Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvmliftpht Structured version   Visualization version   GIF version

Theorem cvmliftpht 35312
Description: If 𝐺 and 𝐻 are path-homotopic, then their lifts 𝑀 and 𝑁 are also path-homotopic. (Contributed by Mario Carneiro, 6-Jul-2015.)
Hypotheses
Ref Expression
cvmliftpht.b 𝐵 = 𝐶
cvmliftpht.m 𝑀 = (𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = 𝐺 ∧ (𝑓‘0) = 𝑃))
cvmliftpht.n 𝑁 = (𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = 𝐻 ∧ (𝑓‘0) = 𝑃))
cvmliftpht.f (𝜑𝐹 ∈ (𝐶 CovMap 𝐽))
cvmliftpht.p (𝜑𝑃𝐵)
cvmliftpht.e (𝜑 → (𝐹𝑃) = (𝐺‘0))
cvmliftpht.g (𝜑𝐺( ≃ph𝐽)𝐻)
Assertion
Ref Expression
cvmliftpht (𝜑𝑀( ≃ph𝐶)𝑁)
Distinct variable groups:   𝐵,𝑓   𝑓,𝐹   𝑓,𝐽   𝐶,𝑓   𝑓,𝐺   𝑓,𝐻   𝑃,𝑓
Allowed substitution hints:   𝜑(𝑓)   𝑀(𝑓)   𝑁(𝑓)

Proof of Theorem cvmliftpht
Dummy variables 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cvmliftpht.b . . . 4 𝐵 = 𝐶
2 cvmliftpht.m . . . 4 𝑀 = (𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = 𝐺 ∧ (𝑓‘0) = 𝑃))
3 cvmliftpht.f . . . 4 (𝜑𝐹 ∈ (𝐶 CovMap 𝐽))
4 cvmliftpht.g . . . . . 6 (𝜑𝐺( ≃ph𝐽)𝐻)
5 isphtpc 24900 . . . . . 6 (𝐺( ≃ph𝐽)𝐻 ↔ (𝐺 ∈ (II Cn 𝐽) ∧ 𝐻 ∈ (II Cn 𝐽) ∧ (𝐺(PHtpy‘𝐽)𝐻) ≠ ∅))
64, 5sylib 218 . . . . 5 (𝜑 → (𝐺 ∈ (II Cn 𝐽) ∧ 𝐻 ∈ (II Cn 𝐽) ∧ (𝐺(PHtpy‘𝐽)𝐻) ≠ ∅))
76simp1d 1142 . . . 4 (𝜑𝐺 ∈ (II Cn 𝐽))
8 cvmliftpht.p . . . 4 (𝜑𝑃𝐵)
9 cvmliftpht.e . . . 4 (𝜑 → (𝐹𝑃) = (𝐺‘0))
101, 2, 3, 7, 8, 9cvmliftiota 35295 . . 3 (𝜑 → (𝑀 ∈ (II Cn 𝐶) ∧ (𝐹𝑀) = 𝐺 ∧ (𝑀‘0) = 𝑃))
1110simp1d 1142 . 2 (𝜑𝑀 ∈ (II Cn 𝐶))
12 cvmliftpht.n . . . 4 𝑁 = (𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = 𝐻 ∧ (𝑓‘0) = 𝑃))
136simp2d 1143 . . . 4 (𝜑𝐻 ∈ (II Cn 𝐽))
14 phtpc01 24902 . . . . . . 7 (𝐺( ≃ph𝐽)𝐻 → ((𝐺‘0) = (𝐻‘0) ∧ (𝐺‘1) = (𝐻‘1)))
154, 14syl 17 . . . . . 6 (𝜑 → ((𝐺‘0) = (𝐻‘0) ∧ (𝐺‘1) = (𝐻‘1)))
1615simpld 494 . . . . 5 (𝜑 → (𝐺‘0) = (𝐻‘0))
179, 16eqtrd 2765 . . . 4 (𝜑 → (𝐹𝑃) = (𝐻‘0))
181, 12, 3, 13, 8, 17cvmliftiota 35295 . . 3 (𝜑 → (𝑁 ∈ (II Cn 𝐶) ∧ (𝐹𝑁) = 𝐻 ∧ (𝑁‘0) = 𝑃))
1918simp1d 1142 . 2 (𝜑𝑁 ∈ (II Cn 𝐶))
206simp3d 1144 . . . 4 (𝜑 → (𝐺(PHtpy‘𝐽)𝐻) ≠ ∅)
21 n0 4319 . . . 4 ((𝐺(PHtpy‘𝐽)𝐻) ≠ ∅ ↔ ∃𝑔 𝑔 ∈ (𝐺(PHtpy‘𝐽)𝐻))
2220, 21sylib 218 . . 3 (𝜑 → ∃𝑔 𝑔 ∈ (𝐺(PHtpy‘𝐽)𝐻))
233adantr 480 . . . . . 6 ((𝜑𝑔 ∈ (𝐺(PHtpy‘𝐽)𝐻)) → 𝐹 ∈ (𝐶 CovMap 𝐽))
247, 13phtpycn 24889 . . . . . . 7 (𝜑 → (𝐺(PHtpy‘𝐽)𝐻) ⊆ ((II ×t II) Cn 𝐽))
2524sselda 3949 . . . . . 6 ((𝜑𝑔 ∈ (𝐺(PHtpy‘𝐽)𝐻)) → 𝑔 ∈ ((II ×t II) Cn 𝐽))
268adantr 480 . . . . . 6 ((𝜑𝑔 ∈ (𝐺(PHtpy‘𝐽)𝐻)) → 𝑃𝐵)
279adantr 480 . . . . . . 7 ((𝜑𝑔 ∈ (𝐺(PHtpy‘𝐽)𝐻)) → (𝐹𝑃) = (𝐺‘0))
28 0elunit 13437 . . . . . . . . 9 0 ∈ (0[,]1)
297adantr 480 . . . . . . . . . 10 ((𝜑𝑔 ∈ (𝐺(PHtpy‘𝐽)𝐻)) → 𝐺 ∈ (II Cn 𝐽))
3013adantr 480 . . . . . . . . . 10 ((𝜑𝑔 ∈ (𝐺(PHtpy‘𝐽)𝐻)) → 𝐻 ∈ (II Cn 𝐽))
31 simpr 484 . . . . . . . . . 10 ((𝜑𝑔 ∈ (𝐺(PHtpy‘𝐽)𝐻)) → 𝑔 ∈ (𝐺(PHtpy‘𝐽)𝐻))
3229, 30, 31phtpyi 24890 . . . . . . . . 9 (((𝜑𝑔 ∈ (𝐺(PHtpy‘𝐽)𝐻)) ∧ 0 ∈ (0[,]1)) → ((0𝑔0) = (𝐺‘0) ∧ (1𝑔0) = (𝐺‘1)))
3328, 32mpan2 691 . . . . . . . 8 ((𝜑𝑔 ∈ (𝐺(PHtpy‘𝐽)𝐻)) → ((0𝑔0) = (𝐺‘0) ∧ (1𝑔0) = (𝐺‘1)))
3433simpld 494 . . . . . . 7 ((𝜑𝑔 ∈ (𝐺(PHtpy‘𝐽)𝐻)) → (0𝑔0) = (𝐺‘0))
3527, 34eqtr4d 2768 . . . . . 6 ((𝜑𝑔 ∈ (𝐺(PHtpy‘𝐽)𝐻)) → (𝐹𝑃) = (0𝑔0))
361, 23, 25, 26, 35cvmlift2 35310 . . . . 5 ((𝜑𝑔 ∈ (𝐺(PHtpy‘𝐽)𝐻)) → ∃! ∈ ((II ×t II) Cn 𝐶)((𝐹) = 𝑔 ∧ (00) = 𝑃))
37 reurex 3360 . . . . 5 (∃! ∈ ((II ×t II) Cn 𝐶)((𝐹) = 𝑔 ∧ (00) = 𝑃) → ∃ ∈ ((II ×t II) Cn 𝐶)((𝐹) = 𝑔 ∧ (00) = 𝑃))
3836, 37syl 17 . . . 4 ((𝜑𝑔 ∈ (𝐺(PHtpy‘𝐽)𝐻)) → ∃ ∈ ((II ×t II) Cn 𝐶)((𝐹) = 𝑔 ∧ (00) = 𝑃))
393ad2antrr 726 . . . . . 6 (((𝜑𝑔 ∈ (𝐺(PHtpy‘𝐽)𝐻)) ∧ ( ∈ ((II ×t II) Cn 𝐶) ∧ ((𝐹) = 𝑔 ∧ (00) = 𝑃))) → 𝐹 ∈ (𝐶 CovMap 𝐽))
408ad2antrr 726 . . . . . 6 (((𝜑𝑔 ∈ (𝐺(PHtpy‘𝐽)𝐻)) ∧ ( ∈ ((II ×t II) Cn 𝐶) ∧ ((𝐹) = 𝑔 ∧ (00) = 𝑃))) → 𝑃𝐵)
419ad2antrr 726 . . . . . 6 (((𝜑𝑔 ∈ (𝐺(PHtpy‘𝐽)𝐻)) ∧ ( ∈ ((II ×t II) Cn 𝐶) ∧ ((𝐹) = 𝑔 ∧ (00) = 𝑃))) → (𝐹𝑃) = (𝐺‘0))
427ad2antrr 726 . . . . . 6 (((𝜑𝑔 ∈ (𝐺(PHtpy‘𝐽)𝐻)) ∧ ( ∈ ((II ×t II) Cn 𝐶) ∧ ((𝐹) = 𝑔 ∧ (00) = 𝑃))) → 𝐺 ∈ (II Cn 𝐽))
4313ad2antrr 726 . . . . . 6 (((𝜑𝑔 ∈ (𝐺(PHtpy‘𝐽)𝐻)) ∧ ( ∈ ((II ×t II) Cn 𝐶) ∧ ((𝐹) = 𝑔 ∧ (00) = 𝑃))) → 𝐻 ∈ (II Cn 𝐽))
44 simplr 768 . . . . . 6 (((𝜑𝑔 ∈ (𝐺(PHtpy‘𝐽)𝐻)) ∧ ( ∈ ((II ×t II) Cn 𝐶) ∧ ((𝐹) = 𝑔 ∧ (00) = 𝑃))) → 𝑔 ∈ (𝐺(PHtpy‘𝐽)𝐻))
45 simprl 770 . . . . . 6 (((𝜑𝑔 ∈ (𝐺(PHtpy‘𝐽)𝐻)) ∧ ( ∈ ((II ×t II) Cn 𝐶) ∧ ((𝐹) = 𝑔 ∧ (00) = 𝑃))) → ∈ ((II ×t II) Cn 𝐶))
46 simprrl 780 . . . . . 6 (((𝜑𝑔 ∈ (𝐺(PHtpy‘𝐽)𝐻)) ∧ ( ∈ ((II ×t II) Cn 𝐶) ∧ ((𝐹) = 𝑔 ∧ (00) = 𝑃))) → (𝐹) = 𝑔)
47 simprrr 781 . . . . . 6 (((𝜑𝑔 ∈ (𝐺(PHtpy‘𝐽)𝐻)) ∧ ( ∈ ((II ×t II) Cn 𝐶) ∧ ((𝐹) = 𝑔 ∧ (00) = 𝑃))) → (00) = 𝑃)
481, 2, 12, 39, 40, 41, 42, 43, 44, 45, 46, 47cvmliftphtlem 35311 . . . . 5 (((𝜑𝑔 ∈ (𝐺(PHtpy‘𝐽)𝐻)) ∧ ( ∈ ((II ×t II) Cn 𝐶) ∧ ((𝐹) = 𝑔 ∧ (00) = 𝑃))) → ∈ (𝑀(PHtpy‘𝐶)𝑁))
4948ne0d 4308 . . . 4 (((𝜑𝑔 ∈ (𝐺(PHtpy‘𝐽)𝐻)) ∧ ( ∈ ((II ×t II) Cn 𝐶) ∧ ((𝐹) = 𝑔 ∧ (00) = 𝑃))) → (𝑀(PHtpy‘𝐶)𝑁) ≠ ∅)
5038, 49rexlimddv 3141 . . 3 ((𝜑𝑔 ∈ (𝐺(PHtpy‘𝐽)𝐻)) → (𝑀(PHtpy‘𝐶)𝑁) ≠ ∅)
5122, 50exlimddv 1935 . 2 (𝜑 → (𝑀(PHtpy‘𝐶)𝑁) ≠ ∅)
52 isphtpc 24900 . 2 (𝑀( ≃ph𝐶)𝑁 ↔ (𝑀 ∈ (II Cn 𝐶) ∧ 𝑁 ∈ (II Cn 𝐶) ∧ (𝑀(PHtpy‘𝐶)𝑁) ≠ ∅))
5311, 19, 51, 52syl3anbrc 1344 1 (𝜑𝑀( ≃ph𝐶)𝑁)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wex 1779  wcel 2109  wne 2926  wrex 3054  ∃!wreu 3354  c0 4299   cuni 4874   class class class wbr 5110  ccom 5645  cfv 6514  crio 7346  (class class class)co 7390  0cc0 11075  1c1 11076  [,]cicc 13316   Cn ccn 23118   ×t ctx 23454  IIcii 24775  PHtpycphtpy 24874  phcphtpc 24875   CovMap ccvm 35249
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153  ax-addf 11154
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656  df-om 7846  df-1st 7971  df-2nd 7972  df-supp 8143  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-er 8674  df-ec 8676  df-map 8804  df-ixp 8874  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-fsupp 9320  df-fi 9369  df-sup 9400  df-inf 9401  df-oi 9470  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-z 12537  df-dec 12657  df-uz 12801  df-q 12915  df-rp 12959  df-xneg 13079  df-xadd 13080  df-xmul 13081  df-ioo 13317  df-ico 13319  df-icc 13320  df-fz 13476  df-fzo 13623  df-fl 13761  df-seq 13974  df-exp 14034  df-hash 14303  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-clim 15461  df-sum 15660  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-starv 17242  df-sca 17243  df-vsca 17244  df-ip 17245  df-tset 17246  df-ple 17247  df-ds 17249  df-unif 17250  df-hom 17251  df-cco 17252  df-rest 17392  df-topn 17393  df-0g 17411  df-gsum 17412  df-topgen 17413  df-pt 17414  df-prds 17417  df-xrs 17472  df-qtop 17477  df-imas 17478  df-xps 17480  df-mre 17554  df-mrc 17555  df-acs 17557  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-submnd 18718  df-mulg 19007  df-cntz 19256  df-cmn 19719  df-psmet 21263  df-xmet 21264  df-met 21265  df-bl 21266  df-mopn 21267  df-cnfld 21272  df-top 22788  df-topon 22805  df-topsp 22827  df-bases 22840  df-cld 22913  df-ntr 22914  df-cls 22915  df-nei 22992  df-cn 23121  df-cnp 23122  df-cmp 23281  df-conn 23306  df-lly 23360  df-nlly 23361  df-tx 23456  df-hmeo 23649  df-xms 24215  df-ms 24216  df-tms 24217  df-ii 24777  df-cncf 24778  df-htpy 24876  df-phtpy 24877  df-phtpc 24898  df-pconn 35215  df-sconn 35216  df-cvm 35250
This theorem is referenced by:  cvmlift3lem1  35313
  Copyright terms: Public domain W3C validator