Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvmliftpht Structured version   Visualization version   GIF version

Theorem cvmliftpht 32678
Description: If 𝐺 and 𝐻 are path-homotopic, then their lifts 𝑀 and 𝑁 are also path-homotopic. (Contributed by Mario Carneiro, 6-Jul-2015.)
Hypotheses
Ref Expression
cvmliftpht.b 𝐵 = 𝐶
cvmliftpht.m 𝑀 = (𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = 𝐺 ∧ (𝑓‘0) = 𝑃))
cvmliftpht.n 𝑁 = (𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = 𝐻 ∧ (𝑓‘0) = 𝑃))
cvmliftpht.f (𝜑𝐹 ∈ (𝐶 CovMap 𝐽))
cvmliftpht.p (𝜑𝑃𝐵)
cvmliftpht.e (𝜑 → (𝐹𝑃) = (𝐺‘0))
cvmliftpht.g (𝜑𝐺( ≃ph𝐽)𝐻)
Assertion
Ref Expression
cvmliftpht (𝜑𝑀( ≃ph𝐶)𝑁)
Distinct variable groups:   𝐵,𝑓   𝑓,𝐹   𝑓,𝐽   𝐶,𝑓   𝑓,𝐺   𝑓,𝐻   𝑃,𝑓
Allowed substitution hints:   𝜑(𝑓)   𝑀(𝑓)   𝑁(𝑓)

Proof of Theorem cvmliftpht
Dummy variables 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cvmliftpht.b . . . 4 𝐵 = 𝐶
2 cvmliftpht.m . . . 4 𝑀 = (𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = 𝐺 ∧ (𝑓‘0) = 𝑃))
3 cvmliftpht.f . . . 4 (𝜑𝐹 ∈ (𝐶 CovMap 𝐽))
4 cvmliftpht.g . . . . . 6 (𝜑𝐺( ≃ph𝐽)𝐻)
5 isphtpc 23599 . . . . . 6 (𝐺( ≃ph𝐽)𝐻 ↔ (𝐺 ∈ (II Cn 𝐽) ∧ 𝐻 ∈ (II Cn 𝐽) ∧ (𝐺(PHtpy‘𝐽)𝐻) ≠ ∅))
64, 5sylib 221 . . . . 5 (𝜑 → (𝐺 ∈ (II Cn 𝐽) ∧ 𝐻 ∈ (II Cn 𝐽) ∧ (𝐺(PHtpy‘𝐽)𝐻) ≠ ∅))
76simp1d 1139 . . . 4 (𝜑𝐺 ∈ (II Cn 𝐽))
8 cvmliftpht.p . . . 4 (𝜑𝑃𝐵)
9 cvmliftpht.e . . . 4 (𝜑 → (𝐹𝑃) = (𝐺‘0))
101, 2, 3, 7, 8, 9cvmliftiota 32661 . . 3 (𝜑 → (𝑀 ∈ (II Cn 𝐶) ∧ (𝐹𝑀) = 𝐺 ∧ (𝑀‘0) = 𝑃))
1110simp1d 1139 . 2 (𝜑𝑀 ∈ (II Cn 𝐶))
12 cvmliftpht.n . . . 4 𝑁 = (𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = 𝐻 ∧ (𝑓‘0) = 𝑃))
136simp2d 1140 . . . 4 (𝜑𝐻 ∈ (II Cn 𝐽))
14 phtpc01 23601 . . . . . . 7 (𝐺( ≃ph𝐽)𝐻 → ((𝐺‘0) = (𝐻‘0) ∧ (𝐺‘1) = (𝐻‘1)))
154, 14syl 17 . . . . . 6 (𝜑 → ((𝐺‘0) = (𝐻‘0) ∧ (𝐺‘1) = (𝐻‘1)))
1615simpld 498 . . . . 5 (𝜑 → (𝐺‘0) = (𝐻‘0))
179, 16eqtrd 2833 . . . 4 (𝜑 → (𝐹𝑃) = (𝐻‘0))
181, 12, 3, 13, 8, 17cvmliftiota 32661 . . 3 (𝜑 → (𝑁 ∈ (II Cn 𝐶) ∧ (𝐹𝑁) = 𝐻 ∧ (𝑁‘0) = 𝑃))
1918simp1d 1139 . 2 (𝜑𝑁 ∈ (II Cn 𝐶))
206simp3d 1141 . . . 4 (𝜑 → (𝐺(PHtpy‘𝐽)𝐻) ≠ ∅)
21 n0 4260 . . . 4 ((𝐺(PHtpy‘𝐽)𝐻) ≠ ∅ ↔ ∃𝑔 𝑔 ∈ (𝐺(PHtpy‘𝐽)𝐻))
2220, 21sylib 221 . . 3 (𝜑 → ∃𝑔 𝑔 ∈ (𝐺(PHtpy‘𝐽)𝐻))
233adantr 484 . . . . . 6 ((𝜑𝑔 ∈ (𝐺(PHtpy‘𝐽)𝐻)) → 𝐹 ∈ (𝐶 CovMap 𝐽))
247, 13phtpycn 23588 . . . . . . 7 (𝜑 → (𝐺(PHtpy‘𝐽)𝐻) ⊆ ((II ×t II) Cn 𝐽))
2524sselda 3915 . . . . . 6 ((𝜑𝑔 ∈ (𝐺(PHtpy‘𝐽)𝐻)) → 𝑔 ∈ ((II ×t II) Cn 𝐽))
268adantr 484 . . . . . 6 ((𝜑𝑔 ∈ (𝐺(PHtpy‘𝐽)𝐻)) → 𝑃𝐵)
279adantr 484 . . . . . . 7 ((𝜑𝑔 ∈ (𝐺(PHtpy‘𝐽)𝐻)) → (𝐹𝑃) = (𝐺‘0))
28 0elunit 12847 . . . . . . . . 9 0 ∈ (0[,]1)
297adantr 484 . . . . . . . . . 10 ((𝜑𝑔 ∈ (𝐺(PHtpy‘𝐽)𝐻)) → 𝐺 ∈ (II Cn 𝐽))
3013adantr 484 . . . . . . . . . 10 ((𝜑𝑔 ∈ (𝐺(PHtpy‘𝐽)𝐻)) → 𝐻 ∈ (II Cn 𝐽))
31 simpr 488 . . . . . . . . . 10 ((𝜑𝑔 ∈ (𝐺(PHtpy‘𝐽)𝐻)) → 𝑔 ∈ (𝐺(PHtpy‘𝐽)𝐻))
3229, 30, 31phtpyi 23589 . . . . . . . . 9 (((𝜑𝑔 ∈ (𝐺(PHtpy‘𝐽)𝐻)) ∧ 0 ∈ (0[,]1)) → ((0𝑔0) = (𝐺‘0) ∧ (1𝑔0) = (𝐺‘1)))
3328, 32mpan2 690 . . . . . . . 8 ((𝜑𝑔 ∈ (𝐺(PHtpy‘𝐽)𝐻)) → ((0𝑔0) = (𝐺‘0) ∧ (1𝑔0) = (𝐺‘1)))
3433simpld 498 . . . . . . 7 ((𝜑𝑔 ∈ (𝐺(PHtpy‘𝐽)𝐻)) → (0𝑔0) = (𝐺‘0))
3527, 34eqtr4d 2836 . . . . . 6 ((𝜑𝑔 ∈ (𝐺(PHtpy‘𝐽)𝐻)) → (𝐹𝑃) = (0𝑔0))
361, 23, 25, 26, 35cvmlift2 32676 . . . . 5 ((𝜑𝑔 ∈ (𝐺(PHtpy‘𝐽)𝐻)) → ∃! ∈ ((II ×t II) Cn 𝐶)((𝐹) = 𝑔 ∧ (00) = 𝑃))
37 reurex 3376 . . . . 5 (∃! ∈ ((II ×t II) Cn 𝐶)((𝐹) = 𝑔 ∧ (00) = 𝑃) → ∃ ∈ ((II ×t II) Cn 𝐶)((𝐹) = 𝑔 ∧ (00) = 𝑃))
3836, 37syl 17 . . . 4 ((𝜑𝑔 ∈ (𝐺(PHtpy‘𝐽)𝐻)) → ∃ ∈ ((II ×t II) Cn 𝐶)((𝐹) = 𝑔 ∧ (00) = 𝑃))
393ad2antrr 725 . . . . . 6 (((𝜑𝑔 ∈ (𝐺(PHtpy‘𝐽)𝐻)) ∧ ( ∈ ((II ×t II) Cn 𝐶) ∧ ((𝐹) = 𝑔 ∧ (00) = 𝑃))) → 𝐹 ∈ (𝐶 CovMap 𝐽))
408ad2antrr 725 . . . . . 6 (((𝜑𝑔 ∈ (𝐺(PHtpy‘𝐽)𝐻)) ∧ ( ∈ ((II ×t II) Cn 𝐶) ∧ ((𝐹) = 𝑔 ∧ (00) = 𝑃))) → 𝑃𝐵)
419ad2antrr 725 . . . . . 6 (((𝜑𝑔 ∈ (𝐺(PHtpy‘𝐽)𝐻)) ∧ ( ∈ ((II ×t II) Cn 𝐶) ∧ ((𝐹) = 𝑔 ∧ (00) = 𝑃))) → (𝐹𝑃) = (𝐺‘0))
427ad2antrr 725 . . . . . 6 (((𝜑𝑔 ∈ (𝐺(PHtpy‘𝐽)𝐻)) ∧ ( ∈ ((II ×t II) Cn 𝐶) ∧ ((𝐹) = 𝑔 ∧ (00) = 𝑃))) → 𝐺 ∈ (II Cn 𝐽))
4313ad2antrr 725 . . . . . 6 (((𝜑𝑔 ∈ (𝐺(PHtpy‘𝐽)𝐻)) ∧ ( ∈ ((II ×t II) Cn 𝐶) ∧ ((𝐹) = 𝑔 ∧ (00) = 𝑃))) → 𝐻 ∈ (II Cn 𝐽))
44 simplr 768 . . . . . 6 (((𝜑𝑔 ∈ (𝐺(PHtpy‘𝐽)𝐻)) ∧ ( ∈ ((II ×t II) Cn 𝐶) ∧ ((𝐹) = 𝑔 ∧ (00) = 𝑃))) → 𝑔 ∈ (𝐺(PHtpy‘𝐽)𝐻))
45 simprl 770 . . . . . 6 (((𝜑𝑔 ∈ (𝐺(PHtpy‘𝐽)𝐻)) ∧ ( ∈ ((II ×t II) Cn 𝐶) ∧ ((𝐹) = 𝑔 ∧ (00) = 𝑃))) → ∈ ((II ×t II) Cn 𝐶))
46 simprrl 780 . . . . . 6 (((𝜑𝑔 ∈ (𝐺(PHtpy‘𝐽)𝐻)) ∧ ( ∈ ((II ×t II) Cn 𝐶) ∧ ((𝐹) = 𝑔 ∧ (00) = 𝑃))) → (𝐹) = 𝑔)
47 simprrr 781 . . . . . 6 (((𝜑𝑔 ∈ (𝐺(PHtpy‘𝐽)𝐻)) ∧ ( ∈ ((II ×t II) Cn 𝐶) ∧ ((𝐹) = 𝑔 ∧ (00) = 𝑃))) → (00) = 𝑃)
481, 2, 12, 39, 40, 41, 42, 43, 44, 45, 46, 47cvmliftphtlem 32677 . . . . 5 (((𝜑𝑔 ∈ (𝐺(PHtpy‘𝐽)𝐻)) ∧ ( ∈ ((II ×t II) Cn 𝐶) ∧ ((𝐹) = 𝑔 ∧ (00) = 𝑃))) → ∈ (𝑀(PHtpy‘𝐶)𝑁))
4948ne0d 4251 . . . 4 (((𝜑𝑔 ∈ (𝐺(PHtpy‘𝐽)𝐻)) ∧ ( ∈ ((II ×t II) Cn 𝐶) ∧ ((𝐹) = 𝑔 ∧ (00) = 𝑃))) → (𝑀(PHtpy‘𝐶)𝑁) ≠ ∅)
5038, 49rexlimddv 3250 . . 3 ((𝜑𝑔 ∈ (𝐺(PHtpy‘𝐽)𝐻)) → (𝑀(PHtpy‘𝐶)𝑁) ≠ ∅)
5122, 50exlimddv 1936 . 2 (𝜑 → (𝑀(PHtpy‘𝐶)𝑁) ≠ ∅)
52 isphtpc 23599 . 2 (𝑀( ≃ph𝐶)𝑁 ↔ (𝑀 ∈ (II Cn 𝐶) ∧ 𝑁 ∈ (II Cn 𝐶) ∧ (𝑀(PHtpy‘𝐶)𝑁) ≠ ∅))
5311, 19, 51, 52syl3anbrc 1340 1 (𝜑𝑀( ≃ph𝐶)𝑁)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1084   = wceq 1538  wex 1781  wcel 2111  wne 2987  wrex 3107  ∃!wreu 3108  c0 4243   cuni 4800   class class class wbr 5030  ccom 5523  cfv 6324  crio 7092  (class class class)co 7135  0cc0 10526  1c1 10527  [,]cicc 12729   Cn ccn 21829   ×t ctx 22165  IIcii 23480  PHtpycphtpy 23573  phcphtpc 23574   CovMap ccvm 32615
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-inf2 9088  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604  ax-addf 10605  ax-mulf 10606
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-iin 4884  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-of 7389  df-om 7561  df-1st 7671  df-2nd 7672  df-supp 7814  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-2o 8086  df-oadd 8089  df-er 8272  df-ec 8274  df-map 8391  df-ixp 8445  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-fsupp 8818  df-fi 8859  df-sup 8890  df-inf 8891  df-oi 8958  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-dec 12087  df-uz 12232  df-q 12337  df-rp 12378  df-xneg 12495  df-xadd 12496  df-xmul 12497  df-ioo 12730  df-ico 12732  df-icc 12733  df-fz 12886  df-fzo 13029  df-fl 13157  df-seq 13365  df-exp 13426  df-hash 13687  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-clim 14837  df-sum 15035  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-starv 16572  df-sca 16573  df-vsca 16574  df-ip 16575  df-tset 16576  df-ple 16577  df-ds 16579  df-unif 16580  df-hom 16581  df-cco 16582  df-rest 16688  df-topn 16689  df-0g 16707  df-gsum 16708  df-topgen 16709  df-pt 16710  df-prds 16713  df-xrs 16767  df-qtop 16772  df-imas 16773  df-xps 16775  df-mre 16849  df-mrc 16850  df-acs 16852  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-submnd 17949  df-mulg 18217  df-cntz 18439  df-cmn 18900  df-psmet 20083  df-xmet 20084  df-met 20085  df-bl 20086  df-mopn 20087  df-cnfld 20092  df-top 21499  df-topon 21516  df-topsp 21538  df-bases 21551  df-cld 21624  df-ntr 21625  df-cls 21626  df-nei 21703  df-cn 21832  df-cnp 21833  df-cmp 21992  df-conn 22017  df-lly 22071  df-nlly 22072  df-tx 22167  df-hmeo 22360  df-xms 22927  df-ms 22928  df-tms 22929  df-ii 23482  df-htpy 23575  df-phtpy 23576  df-phtpc 23597  df-pconn 32581  df-sconn 32582  df-cvm 32616
This theorem is referenced by:  cvmlift3lem1  32679
  Copyright terms: Public domain W3C validator