anc 1373 . . . . . . . . 9 (((𝑟 ∈ (1...(𝑃 − 1)) ∧ ((𝑁 · 𝑟) mod 𝑃) = 1) ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃))) → ((𝐼 + (((𝑃 · 𝑁) − ((𝑟 · 𝐼) · 𝑁)) mod 𝑃)) mod 𝑃) = ((𝐼 + ((𝑃 · 𝑁) − ((𝑟 · 𝐼) · 𝑁))) mod 𝑃))
130 0red 11118 . . . . . . . . . . . . . . . 16 (𝐼 ∈ (1..^𝑃) → 0 ∈ ℝ)
131130, 18resubcld 11548 . . . . . . . . . . . . . . 15 (𝐼 ∈ (1..^𝑃) → (0 − 𝐼) ∈ ℝ)
132131adantl 481 . . . . . . . . . . . . . 14 ((𝑃 ∈ ℙ ∧ 𝐼 ∈ (1..^𝑃)) → (0 − 𝐼) ∈ ℝ)
13318adantl 481 . . . . . . . . . . . . . 14 ((𝑃 ∈ ℙ ∧ 𝐼 ∈ (1..^𝑃)) → 𝐼 ∈ ℝ)
13432adantr 480 . . . . . . . . . . . . . 14 ((𝑃 ∈ ℙ ∧ 𝐼 ∈ (1..^𝑃)) → 𝑃 ∈ ℝ+)
135132, 133, 1343jca 1128 . . . . . . . . . . . . 13 ((𝑃 ∈ ℙ ∧ 𝐼 ∈ (1..^𝑃)) → ((0 − 𝐼) ∈ ℝ ∧ 𝐼 ∈ ℝ ∧ 𝑃 ∈ ℝ+))
1361353adant2 1131 . . . . . . . . . . . 12 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃)) → ((0 − 𝐼) ∈ ℝ ∧ 𝐼 ∈ ℝ ∧ 𝑃 ∈ ℝ+))
137136adantl 481 . . . . . . . . . . 11 (((𝑟 ∈ (1...(𝑃 − 1)) ∧ ((𝑁 · 𝑟) mod 𝑃) = 1) ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃))) → ((0 − 𝐼) ∈ ℝ ∧ 𝐼 ∈ ℝ ∧ 𝑃 ∈ ℝ+))
138 modadd2mod 13828 . . . . . . . . . . 11 (((0 − 𝐼) ∈ ℝ ∧ 𝐼 ∈ ℝ ∧ 𝑃 ∈ ℝ+) → ((𝐼 + ((0 − 𝐼) mod 𝑃)) mod 𝑃) = ((𝐼 + (0 − 𝐼)) mod 𝑃))
139137, 138syl 17 . . . . . . . . . 10 (((𝑟 ∈ (1...(𝑃 − 1)) ∧ ((𝑁 · 𝑟) mod 𝑃) = 1) ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃))) → ((𝐼 + ((0 − 𝐼) mod 𝑃)) mod 𝑃) = ((𝐼 + (0 − 𝐼)) mod 𝑃))
140 0cnd 11108 . . . . . . . . . . . . . 14 (𝐼 ∈ (1..^𝑃) → 0 ∈ ℂ)
14142, 140pncan3d 11478 . . . . . . . . . . . . 13 (𝐼 ∈ (1..^𝑃) → (𝐼 + (0 − 𝐼)) = 0)
1421413ad2ant3 1135 . . . . . . . . . . . 12 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃)) → (𝐼 + (0 − 𝐼)) = 0)
143142adantl 481 . . . . . . . . . . 11 (((𝑟 ∈ (1...(𝑃 − 1)) ∧ ((𝑁 · 𝑟) mod 𝑃) = 1) ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃))) → (𝐼 + (0 − 𝐼)) = 0)
144143oveq1d 7364 . . . . . . . . . 10 (((𝑟 ∈ (1...(𝑃 − 1)) ∧ ((𝑁 · 𝑟) mod 𝑃) = 1) ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃))) → ((𝐼 + (0 − 𝐼)) mod 𝑃) = (0 mod 𝑃))
145 0mod 13806 . . . . . . . . . . . . 13 (𝑃 ∈ ℝ+ → (0 mod 𝑃) = 0)
14632, 145syl 17 . . . . . . . . . . . 12 (𝑃 ∈ ℙ → (0 mod 𝑃) = 0)
1471463ad2ant1 1133 . . . . . . . . . . 11 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃)) → (0 mod 𝑃) = 0)
148147adantl 481 . . . . . . . . . 10 (((𝑟 ∈ (1...(𝑃 − 1)) ∧ ((𝑁 · 𝑟) mod 𝑃) = 1) ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃))) → (0 mod 𝑃) = 0)
149139, 144, 1483eqtrd 2768 . . . . . . . . 9 (((𝑟 ∈ (1...(𝑃 − 1)) ∧ ((𝑁 · 𝑟) mod 𝑃) = 1) ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃))) → ((𝐼 + ((0 − 𝐼) mod 𝑃)) mod 𝑃) = 0)
150126, 129, 1493eqtr3d 2772 . . . . . . . 8 (((𝑟 ∈ (1...(𝑃 − 1)) ∧ ((𝑁 · 𝑟) mod 𝑃) = 1) ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃))) → ((𝐼 + ((𝑃 · 𝑁) − ((𝑟 · 𝐼) · 𝑁))) mod 𝑃) = 0)
15136, 51, 1503eqtrd 2768 . . . . . . 7 (((𝑟 ∈ (1...(𝑃 − 1)) ∧ ((𝑁 · 𝑟) mod 𝑃) = 1) ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃))) → ((𝐼 + (((𝑃 − (𝑟 · 𝐼)) mod 𝑃) · 𝑁)) mod 𝑃) = 0)
152 oveq1 7356 . . . . . . . . . . 11 (𝑗 = ((𝑃 − (𝑟 · 𝐼)) mod 𝑃) → (𝑗 · 𝑁) = (((𝑃 − (𝑟 · 𝐼)) mod 𝑃) · 𝑁))
153152oveq2d 7365 . . . . . . . . . 10 (𝑗 = ((𝑃 − (𝑟 · 𝐼)) mod 𝑃) → (𝐼 + (𝑗 · 𝑁)) = (𝐼 + (((𝑃 − (𝑟 · 𝐼)) mod 𝑃) · 𝑁)))
154153oveq1d 7364 . . . . . . . . 9 (𝑗 = ((𝑃 − (𝑟 · 𝐼)) mod 𝑃) → ((𝐼 + (𝑗 · 𝑁)) mod 𝑃) = ((𝐼 + (((𝑃 − (𝑟 · 𝐼)) mod 𝑃) · 𝑁)) mod 𝑃))
155154eqeq1d 2731 . . . . . . . 8 (𝑗 = ((𝑃 − (𝑟 · 𝐼)) mod 𝑃) → (((𝐼 + (𝑗 · 𝑁)) mod 𝑃) = 0 ↔ ((𝐼 + (((𝑃 − (𝑟 · 𝐼)) mod 𝑃) · 𝑁)) mod 𝑃) = 0))
156155rspcev 3577 . . . . . . 7 ((((𝑃 − (𝑟 · 𝐼)) mod 𝑃) ∈ (0..^𝑃) ∧ ((𝐼 + (((𝑃 − (𝑟 · 𝐼)) mod 𝑃) · 𝑁)) mod 𝑃) = 0) → ∃𝑗 ∈ (0..^𝑃)((𝐼 + (𝑗 · 𝑁)) mod 𝑃) = 0)
15717, 151, 156syl2anc 584 . . . . . 6 (((𝑟 ∈ (1...(𝑃 − 1)) ∧ ((𝑁 · 𝑟) mod 𝑃) = 1) ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃))) → ∃𝑗 ∈ (0..^𝑃)((𝐼 + (𝑗 · 𝑁)) mod 𝑃) = 0)
158157ex 412 . . . . 5 ((𝑟 ∈ (1...(𝑃 − 1)) ∧ ((𝑁 · 𝑟) mod 𝑃) = 1) → ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃)) → ∃𝑗 ∈ (0..^𝑃)((𝐼 + (𝑗 · 𝑁)) mod 𝑃) = 0))
159158rexlimiva 3122 . . . 4 (∃𝑟 ∈ (1...(𝑃 − 1))((𝑁 · 𝑟) mod 𝑃) = 1 → ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃)) → ∃𝑗 ∈ (0..^𝑃)((𝐼 + (𝑗 · 𝑁)) mod 𝑃) = 0))
1601, 2, 1593syl 18 . . 3 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃)) → ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃)) → ∃𝑗 ∈ (0..^𝑃)((𝐼 + (𝑗 · 𝑁)) mod 𝑃) = 0))
1611603adant3 1132 . 2 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃)) → ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃)) → ∃𝑗 ∈ (0..^𝑃)((𝐼 + (𝑗 · 𝑁)) mod 𝑃) = 0))
162161pm2.43i 52 1 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃)) → ∃𝑗 ∈ (0..^𝑃)((𝐼 + (𝑗 · 𝑁)) mod 𝑃) = 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wrex 3053  ∃!wreu 3341   class class class wbr 5092  cfv 6482  (class class class)co 7349  cc 11007  cr 11008  0cc0 11009  1c1 11010   + caddc 11012   · cmul 11014   < clt 11149  cle 11150  cmin 11347  cn 12128  cz 12471  cuz 12735  +crp 12893  ...cfz 13410  ..^cfzo 13557   mod cmo 13773  cprime 16582
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-2o 8389  df-oadd 8392  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-sup 9332  df-inf 9333  df-dju 9797  df-card 9835  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-3 12192  df-n0 12385  df-xnn0 12458  df-z 12472  df-uz 12736  df-rp 12894  df-fz 13411  df-fzo 13558  df-fl 13696  df-mod 13774  df-seq 13909  df-exp 13969  df-hash 14238  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-dvds 16164  df-gcd 16406  df-prm 16583  df-phi 16677
This theorem is referenced by:  nnnn0modprm0  16718
  Copyright terms: Public domain W3C validator