Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvmliftpht Structured version   Visualization version   GIF version

Theorem cvmliftpht 35383
Description: If 𝐺 and 𝐻 are path-homotopic, then their lifts 𝑀 and 𝑁 are also path-homotopic. (Contributed by Mario Carneiro, 6-Jul-2015.)
Hypotheses
Ref Expression
cvmliftpht.b 𝐵 = 𝐶
cvmliftpht.m 𝑀 = (𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = 𝐺 ∧ (𝑓‘0) = 𝑃))
cvmliftpht.n 𝑁 = (𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = 𝐻 ∧ (𝑓‘0) = 𝑃))
cvmliftpht.f (𝜑𝐹 ∈ (𝐶 CovMap 𝐽))
cvmliftpht.p (𝜑𝑃𝐵)
cvmliftpht.e (𝜑 → (𝐹𝑃) = (𝐺‘0))
cvmliftpht.g (𝜑𝐺( ≃ph𝐽)𝐻)
Assertion
Ref Expression
cvmliftpht (𝜑𝑀( ≃ph𝐶)𝑁)
Distinct variable groups:   𝐵,𝑓   𝑓,𝐹   𝑓,𝐽   𝐶,𝑓   𝑓,𝐺   𝑓,𝐻   𝑃,𝑓
Allowed substitution hints:   𝜑(𝑓)   𝑀(𝑓)   𝑁(𝑓)

Proof of Theorem cvmliftpht
Dummy variables 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cvmliftpht.b . . . 4 𝐵 = 𝐶
2 cvmliftpht.m . . . 4 𝑀 = (𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = 𝐺 ∧ (𝑓‘0) = 𝑃))
3 cvmliftpht.f . . . 4 (𝜑𝐹 ∈ (𝐶 CovMap 𝐽))
4 cvmliftpht.g . . . . . 6 (𝜑𝐺( ≃ph𝐽)𝐻)
5 isphtpc 24921 . . . . . 6 (𝐺( ≃ph𝐽)𝐻 ↔ (𝐺 ∈ (II Cn 𝐽) ∧ 𝐻 ∈ (II Cn 𝐽) ∧ (𝐺(PHtpy‘𝐽)𝐻) ≠ ∅))
64, 5sylib 218 . . . . 5 (𝜑 → (𝐺 ∈ (II Cn 𝐽) ∧ 𝐻 ∈ (II Cn 𝐽) ∧ (𝐺(PHtpy‘𝐽)𝐻) ≠ ∅))
76simp1d 1142 . . . 4 (𝜑𝐺 ∈ (II Cn 𝐽))
8 cvmliftpht.p . . . 4 (𝜑𝑃𝐵)
9 cvmliftpht.e . . . 4 (𝜑 → (𝐹𝑃) = (𝐺‘0))
101, 2, 3, 7, 8, 9cvmliftiota 35366 . . 3 (𝜑 → (𝑀 ∈ (II Cn 𝐶) ∧ (𝐹𝑀) = 𝐺 ∧ (𝑀‘0) = 𝑃))
1110simp1d 1142 . 2 (𝜑𝑀 ∈ (II Cn 𝐶))
12 cvmliftpht.n . . . 4 𝑁 = (𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = 𝐻 ∧ (𝑓‘0) = 𝑃))
136simp2d 1143 . . . 4 (𝜑𝐻 ∈ (II Cn 𝐽))
14 phtpc01 24923 . . . . . . 7 (𝐺( ≃ph𝐽)𝐻 → ((𝐺‘0) = (𝐻‘0) ∧ (𝐺‘1) = (𝐻‘1)))
154, 14syl 17 . . . . . 6 (𝜑 → ((𝐺‘0) = (𝐻‘0) ∧ (𝐺‘1) = (𝐻‘1)))
1615simpld 494 . . . . 5 (𝜑 → (𝐺‘0) = (𝐻‘0))
179, 16eqtrd 2768 . . . 4 (𝜑 → (𝐹𝑃) = (𝐻‘0))
181, 12, 3, 13, 8, 17cvmliftiota 35366 . . 3 (𝜑 → (𝑁 ∈ (II Cn 𝐶) ∧ (𝐹𝑁) = 𝐻 ∧ (𝑁‘0) = 𝑃))
1918simp1d 1142 . 2 (𝜑𝑁 ∈ (II Cn 𝐶))
206simp3d 1144 . . . 4 (𝜑 → (𝐺(PHtpy‘𝐽)𝐻) ≠ ∅)
21 n0 4302 . . . 4 ((𝐺(PHtpy‘𝐽)𝐻) ≠ ∅ ↔ ∃𝑔 𝑔 ∈ (𝐺(PHtpy‘𝐽)𝐻))
2220, 21sylib 218 . . 3 (𝜑 → ∃𝑔 𝑔 ∈ (𝐺(PHtpy‘𝐽)𝐻))
233adantr 480 . . . . . 6 ((𝜑𝑔 ∈ (𝐺(PHtpy‘𝐽)𝐻)) → 𝐹 ∈ (𝐶 CovMap 𝐽))
247, 13phtpycn 24910 . . . . . . 7 (𝜑 → (𝐺(PHtpy‘𝐽)𝐻) ⊆ ((II ×t II) Cn 𝐽))
2524sselda 3930 . . . . . 6 ((𝜑𝑔 ∈ (𝐺(PHtpy‘𝐽)𝐻)) → 𝑔 ∈ ((II ×t II) Cn 𝐽))
268adantr 480 . . . . . 6 ((𝜑𝑔 ∈ (𝐺(PHtpy‘𝐽)𝐻)) → 𝑃𝐵)
279adantr 480 . . . . . . 7 ((𝜑𝑔 ∈ (𝐺(PHtpy‘𝐽)𝐻)) → (𝐹𝑃) = (𝐺‘0))
28 0elunit 13371 . . . . . . . . 9 0 ∈ (0[,]1)
297adantr 480 . . . . . . . . . 10 ((𝜑𝑔 ∈ (𝐺(PHtpy‘𝐽)𝐻)) → 𝐺 ∈ (II Cn 𝐽))
3013adantr 480 . . . . . . . . . 10 ((𝜑𝑔 ∈ (𝐺(PHtpy‘𝐽)𝐻)) → 𝐻 ∈ (II Cn 𝐽))
31 simpr 484 . . . . . . . . . 10 ((𝜑𝑔 ∈ (𝐺(PHtpy‘𝐽)𝐻)) → 𝑔 ∈ (𝐺(PHtpy‘𝐽)𝐻))
3229, 30, 31phtpyi 24911 . . . . . . . . 9 (((𝜑𝑔 ∈ (𝐺(PHtpy‘𝐽)𝐻)) ∧ 0 ∈ (0[,]1)) → ((0𝑔0) = (𝐺‘0) ∧ (1𝑔0) = (𝐺‘1)))
3328, 32mpan2 691 . . . . . . . 8 ((𝜑𝑔 ∈ (𝐺(PHtpy‘𝐽)𝐻)) → ((0𝑔0) = (𝐺‘0) ∧ (1𝑔0) = (𝐺‘1)))
3433simpld 494 . . . . . . 7 ((𝜑𝑔 ∈ (𝐺(PHtpy‘𝐽)𝐻)) → (0𝑔0) = (𝐺‘0))
3527, 34eqtr4d 2771 . . . . . 6 ((𝜑𝑔 ∈ (𝐺(PHtpy‘𝐽)𝐻)) → (𝐹𝑃) = (0𝑔0))
361, 23, 25, 26, 35cvmlift2 35381 . . . . 5 ((𝜑𝑔 ∈ (𝐺(PHtpy‘𝐽)𝐻)) → ∃! ∈ ((II ×t II) Cn 𝐶)((𝐹) = 𝑔 ∧ (00) = 𝑃))
37 reurex 3351 . . . . 5 (∃! ∈ ((II ×t II) Cn 𝐶)((𝐹) = 𝑔 ∧ (00) = 𝑃) → ∃ ∈ ((II ×t II) Cn 𝐶)((𝐹) = 𝑔 ∧ (00) = 𝑃))
3836, 37syl 17 . . . 4 ((𝜑𝑔 ∈ (𝐺(PHtpy‘𝐽)𝐻)) → ∃ ∈ ((II ×t II) Cn 𝐶)((𝐹) = 𝑔 ∧ (00) = 𝑃))
393ad2antrr 726 . . . . . 6 (((𝜑𝑔 ∈ (𝐺(PHtpy‘𝐽)𝐻)) ∧ ( ∈ ((II ×t II) Cn 𝐶) ∧ ((𝐹) = 𝑔 ∧ (00) = 𝑃))) → 𝐹 ∈ (𝐶 CovMap 𝐽))
408ad2antrr 726 . . . . . 6 (((𝜑𝑔 ∈ (𝐺(PHtpy‘𝐽)𝐻)) ∧ ( ∈ ((II ×t II) Cn 𝐶) ∧ ((𝐹) = 𝑔 ∧ (00) = 𝑃))) → 𝑃𝐵)
419ad2antrr 726 . . . . . 6 (((𝜑𝑔 ∈ (𝐺(PHtpy‘𝐽)𝐻)) ∧ ( ∈ ((II ×t II) Cn 𝐶) ∧ ((𝐹) = 𝑔 ∧ (00) = 𝑃))) → (𝐹𝑃) = (𝐺‘0))
427ad2antrr 726 . . . . . 6 (((𝜑𝑔 ∈ (𝐺(PHtpy‘𝐽)𝐻)) ∧ ( ∈ ((II ×t II) Cn 𝐶) ∧ ((𝐹) = 𝑔 ∧ (00) = 𝑃))) → 𝐺 ∈ (II Cn 𝐽))
4313ad2antrr 726 . . . . . 6 (((𝜑𝑔 ∈ (𝐺(PHtpy‘𝐽)𝐻)) ∧ ( ∈ ((II ×t II) Cn 𝐶) ∧ ((𝐹) = 𝑔 ∧ (00) = 𝑃))) → 𝐻 ∈ (II Cn 𝐽))
44 simplr 768 . . . . . 6 (((𝜑𝑔 ∈ (𝐺(PHtpy‘𝐽)𝐻)) ∧ ( ∈ ((II ×t II) Cn 𝐶) ∧ ((𝐹) = 𝑔 ∧ (00) = 𝑃))) → 𝑔 ∈ (𝐺(PHtpy‘𝐽)𝐻))
45 simprl 770 . . . . . 6 (((𝜑𝑔 ∈ (𝐺(PHtpy‘𝐽)𝐻)) ∧ ( ∈ ((II ×t II) Cn 𝐶) ∧ ((𝐹) = 𝑔 ∧ (00) = 𝑃))) → ∈ ((II ×t II) Cn 𝐶))
46 simprrl 780 . . . . . 6 (((𝜑𝑔 ∈ (𝐺(PHtpy‘𝐽)𝐻)) ∧ ( ∈ ((II ×t II) Cn 𝐶) ∧ ((𝐹) = 𝑔 ∧ (00) = 𝑃))) → (𝐹) = 𝑔)
47 simprrr 781 . . . . . 6 (((𝜑𝑔 ∈ (𝐺(PHtpy‘𝐽)𝐻)) ∧ ( ∈ ((II ×t II) Cn 𝐶) ∧ ((𝐹) = 𝑔 ∧ (00) = 𝑃))) → (00) = 𝑃)
481, 2, 12, 39, 40, 41, 42, 43, 44, 45, 46, 47cvmliftphtlem 35382 . . . . 5 (((𝜑𝑔 ∈ (𝐺(PHtpy‘𝐽)𝐻)) ∧ ( ∈ ((II ×t II) Cn 𝐶) ∧ ((𝐹) = 𝑔 ∧ (00) = 𝑃))) → ∈ (𝑀(PHtpy‘𝐶)𝑁))
4948ne0d 4291 . . . 4 (((𝜑𝑔 ∈ (𝐺(PHtpy‘𝐽)𝐻)) ∧ ( ∈ ((II ×t II) Cn 𝐶) ∧ ((𝐹) = 𝑔 ∧ (00) = 𝑃))) → (𝑀(PHtpy‘𝐶)𝑁) ≠ ∅)
5038, 49rexlimddv 3140 . . 3 ((𝜑𝑔 ∈ (𝐺(PHtpy‘𝐽)𝐻)) → (𝑀(PHtpy‘𝐶)𝑁) ≠ ∅)
5122, 50exlimddv 1936 . 2 (𝜑 → (𝑀(PHtpy‘𝐶)𝑁) ≠ ∅)
52 isphtpc 24921 . 2 (𝑀( ≃ph𝐶)𝑁 ↔ (𝑀 ∈ (II Cn 𝐶) ∧ 𝑁 ∈ (II Cn 𝐶) ∧ (𝑀(PHtpy‘𝐶)𝑁) ≠ ∅))
5311, 19, 51, 52syl3anbrc 1344 1 (𝜑𝑀( ≃ph𝐶)𝑁)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wex 1780  wcel 2113  wne 2929  wrex 3057  ∃!wreu 3345  c0 4282   cuni 4858   class class class wbr 5093  ccom 5623  cfv 6486  crio 7308  (class class class)co 7352  0cc0 11013  1c1 11014  [,]cicc 13250   Cn ccn 23140   ×t ctx 23476  IIcii 24796  PHtpycphtpy 24895  phcphtpc 24896   CovMap ccvm 35320
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-inf2 9538  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090  ax-pre-sup 11091  ax-addf 11092
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-tp 4580  df-op 4582  df-uni 4859  df-int 4898  df-iun 4943  df-iin 4944  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-of 7616  df-om 7803  df-1st 7927  df-2nd 7928  df-supp 8097  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-1o 8391  df-2o 8392  df-er 8628  df-ec 8630  df-map 8758  df-ixp 8828  df-en 8876  df-dom 8877  df-sdom 8878  df-fin 8879  df-fsupp 9253  df-fi 9302  df-sup 9333  df-inf 9334  df-oi 9403  df-card 9839  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-div 11782  df-nn 12133  df-2 12195  df-3 12196  df-4 12197  df-5 12198  df-6 12199  df-7 12200  df-8 12201  df-9 12202  df-n0 12389  df-z 12476  df-dec 12595  df-uz 12739  df-q 12849  df-rp 12893  df-xneg 13013  df-xadd 13014  df-xmul 13015  df-ioo 13251  df-ico 13253  df-icc 13254  df-fz 13410  df-fzo 13557  df-fl 13698  df-seq 13911  df-exp 13971  df-hash 14240  df-cj 15008  df-re 15009  df-im 15010  df-sqrt 15144  df-abs 15145  df-clim 15397  df-sum 15596  df-struct 17060  df-sets 17077  df-slot 17095  df-ndx 17107  df-base 17123  df-ress 17144  df-plusg 17176  df-mulr 17177  df-starv 17178  df-sca 17179  df-vsca 17180  df-ip 17181  df-tset 17182  df-ple 17183  df-ds 17185  df-unif 17186  df-hom 17187  df-cco 17188  df-rest 17328  df-topn 17329  df-0g 17347  df-gsum 17348  df-topgen 17349  df-pt 17350  df-prds 17353  df-xrs 17408  df-qtop 17413  df-imas 17414  df-xps 17416  df-mre 17490  df-mrc 17491  df-acs 17493  df-mgm 18550  df-sgrp 18629  df-mnd 18645  df-submnd 18694  df-mulg 18983  df-cntz 19231  df-cmn 19696  df-psmet 21285  df-xmet 21286  df-met 21287  df-bl 21288  df-mopn 21289  df-cnfld 21294  df-top 22810  df-topon 22827  df-topsp 22849  df-bases 22862  df-cld 22935  df-ntr 22936  df-cls 22937  df-nei 23014  df-cn 23143  df-cnp 23144  df-cmp 23303  df-conn 23328  df-lly 23382  df-nlly 23383  df-tx 23478  df-hmeo 23671  df-xms 24236  df-ms 24237  df-tms 24238  df-ii 24798  df-cncf 24799  df-htpy 24897  df-phtpy 24898  df-phtpc 24919  df-pconn 35286  df-sconn 35287  df-cvm 35321
This theorem is referenced by:  cvmlift3lem1  35384
  Copyright terms: Public domain W3C validator