![]() |
Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cvmliftpht | Structured version Visualization version GIF version |
Description: If 𝐺 and 𝐻 are path-homotopic, then their lifts 𝑀 and 𝑁 are also path-homotopic. (Contributed by Mario Carneiro, 6-Jul-2015.) |
Ref | Expression |
---|---|
cvmliftpht.b | ⊢ 𝐵 = ∪ 𝐶 |
cvmliftpht.m | ⊢ 𝑀 = (℩𝑓 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑓) = 𝐺 ∧ (𝑓‘0) = 𝑃)) |
cvmliftpht.n | ⊢ 𝑁 = (℩𝑓 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑓) = 𝐻 ∧ (𝑓‘0) = 𝑃)) |
cvmliftpht.f | ⊢ (𝜑 → 𝐹 ∈ (𝐶 CovMap 𝐽)) |
cvmliftpht.p | ⊢ (𝜑 → 𝑃 ∈ 𝐵) |
cvmliftpht.e | ⊢ (𝜑 → (𝐹‘𝑃) = (𝐺‘0)) |
cvmliftpht.g | ⊢ (𝜑 → 𝐺( ≃ph‘𝐽)𝐻) |
Ref | Expression |
---|---|
cvmliftpht | ⊢ (𝜑 → 𝑀( ≃ph‘𝐶)𝑁) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cvmliftpht.b | . . . 4 ⊢ 𝐵 = ∪ 𝐶 | |
2 | cvmliftpht.m | . . . 4 ⊢ 𝑀 = (℩𝑓 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑓) = 𝐺 ∧ (𝑓‘0) = 𝑃)) | |
3 | cvmliftpht.f | . . . 4 ⊢ (𝜑 → 𝐹 ∈ (𝐶 CovMap 𝐽)) | |
4 | cvmliftpht.g | . . . . . 6 ⊢ (𝜑 → 𝐺( ≃ph‘𝐽)𝐻) | |
5 | isphtpc 25045 | . . . . . 6 ⊢ (𝐺( ≃ph‘𝐽)𝐻 ↔ (𝐺 ∈ (II Cn 𝐽) ∧ 𝐻 ∈ (II Cn 𝐽) ∧ (𝐺(PHtpy‘𝐽)𝐻) ≠ ∅)) | |
6 | 4, 5 | sylib 218 | . . . . 5 ⊢ (𝜑 → (𝐺 ∈ (II Cn 𝐽) ∧ 𝐻 ∈ (II Cn 𝐽) ∧ (𝐺(PHtpy‘𝐽)𝐻) ≠ ∅)) |
7 | 6 | simp1d 1142 | . . . 4 ⊢ (𝜑 → 𝐺 ∈ (II Cn 𝐽)) |
8 | cvmliftpht.p | . . . 4 ⊢ (𝜑 → 𝑃 ∈ 𝐵) | |
9 | cvmliftpht.e | . . . 4 ⊢ (𝜑 → (𝐹‘𝑃) = (𝐺‘0)) | |
10 | 1, 2, 3, 7, 8, 9 | cvmliftiota 35269 | . . 3 ⊢ (𝜑 → (𝑀 ∈ (II Cn 𝐶) ∧ (𝐹 ∘ 𝑀) = 𝐺 ∧ (𝑀‘0) = 𝑃)) |
11 | 10 | simp1d 1142 | . 2 ⊢ (𝜑 → 𝑀 ∈ (II Cn 𝐶)) |
12 | cvmliftpht.n | . . . 4 ⊢ 𝑁 = (℩𝑓 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑓) = 𝐻 ∧ (𝑓‘0) = 𝑃)) | |
13 | 6 | simp2d 1143 | . . . 4 ⊢ (𝜑 → 𝐻 ∈ (II Cn 𝐽)) |
14 | phtpc01 25047 | . . . . . . 7 ⊢ (𝐺( ≃ph‘𝐽)𝐻 → ((𝐺‘0) = (𝐻‘0) ∧ (𝐺‘1) = (𝐻‘1))) | |
15 | 4, 14 | syl 17 | . . . . . 6 ⊢ (𝜑 → ((𝐺‘0) = (𝐻‘0) ∧ (𝐺‘1) = (𝐻‘1))) |
16 | 15 | simpld 494 | . . . . 5 ⊢ (𝜑 → (𝐺‘0) = (𝐻‘0)) |
17 | 9, 16 | eqtrd 2780 | . . . 4 ⊢ (𝜑 → (𝐹‘𝑃) = (𝐻‘0)) |
18 | 1, 12, 3, 13, 8, 17 | cvmliftiota 35269 | . . 3 ⊢ (𝜑 → (𝑁 ∈ (II Cn 𝐶) ∧ (𝐹 ∘ 𝑁) = 𝐻 ∧ (𝑁‘0) = 𝑃)) |
19 | 18 | simp1d 1142 | . 2 ⊢ (𝜑 → 𝑁 ∈ (II Cn 𝐶)) |
20 | 6 | simp3d 1144 | . . . 4 ⊢ (𝜑 → (𝐺(PHtpy‘𝐽)𝐻) ≠ ∅) |
21 | n0 4376 | . . . 4 ⊢ ((𝐺(PHtpy‘𝐽)𝐻) ≠ ∅ ↔ ∃𝑔 𝑔 ∈ (𝐺(PHtpy‘𝐽)𝐻)) | |
22 | 20, 21 | sylib 218 | . . 3 ⊢ (𝜑 → ∃𝑔 𝑔 ∈ (𝐺(PHtpy‘𝐽)𝐻)) |
23 | 3 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑔 ∈ (𝐺(PHtpy‘𝐽)𝐻)) → 𝐹 ∈ (𝐶 CovMap 𝐽)) |
24 | 7, 13 | phtpycn 25034 | . . . . . . 7 ⊢ (𝜑 → (𝐺(PHtpy‘𝐽)𝐻) ⊆ ((II ×t II) Cn 𝐽)) |
25 | 24 | sselda 4008 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑔 ∈ (𝐺(PHtpy‘𝐽)𝐻)) → 𝑔 ∈ ((II ×t II) Cn 𝐽)) |
26 | 8 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑔 ∈ (𝐺(PHtpy‘𝐽)𝐻)) → 𝑃 ∈ 𝐵) |
27 | 9 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑔 ∈ (𝐺(PHtpy‘𝐽)𝐻)) → (𝐹‘𝑃) = (𝐺‘0)) |
28 | 0elunit 13529 | . . . . . . . . 9 ⊢ 0 ∈ (0[,]1) | |
29 | 7 | adantr 480 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑔 ∈ (𝐺(PHtpy‘𝐽)𝐻)) → 𝐺 ∈ (II Cn 𝐽)) |
30 | 13 | adantr 480 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑔 ∈ (𝐺(PHtpy‘𝐽)𝐻)) → 𝐻 ∈ (II Cn 𝐽)) |
31 | simpr 484 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑔 ∈ (𝐺(PHtpy‘𝐽)𝐻)) → 𝑔 ∈ (𝐺(PHtpy‘𝐽)𝐻)) | |
32 | 29, 30, 31 | phtpyi 25035 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝑔 ∈ (𝐺(PHtpy‘𝐽)𝐻)) ∧ 0 ∈ (0[,]1)) → ((0𝑔0) = (𝐺‘0) ∧ (1𝑔0) = (𝐺‘1))) |
33 | 28, 32 | mpan2 690 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑔 ∈ (𝐺(PHtpy‘𝐽)𝐻)) → ((0𝑔0) = (𝐺‘0) ∧ (1𝑔0) = (𝐺‘1))) |
34 | 33 | simpld 494 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑔 ∈ (𝐺(PHtpy‘𝐽)𝐻)) → (0𝑔0) = (𝐺‘0)) |
35 | 27, 34 | eqtr4d 2783 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑔 ∈ (𝐺(PHtpy‘𝐽)𝐻)) → (𝐹‘𝑃) = (0𝑔0)) |
36 | 1, 23, 25, 26, 35 | cvmlift2 35284 | . . . . 5 ⊢ ((𝜑 ∧ 𝑔 ∈ (𝐺(PHtpy‘𝐽)𝐻)) → ∃!ℎ ∈ ((II ×t II) Cn 𝐶)((𝐹 ∘ ℎ) = 𝑔 ∧ (0ℎ0) = 𝑃)) |
37 | reurex 3392 | . . . . 5 ⊢ (∃!ℎ ∈ ((II ×t II) Cn 𝐶)((𝐹 ∘ ℎ) = 𝑔 ∧ (0ℎ0) = 𝑃) → ∃ℎ ∈ ((II ×t II) Cn 𝐶)((𝐹 ∘ ℎ) = 𝑔 ∧ (0ℎ0) = 𝑃)) | |
38 | 36, 37 | syl 17 | . . . 4 ⊢ ((𝜑 ∧ 𝑔 ∈ (𝐺(PHtpy‘𝐽)𝐻)) → ∃ℎ ∈ ((II ×t II) Cn 𝐶)((𝐹 ∘ ℎ) = 𝑔 ∧ (0ℎ0) = 𝑃)) |
39 | 3 | ad2antrr 725 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑔 ∈ (𝐺(PHtpy‘𝐽)𝐻)) ∧ (ℎ ∈ ((II ×t II) Cn 𝐶) ∧ ((𝐹 ∘ ℎ) = 𝑔 ∧ (0ℎ0) = 𝑃))) → 𝐹 ∈ (𝐶 CovMap 𝐽)) |
40 | 8 | ad2antrr 725 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑔 ∈ (𝐺(PHtpy‘𝐽)𝐻)) ∧ (ℎ ∈ ((II ×t II) Cn 𝐶) ∧ ((𝐹 ∘ ℎ) = 𝑔 ∧ (0ℎ0) = 𝑃))) → 𝑃 ∈ 𝐵) |
41 | 9 | ad2antrr 725 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑔 ∈ (𝐺(PHtpy‘𝐽)𝐻)) ∧ (ℎ ∈ ((II ×t II) Cn 𝐶) ∧ ((𝐹 ∘ ℎ) = 𝑔 ∧ (0ℎ0) = 𝑃))) → (𝐹‘𝑃) = (𝐺‘0)) |
42 | 7 | ad2antrr 725 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑔 ∈ (𝐺(PHtpy‘𝐽)𝐻)) ∧ (ℎ ∈ ((II ×t II) Cn 𝐶) ∧ ((𝐹 ∘ ℎ) = 𝑔 ∧ (0ℎ0) = 𝑃))) → 𝐺 ∈ (II Cn 𝐽)) |
43 | 13 | ad2antrr 725 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑔 ∈ (𝐺(PHtpy‘𝐽)𝐻)) ∧ (ℎ ∈ ((II ×t II) Cn 𝐶) ∧ ((𝐹 ∘ ℎ) = 𝑔 ∧ (0ℎ0) = 𝑃))) → 𝐻 ∈ (II Cn 𝐽)) |
44 | simplr 768 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑔 ∈ (𝐺(PHtpy‘𝐽)𝐻)) ∧ (ℎ ∈ ((II ×t II) Cn 𝐶) ∧ ((𝐹 ∘ ℎ) = 𝑔 ∧ (0ℎ0) = 𝑃))) → 𝑔 ∈ (𝐺(PHtpy‘𝐽)𝐻)) | |
45 | simprl 770 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑔 ∈ (𝐺(PHtpy‘𝐽)𝐻)) ∧ (ℎ ∈ ((II ×t II) Cn 𝐶) ∧ ((𝐹 ∘ ℎ) = 𝑔 ∧ (0ℎ0) = 𝑃))) → ℎ ∈ ((II ×t II) Cn 𝐶)) | |
46 | simprrl 780 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑔 ∈ (𝐺(PHtpy‘𝐽)𝐻)) ∧ (ℎ ∈ ((II ×t II) Cn 𝐶) ∧ ((𝐹 ∘ ℎ) = 𝑔 ∧ (0ℎ0) = 𝑃))) → (𝐹 ∘ ℎ) = 𝑔) | |
47 | simprrr 781 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑔 ∈ (𝐺(PHtpy‘𝐽)𝐻)) ∧ (ℎ ∈ ((II ×t II) Cn 𝐶) ∧ ((𝐹 ∘ ℎ) = 𝑔 ∧ (0ℎ0) = 𝑃))) → (0ℎ0) = 𝑃) | |
48 | 1, 2, 12, 39, 40, 41, 42, 43, 44, 45, 46, 47 | cvmliftphtlem 35285 | . . . . 5 ⊢ (((𝜑 ∧ 𝑔 ∈ (𝐺(PHtpy‘𝐽)𝐻)) ∧ (ℎ ∈ ((II ×t II) Cn 𝐶) ∧ ((𝐹 ∘ ℎ) = 𝑔 ∧ (0ℎ0) = 𝑃))) → ℎ ∈ (𝑀(PHtpy‘𝐶)𝑁)) |
49 | 48 | ne0d 4365 | . . . 4 ⊢ (((𝜑 ∧ 𝑔 ∈ (𝐺(PHtpy‘𝐽)𝐻)) ∧ (ℎ ∈ ((II ×t II) Cn 𝐶) ∧ ((𝐹 ∘ ℎ) = 𝑔 ∧ (0ℎ0) = 𝑃))) → (𝑀(PHtpy‘𝐶)𝑁) ≠ ∅) |
50 | 38, 49 | rexlimddv 3167 | . . 3 ⊢ ((𝜑 ∧ 𝑔 ∈ (𝐺(PHtpy‘𝐽)𝐻)) → (𝑀(PHtpy‘𝐶)𝑁) ≠ ∅) |
51 | 22, 50 | exlimddv 1934 | . 2 ⊢ (𝜑 → (𝑀(PHtpy‘𝐶)𝑁) ≠ ∅) |
52 | isphtpc 25045 | . 2 ⊢ (𝑀( ≃ph‘𝐶)𝑁 ↔ (𝑀 ∈ (II Cn 𝐶) ∧ 𝑁 ∈ (II Cn 𝐶) ∧ (𝑀(PHtpy‘𝐶)𝑁) ≠ ∅)) | |
53 | 11, 19, 51, 52 | syl3anbrc 1343 | 1 ⊢ (𝜑 → 𝑀( ≃ph‘𝐶)𝑁) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 = wceq 1537 ∃wex 1777 ∈ wcel 2108 ≠ wne 2946 ∃wrex 3076 ∃!wreu 3386 ∅c0 4352 ∪ cuni 4931 class class class wbr 5166 ∘ ccom 5704 ‘cfv 6573 ℩crio 7403 (class class class)co 7448 0cc0 11184 1c1 11185 [,]cicc 13410 Cn ccn 23253 ×t ctx 23589 IIcii 24920 PHtpycphtpy 25019 ≃phcphtpc 25020 CovMap ccvm 35223 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-inf2 9710 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 ax-pre-sup 11262 ax-addf 11263 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-tp 4653 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-iin 5018 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-se 5653 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-isom 6582 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-of 7714 df-om 7904 df-1st 8030 df-2nd 8031 df-supp 8202 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-2o 8523 df-er 8763 df-ec 8765 df-map 8886 df-ixp 8956 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-fsupp 9432 df-fi 9480 df-sup 9511 df-inf 9512 df-oi 9579 df-card 10008 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-div 11948 df-nn 12294 df-2 12356 df-3 12357 df-4 12358 df-5 12359 df-6 12360 df-7 12361 df-8 12362 df-9 12363 df-n0 12554 df-z 12640 df-dec 12759 df-uz 12904 df-q 13014 df-rp 13058 df-xneg 13175 df-xadd 13176 df-xmul 13177 df-ioo 13411 df-ico 13413 df-icc 13414 df-fz 13568 df-fzo 13712 df-fl 13843 df-seq 14053 df-exp 14113 df-hash 14380 df-cj 15148 df-re 15149 df-im 15150 df-sqrt 15284 df-abs 15285 df-clim 15534 df-sum 15735 df-struct 17194 df-sets 17211 df-slot 17229 df-ndx 17241 df-base 17259 df-ress 17288 df-plusg 17324 df-mulr 17325 df-starv 17326 df-sca 17327 df-vsca 17328 df-ip 17329 df-tset 17330 df-ple 17331 df-ds 17333 df-unif 17334 df-hom 17335 df-cco 17336 df-rest 17482 df-topn 17483 df-0g 17501 df-gsum 17502 df-topgen 17503 df-pt 17504 df-prds 17507 df-xrs 17562 df-qtop 17567 df-imas 17568 df-xps 17570 df-mre 17644 df-mrc 17645 df-acs 17647 df-mgm 18678 df-sgrp 18757 df-mnd 18773 df-submnd 18819 df-mulg 19108 df-cntz 19357 df-cmn 19824 df-psmet 21379 df-xmet 21380 df-met 21381 df-bl 21382 df-mopn 21383 df-cnfld 21388 df-top 22921 df-topon 22938 df-topsp 22960 df-bases 22974 df-cld 23048 df-ntr 23049 df-cls 23050 df-nei 23127 df-cn 23256 df-cnp 23257 df-cmp 23416 df-conn 23441 df-lly 23495 df-nlly 23496 df-tx 23591 df-hmeo 23784 df-xms 24351 df-ms 24352 df-tms 24353 df-ii 24922 df-cncf 24923 df-htpy 25021 df-phtpy 25022 df-phtpc 25043 df-pconn 35189 df-sconn 35190 df-cvm 35224 |
This theorem is referenced by: cvmlift3lem1 35287 |
Copyright terms: Public domain | W3C validator |