| Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cvmliftpht | Structured version Visualization version GIF version | ||
| Description: If 𝐺 and 𝐻 are path-homotopic, then their lifts 𝑀 and 𝑁 are also path-homotopic. (Contributed by Mario Carneiro, 6-Jul-2015.) |
| Ref | Expression |
|---|---|
| cvmliftpht.b | ⊢ 𝐵 = ∪ 𝐶 |
| cvmliftpht.m | ⊢ 𝑀 = (℩𝑓 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑓) = 𝐺 ∧ (𝑓‘0) = 𝑃)) |
| cvmliftpht.n | ⊢ 𝑁 = (℩𝑓 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑓) = 𝐻 ∧ (𝑓‘0) = 𝑃)) |
| cvmliftpht.f | ⊢ (𝜑 → 𝐹 ∈ (𝐶 CovMap 𝐽)) |
| cvmliftpht.p | ⊢ (𝜑 → 𝑃 ∈ 𝐵) |
| cvmliftpht.e | ⊢ (𝜑 → (𝐹‘𝑃) = (𝐺‘0)) |
| cvmliftpht.g | ⊢ (𝜑 → 𝐺( ≃ph‘𝐽)𝐻) |
| Ref | Expression |
|---|---|
| cvmliftpht | ⊢ (𝜑 → 𝑀( ≃ph‘𝐶)𝑁) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cvmliftpht.b | . . . 4 ⊢ 𝐵 = ∪ 𝐶 | |
| 2 | cvmliftpht.m | . . . 4 ⊢ 𝑀 = (℩𝑓 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑓) = 𝐺 ∧ (𝑓‘0) = 𝑃)) | |
| 3 | cvmliftpht.f | . . . 4 ⊢ (𝜑 → 𝐹 ∈ (𝐶 CovMap 𝐽)) | |
| 4 | cvmliftpht.g | . . . . . 6 ⊢ (𝜑 → 𝐺( ≃ph‘𝐽)𝐻) | |
| 5 | isphtpc 24893 | . . . . . 6 ⊢ (𝐺( ≃ph‘𝐽)𝐻 ↔ (𝐺 ∈ (II Cn 𝐽) ∧ 𝐻 ∈ (II Cn 𝐽) ∧ (𝐺(PHtpy‘𝐽)𝐻) ≠ ∅)) | |
| 6 | 4, 5 | sylib 218 | . . . . 5 ⊢ (𝜑 → (𝐺 ∈ (II Cn 𝐽) ∧ 𝐻 ∈ (II Cn 𝐽) ∧ (𝐺(PHtpy‘𝐽)𝐻) ≠ ∅)) |
| 7 | 6 | simp1d 1142 | . . . 4 ⊢ (𝜑 → 𝐺 ∈ (II Cn 𝐽)) |
| 8 | cvmliftpht.p | . . . 4 ⊢ (𝜑 → 𝑃 ∈ 𝐵) | |
| 9 | cvmliftpht.e | . . . 4 ⊢ (𝜑 → (𝐹‘𝑃) = (𝐺‘0)) | |
| 10 | 1, 2, 3, 7, 8, 9 | cvmliftiota 35288 | . . 3 ⊢ (𝜑 → (𝑀 ∈ (II Cn 𝐶) ∧ (𝐹 ∘ 𝑀) = 𝐺 ∧ (𝑀‘0) = 𝑃)) |
| 11 | 10 | simp1d 1142 | . 2 ⊢ (𝜑 → 𝑀 ∈ (II Cn 𝐶)) |
| 12 | cvmliftpht.n | . . . 4 ⊢ 𝑁 = (℩𝑓 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑓) = 𝐻 ∧ (𝑓‘0) = 𝑃)) | |
| 13 | 6 | simp2d 1143 | . . . 4 ⊢ (𝜑 → 𝐻 ∈ (II Cn 𝐽)) |
| 14 | phtpc01 24895 | . . . . . . 7 ⊢ (𝐺( ≃ph‘𝐽)𝐻 → ((𝐺‘0) = (𝐻‘0) ∧ (𝐺‘1) = (𝐻‘1))) | |
| 15 | 4, 14 | syl 17 | . . . . . 6 ⊢ (𝜑 → ((𝐺‘0) = (𝐻‘0) ∧ (𝐺‘1) = (𝐻‘1))) |
| 16 | 15 | simpld 494 | . . . . 5 ⊢ (𝜑 → (𝐺‘0) = (𝐻‘0)) |
| 17 | 9, 16 | eqtrd 2764 | . . . 4 ⊢ (𝜑 → (𝐹‘𝑃) = (𝐻‘0)) |
| 18 | 1, 12, 3, 13, 8, 17 | cvmliftiota 35288 | . . 3 ⊢ (𝜑 → (𝑁 ∈ (II Cn 𝐶) ∧ (𝐹 ∘ 𝑁) = 𝐻 ∧ (𝑁‘0) = 𝑃)) |
| 19 | 18 | simp1d 1142 | . 2 ⊢ (𝜑 → 𝑁 ∈ (II Cn 𝐶)) |
| 20 | 6 | simp3d 1144 | . . . 4 ⊢ (𝜑 → (𝐺(PHtpy‘𝐽)𝐻) ≠ ∅) |
| 21 | n0 4316 | . . . 4 ⊢ ((𝐺(PHtpy‘𝐽)𝐻) ≠ ∅ ↔ ∃𝑔 𝑔 ∈ (𝐺(PHtpy‘𝐽)𝐻)) | |
| 22 | 20, 21 | sylib 218 | . . 3 ⊢ (𝜑 → ∃𝑔 𝑔 ∈ (𝐺(PHtpy‘𝐽)𝐻)) |
| 23 | 3 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑔 ∈ (𝐺(PHtpy‘𝐽)𝐻)) → 𝐹 ∈ (𝐶 CovMap 𝐽)) |
| 24 | 7, 13 | phtpycn 24882 | . . . . . . 7 ⊢ (𝜑 → (𝐺(PHtpy‘𝐽)𝐻) ⊆ ((II ×t II) Cn 𝐽)) |
| 25 | 24 | sselda 3946 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑔 ∈ (𝐺(PHtpy‘𝐽)𝐻)) → 𝑔 ∈ ((II ×t II) Cn 𝐽)) |
| 26 | 8 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑔 ∈ (𝐺(PHtpy‘𝐽)𝐻)) → 𝑃 ∈ 𝐵) |
| 27 | 9 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑔 ∈ (𝐺(PHtpy‘𝐽)𝐻)) → (𝐹‘𝑃) = (𝐺‘0)) |
| 28 | 0elunit 13430 | . . . . . . . . 9 ⊢ 0 ∈ (0[,]1) | |
| 29 | 7 | adantr 480 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑔 ∈ (𝐺(PHtpy‘𝐽)𝐻)) → 𝐺 ∈ (II Cn 𝐽)) |
| 30 | 13 | adantr 480 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑔 ∈ (𝐺(PHtpy‘𝐽)𝐻)) → 𝐻 ∈ (II Cn 𝐽)) |
| 31 | simpr 484 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑔 ∈ (𝐺(PHtpy‘𝐽)𝐻)) → 𝑔 ∈ (𝐺(PHtpy‘𝐽)𝐻)) | |
| 32 | 29, 30, 31 | phtpyi 24883 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝑔 ∈ (𝐺(PHtpy‘𝐽)𝐻)) ∧ 0 ∈ (0[,]1)) → ((0𝑔0) = (𝐺‘0) ∧ (1𝑔0) = (𝐺‘1))) |
| 33 | 28, 32 | mpan2 691 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑔 ∈ (𝐺(PHtpy‘𝐽)𝐻)) → ((0𝑔0) = (𝐺‘0) ∧ (1𝑔0) = (𝐺‘1))) |
| 34 | 33 | simpld 494 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑔 ∈ (𝐺(PHtpy‘𝐽)𝐻)) → (0𝑔0) = (𝐺‘0)) |
| 35 | 27, 34 | eqtr4d 2767 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑔 ∈ (𝐺(PHtpy‘𝐽)𝐻)) → (𝐹‘𝑃) = (0𝑔0)) |
| 36 | 1, 23, 25, 26, 35 | cvmlift2 35303 | . . . . 5 ⊢ ((𝜑 ∧ 𝑔 ∈ (𝐺(PHtpy‘𝐽)𝐻)) → ∃!ℎ ∈ ((II ×t II) Cn 𝐶)((𝐹 ∘ ℎ) = 𝑔 ∧ (0ℎ0) = 𝑃)) |
| 37 | reurex 3358 | . . . . 5 ⊢ (∃!ℎ ∈ ((II ×t II) Cn 𝐶)((𝐹 ∘ ℎ) = 𝑔 ∧ (0ℎ0) = 𝑃) → ∃ℎ ∈ ((II ×t II) Cn 𝐶)((𝐹 ∘ ℎ) = 𝑔 ∧ (0ℎ0) = 𝑃)) | |
| 38 | 36, 37 | syl 17 | . . . 4 ⊢ ((𝜑 ∧ 𝑔 ∈ (𝐺(PHtpy‘𝐽)𝐻)) → ∃ℎ ∈ ((II ×t II) Cn 𝐶)((𝐹 ∘ ℎ) = 𝑔 ∧ (0ℎ0) = 𝑃)) |
| 39 | 3 | ad2antrr 726 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑔 ∈ (𝐺(PHtpy‘𝐽)𝐻)) ∧ (ℎ ∈ ((II ×t II) Cn 𝐶) ∧ ((𝐹 ∘ ℎ) = 𝑔 ∧ (0ℎ0) = 𝑃))) → 𝐹 ∈ (𝐶 CovMap 𝐽)) |
| 40 | 8 | ad2antrr 726 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑔 ∈ (𝐺(PHtpy‘𝐽)𝐻)) ∧ (ℎ ∈ ((II ×t II) Cn 𝐶) ∧ ((𝐹 ∘ ℎ) = 𝑔 ∧ (0ℎ0) = 𝑃))) → 𝑃 ∈ 𝐵) |
| 41 | 9 | ad2antrr 726 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑔 ∈ (𝐺(PHtpy‘𝐽)𝐻)) ∧ (ℎ ∈ ((II ×t II) Cn 𝐶) ∧ ((𝐹 ∘ ℎ) = 𝑔 ∧ (0ℎ0) = 𝑃))) → (𝐹‘𝑃) = (𝐺‘0)) |
| 42 | 7 | ad2antrr 726 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑔 ∈ (𝐺(PHtpy‘𝐽)𝐻)) ∧ (ℎ ∈ ((II ×t II) Cn 𝐶) ∧ ((𝐹 ∘ ℎ) = 𝑔 ∧ (0ℎ0) = 𝑃))) → 𝐺 ∈ (II Cn 𝐽)) |
| 43 | 13 | ad2antrr 726 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑔 ∈ (𝐺(PHtpy‘𝐽)𝐻)) ∧ (ℎ ∈ ((II ×t II) Cn 𝐶) ∧ ((𝐹 ∘ ℎ) = 𝑔 ∧ (0ℎ0) = 𝑃))) → 𝐻 ∈ (II Cn 𝐽)) |
| 44 | simplr 768 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑔 ∈ (𝐺(PHtpy‘𝐽)𝐻)) ∧ (ℎ ∈ ((II ×t II) Cn 𝐶) ∧ ((𝐹 ∘ ℎ) = 𝑔 ∧ (0ℎ0) = 𝑃))) → 𝑔 ∈ (𝐺(PHtpy‘𝐽)𝐻)) | |
| 45 | simprl 770 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑔 ∈ (𝐺(PHtpy‘𝐽)𝐻)) ∧ (ℎ ∈ ((II ×t II) Cn 𝐶) ∧ ((𝐹 ∘ ℎ) = 𝑔 ∧ (0ℎ0) = 𝑃))) → ℎ ∈ ((II ×t II) Cn 𝐶)) | |
| 46 | simprrl 780 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑔 ∈ (𝐺(PHtpy‘𝐽)𝐻)) ∧ (ℎ ∈ ((II ×t II) Cn 𝐶) ∧ ((𝐹 ∘ ℎ) = 𝑔 ∧ (0ℎ0) = 𝑃))) → (𝐹 ∘ ℎ) = 𝑔) | |
| 47 | simprrr 781 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑔 ∈ (𝐺(PHtpy‘𝐽)𝐻)) ∧ (ℎ ∈ ((II ×t II) Cn 𝐶) ∧ ((𝐹 ∘ ℎ) = 𝑔 ∧ (0ℎ0) = 𝑃))) → (0ℎ0) = 𝑃) | |
| 48 | 1, 2, 12, 39, 40, 41, 42, 43, 44, 45, 46, 47 | cvmliftphtlem 35304 | . . . . 5 ⊢ (((𝜑 ∧ 𝑔 ∈ (𝐺(PHtpy‘𝐽)𝐻)) ∧ (ℎ ∈ ((II ×t II) Cn 𝐶) ∧ ((𝐹 ∘ ℎ) = 𝑔 ∧ (0ℎ0) = 𝑃))) → ℎ ∈ (𝑀(PHtpy‘𝐶)𝑁)) |
| 49 | 48 | ne0d 4305 | . . . 4 ⊢ (((𝜑 ∧ 𝑔 ∈ (𝐺(PHtpy‘𝐽)𝐻)) ∧ (ℎ ∈ ((II ×t II) Cn 𝐶) ∧ ((𝐹 ∘ ℎ) = 𝑔 ∧ (0ℎ0) = 𝑃))) → (𝑀(PHtpy‘𝐶)𝑁) ≠ ∅) |
| 50 | 38, 49 | rexlimddv 3140 | . . 3 ⊢ ((𝜑 ∧ 𝑔 ∈ (𝐺(PHtpy‘𝐽)𝐻)) → (𝑀(PHtpy‘𝐶)𝑁) ≠ ∅) |
| 51 | 22, 50 | exlimddv 1935 | . 2 ⊢ (𝜑 → (𝑀(PHtpy‘𝐶)𝑁) ≠ ∅) |
| 52 | isphtpc 24893 | . 2 ⊢ (𝑀( ≃ph‘𝐶)𝑁 ↔ (𝑀 ∈ (II Cn 𝐶) ∧ 𝑁 ∈ (II Cn 𝐶) ∧ (𝑀(PHtpy‘𝐶)𝑁) ≠ ∅)) | |
| 53 | 11, 19, 51, 52 | syl3anbrc 1344 | 1 ⊢ (𝜑 → 𝑀( ≃ph‘𝐶)𝑁) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∃wex 1779 ∈ wcel 2109 ≠ wne 2925 ∃wrex 3053 ∃!wreu 3352 ∅c0 4296 ∪ cuni 4871 class class class wbr 5107 ∘ ccom 5642 ‘cfv 6511 ℩crio 7343 (class class class)co 7387 0cc0 11068 1c1 11069 [,]cicc 13309 Cn ccn 23111 ×t ctx 23447 IIcii 24768 PHtpycphtpy 24867 ≃phcphtpc 24868 CovMap ccvm 35242 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-inf2 9594 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 ax-pre-sup 11146 ax-addf 11147 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-tp 4594 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-iin 4958 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-se 5592 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-isom 6520 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-of 7653 df-om 7843 df-1st 7968 df-2nd 7969 df-supp 8140 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-2o 8435 df-er 8671 df-ec 8673 df-map 8801 df-ixp 8871 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-fsupp 9313 df-fi 9362 df-sup 9393 df-inf 9394 df-oi 9463 df-card 9892 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-div 11836 df-nn 12187 df-2 12249 df-3 12250 df-4 12251 df-5 12252 df-6 12253 df-7 12254 df-8 12255 df-9 12256 df-n0 12443 df-z 12530 df-dec 12650 df-uz 12794 df-q 12908 df-rp 12952 df-xneg 13072 df-xadd 13073 df-xmul 13074 df-ioo 13310 df-ico 13312 df-icc 13313 df-fz 13469 df-fzo 13616 df-fl 13754 df-seq 13967 df-exp 14027 df-hash 14296 df-cj 15065 df-re 15066 df-im 15067 df-sqrt 15201 df-abs 15202 df-clim 15454 df-sum 15653 df-struct 17117 df-sets 17134 df-slot 17152 df-ndx 17164 df-base 17180 df-ress 17201 df-plusg 17233 df-mulr 17234 df-starv 17235 df-sca 17236 df-vsca 17237 df-ip 17238 df-tset 17239 df-ple 17240 df-ds 17242 df-unif 17243 df-hom 17244 df-cco 17245 df-rest 17385 df-topn 17386 df-0g 17404 df-gsum 17405 df-topgen 17406 df-pt 17407 df-prds 17410 df-xrs 17465 df-qtop 17470 df-imas 17471 df-xps 17473 df-mre 17547 df-mrc 17548 df-acs 17550 df-mgm 18567 df-sgrp 18646 df-mnd 18662 df-submnd 18711 df-mulg 19000 df-cntz 19249 df-cmn 19712 df-psmet 21256 df-xmet 21257 df-met 21258 df-bl 21259 df-mopn 21260 df-cnfld 21265 df-top 22781 df-topon 22798 df-topsp 22820 df-bases 22833 df-cld 22906 df-ntr 22907 df-cls 22908 df-nei 22985 df-cn 23114 df-cnp 23115 df-cmp 23274 df-conn 23299 df-lly 23353 df-nlly 23354 df-tx 23449 df-hmeo 23642 df-xms 24208 df-ms 24209 df-tms 24210 df-ii 24770 df-cncf 24771 df-htpy 24869 df-phtpy 24870 df-phtpc 24891 df-pconn 35208 df-sconn 35209 df-cvm 35243 |
| This theorem is referenced by: cvmlift3lem1 35306 |
| Copyright terms: Public domain | W3C validator |