Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvmliftpht Structured version   Visualization version   GIF version

Theorem cvmliftpht 35286
Description: If 𝐺 and 𝐻 are path-homotopic, then their lifts 𝑀 and 𝑁 are also path-homotopic. (Contributed by Mario Carneiro, 6-Jul-2015.)
Hypotheses
Ref Expression
cvmliftpht.b 𝐵 = 𝐶
cvmliftpht.m 𝑀 = (𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = 𝐺 ∧ (𝑓‘0) = 𝑃))
cvmliftpht.n 𝑁 = (𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = 𝐻 ∧ (𝑓‘0) = 𝑃))
cvmliftpht.f (𝜑𝐹 ∈ (𝐶 CovMap 𝐽))
cvmliftpht.p (𝜑𝑃𝐵)
cvmliftpht.e (𝜑 → (𝐹𝑃) = (𝐺‘0))
cvmliftpht.g (𝜑𝐺( ≃ph𝐽)𝐻)
Assertion
Ref Expression
cvmliftpht (𝜑𝑀( ≃ph𝐶)𝑁)
Distinct variable groups:   𝐵,𝑓   𝑓,𝐹   𝑓,𝐽   𝐶,𝑓   𝑓,𝐺   𝑓,𝐻   𝑃,𝑓
Allowed substitution hints:   𝜑(𝑓)   𝑀(𝑓)   𝑁(𝑓)

Proof of Theorem cvmliftpht
Dummy variables 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cvmliftpht.b . . . 4 𝐵 = 𝐶
2 cvmliftpht.m . . . 4 𝑀 = (𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = 𝐺 ∧ (𝑓‘0) = 𝑃))
3 cvmliftpht.f . . . 4 (𝜑𝐹 ∈ (𝐶 CovMap 𝐽))
4 cvmliftpht.g . . . . . 6 (𝜑𝐺( ≃ph𝐽)𝐻)
5 isphtpc 25045 . . . . . 6 (𝐺( ≃ph𝐽)𝐻 ↔ (𝐺 ∈ (II Cn 𝐽) ∧ 𝐻 ∈ (II Cn 𝐽) ∧ (𝐺(PHtpy‘𝐽)𝐻) ≠ ∅))
64, 5sylib 218 . . . . 5 (𝜑 → (𝐺 ∈ (II Cn 𝐽) ∧ 𝐻 ∈ (II Cn 𝐽) ∧ (𝐺(PHtpy‘𝐽)𝐻) ≠ ∅))
76simp1d 1142 . . . 4 (𝜑𝐺 ∈ (II Cn 𝐽))
8 cvmliftpht.p . . . 4 (𝜑𝑃𝐵)
9 cvmliftpht.e . . . 4 (𝜑 → (𝐹𝑃) = (𝐺‘0))
101, 2, 3, 7, 8, 9cvmliftiota 35269 . . 3 (𝜑 → (𝑀 ∈ (II Cn 𝐶) ∧ (𝐹𝑀) = 𝐺 ∧ (𝑀‘0) = 𝑃))
1110simp1d 1142 . 2 (𝜑𝑀 ∈ (II Cn 𝐶))
12 cvmliftpht.n . . . 4 𝑁 = (𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = 𝐻 ∧ (𝑓‘0) = 𝑃))
136simp2d 1143 . . . 4 (𝜑𝐻 ∈ (II Cn 𝐽))
14 phtpc01 25047 . . . . . . 7 (𝐺( ≃ph𝐽)𝐻 → ((𝐺‘0) = (𝐻‘0) ∧ (𝐺‘1) = (𝐻‘1)))
154, 14syl 17 . . . . . 6 (𝜑 → ((𝐺‘0) = (𝐻‘0) ∧ (𝐺‘1) = (𝐻‘1)))
1615simpld 494 . . . . 5 (𝜑 → (𝐺‘0) = (𝐻‘0))
179, 16eqtrd 2780 . . . 4 (𝜑 → (𝐹𝑃) = (𝐻‘0))
181, 12, 3, 13, 8, 17cvmliftiota 35269 . . 3 (𝜑 → (𝑁 ∈ (II Cn 𝐶) ∧ (𝐹𝑁) = 𝐻 ∧ (𝑁‘0) = 𝑃))
1918simp1d 1142 . 2 (𝜑𝑁 ∈ (II Cn 𝐶))
206simp3d 1144 . . . 4 (𝜑 → (𝐺(PHtpy‘𝐽)𝐻) ≠ ∅)
21 n0 4376 . . . 4 ((𝐺(PHtpy‘𝐽)𝐻) ≠ ∅ ↔ ∃𝑔 𝑔 ∈ (𝐺(PHtpy‘𝐽)𝐻))
2220, 21sylib 218 . . 3 (𝜑 → ∃𝑔 𝑔 ∈ (𝐺(PHtpy‘𝐽)𝐻))
233adantr 480 . . . . . 6 ((𝜑𝑔 ∈ (𝐺(PHtpy‘𝐽)𝐻)) → 𝐹 ∈ (𝐶 CovMap 𝐽))
247, 13phtpycn 25034 . . . . . . 7 (𝜑 → (𝐺(PHtpy‘𝐽)𝐻) ⊆ ((II ×t II) Cn 𝐽))
2524sselda 4008 . . . . . 6 ((𝜑𝑔 ∈ (𝐺(PHtpy‘𝐽)𝐻)) → 𝑔 ∈ ((II ×t II) Cn 𝐽))
268adantr 480 . . . . . 6 ((𝜑𝑔 ∈ (𝐺(PHtpy‘𝐽)𝐻)) → 𝑃𝐵)
279adantr 480 . . . . . . 7 ((𝜑𝑔 ∈ (𝐺(PHtpy‘𝐽)𝐻)) → (𝐹𝑃) = (𝐺‘0))
28 0elunit 13529 . . . . . . . . 9 0 ∈ (0[,]1)
297adantr 480 . . . . . . . . . 10 ((𝜑𝑔 ∈ (𝐺(PHtpy‘𝐽)𝐻)) → 𝐺 ∈ (II Cn 𝐽))
3013adantr 480 . . . . . . . . . 10 ((𝜑𝑔 ∈ (𝐺(PHtpy‘𝐽)𝐻)) → 𝐻 ∈ (II Cn 𝐽))
31 simpr 484 . . . . . . . . . 10 ((𝜑𝑔 ∈ (𝐺(PHtpy‘𝐽)𝐻)) → 𝑔 ∈ (𝐺(PHtpy‘𝐽)𝐻))
3229, 30, 31phtpyi 25035 . . . . . . . . 9 (((𝜑𝑔 ∈ (𝐺(PHtpy‘𝐽)𝐻)) ∧ 0 ∈ (0[,]1)) → ((0𝑔0) = (𝐺‘0) ∧ (1𝑔0) = (𝐺‘1)))
3328, 32mpan2 690 . . . . . . . 8 ((𝜑𝑔 ∈ (𝐺(PHtpy‘𝐽)𝐻)) → ((0𝑔0) = (𝐺‘0) ∧ (1𝑔0) = (𝐺‘1)))
3433simpld 494 . . . . . . 7 ((𝜑𝑔 ∈ (𝐺(PHtpy‘𝐽)𝐻)) → (0𝑔0) = (𝐺‘0))
3527, 34eqtr4d 2783 . . . . . 6 ((𝜑𝑔 ∈ (𝐺(PHtpy‘𝐽)𝐻)) → (𝐹𝑃) = (0𝑔0))
361, 23, 25, 26, 35cvmlift2 35284 . . . . 5 ((𝜑𝑔 ∈ (𝐺(PHtpy‘𝐽)𝐻)) → ∃! ∈ ((II ×t II) Cn 𝐶)((𝐹) = 𝑔 ∧ (00) = 𝑃))
37 reurex 3392 . . . . 5 (∃! ∈ ((II ×t II) Cn 𝐶)((𝐹) = 𝑔 ∧ (00) = 𝑃) → ∃ ∈ ((II ×t II) Cn 𝐶)((𝐹) = 𝑔 ∧ (00) = 𝑃))
3836, 37syl 17 . . . 4 ((𝜑𝑔 ∈ (𝐺(PHtpy‘𝐽)𝐻)) → ∃ ∈ ((II ×t II) Cn 𝐶)((𝐹) = 𝑔 ∧ (00) = 𝑃))
393ad2antrr 725 . . . . . 6 (((𝜑𝑔 ∈ (𝐺(PHtpy‘𝐽)𝐻)) ∧ ( ∈ ((II ×t II) Cn 𝐶) ∧ ((𝐹) = 𝑔 ∧ (00) = 𝑃))) → 𝐹 ∈ (𝐶 CovMap 𝐽))
408ad2antrr 725 . . . . . 6 (((𝜑𝑔 ∈ (𝐺(PHtpy‘𝐽)𝐻)) ∧ ( ∈ ((II ×t II) Cn 𝐶) ∧ ((𝐹) = 𝑔 ∧ (00) = 𝑃))) → 𝑃𝐵)
419ad2antrr 725 . . . . . 6 (((𝜑𝑔 ∈ (𝐺(PHtpy‘𝐽)𝐻)) ∧ ( ∈ ((II ×t II) Cn 𝐶) ∧ ((𝐹) = 𝑔 ∧ (00) = 𝑃))) → (𝐹𝑃) = (𝐺‘0))
427ad2antrr 725 . . . . . 6 (((𝜑𝑔 ∈ (𝐺(PHtpy‘𝐽)𝐻)) ∧ ( ∈ ((II ×t II) Cn 𝐶) ∧ ((𝐹) = 𝑔 ∧ (00) = 𝑃))) → 𝐺 ∈ (II Cn 𝐽))
4313ad2antrr 725 . . . . . 6 (((𝜑𝑔 ∈ (𝐺(PHtpy‘𝐽)𝐻)) ∧ ( ∈ ((II ×t II) Cn 𝐶) ∧ ((𝐹) = 𝑔 ∧ (00) = 𝑃))) → 𝐻 ∈ (II Cn 𝐽))
44 simplr 768 . . . . . 6 (((𝜑𝑔 ∈ (𝐺(PHtpy‘𝐽)𝐻)) ∧ ( ∈ ((II ×t II) Cn 𝐶) ∧ ((𝐹) = 𝑔 ∧ (00) = 𝑃))) → 𝑔 ∈ (𝐺(PHtpy‘𝐽)𝐻))
45 simprl 770 . . . . . 6 (((𝜑𝑔 ∈ (𝐺(PHtpy‘𝐽)𝐻)) ∧ ( ∈ ((II ×t II) Cn 𝐶) ∧ ((𝐹) = 𝑔 ∧ (00) = 𝑃))) → ∈ ((II ×t II) Cn 𝐶))
46 simprrl 780 . . . . . 6 (((𝜑𝑔 ∈ (𝐺(PHtpy‘𝐽)𝐻)) ∧ ( ∈ ((II ×t II) Cn 𝐶) ∧ ((𝐹) = 𝑔 ∧ (00) = 𝑃))) → (𝐹) = 𝑔)
47 simprrr 781 . . . . . 6 (((𝜑𝑔 ∈ (𝐺(PHtpy‘𝐽)𝐻)) ∧ ( ∈ ((II ×t II) Cn 𝐶) ∧ ((𝐹) = 𝑔 ∧ (00) = 𝑃))) → (00) = 𝑃)
481, 2, 12, 39, 40, 41, 42, 43, 44, 45, 46, 47cvmliftphtlem 35285 . . . . 5 (((𝜑𝑔 ∈ (𝐺(PHtpy‘𝐽)𝐻)) ∧ ( ∈ ((II ×t II) Cn 𝐶) ∧ ((𝐹) = 𝑔 ∧ (00) = 𝑃))) → ∈ (𝑀(PHtpy‘𝐶)𝑁))
4948ne0d 4365 . . . 4 (((𝜑𝑔 ∈ (𝐺(PHtpy‘𝐽)𝐻)) ∧ ( ∈ ((II ×t II) Cn 𝐶) ∧ ((𝐹) = 𝑔 ∧ (00) = 𝑃))) → (𝑀(PHtpy‘𝐶)𝑁) ≠ ∅)
5038, 49rexlimddv 3167 . . 3 ((𝜑𝑔 ∈ (𝐺(PHtpy‘𝐽)𝐻)) → (𝑀(PHtpy‘𝐶)𝑁) ≠ ∅)
5122, 50exlimddv 1934 . 2 (𝜑 → (𝑀(PHtpy‘𝐶)𝑁) ≠ ∅)
52 isphtpc 25045 . 2 (𝑀( ≃ph𝐶)𝑁 ↔ (𝑀 ∈ (II Cn 𝐶) ∧ 𝑁 ∈ (II Cn 𝐶) ∧ (𝑀(PHtpy‘𝐶)𝑁) ≠ ∅))
5311, 19, 51, 52syl3anbrc 1343 1 (𝜑𝑀( ≃ph𝐶)𝑁)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1537  wex 1777  wcel 2108  wne 2946  wrex 3076  ∃!wreu 3386  c0 4352   cuni 4931   class class class wbr 5166  ccom 5704  cfv 6573  crio 7403  (class class class)co 7448  0cc0 11184  1c1 11185  [,]cicc 13410   Cn ccn 23253   ×t ctx 23589  IIcii 24920  PHtpycphtpy 25019  phcphtpc 25020   CovMap ccvm 35223
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262  ax-addf 11263
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-er 8763  df-ec 8765  df-map 8886  df-ixp 8956  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fsupp 9432  df-fi 9480  df-sup 9511  df-inf 9512  df-oi 9579  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-q 13014  df-rp 13058  df-xneg 13175  df-xadd 13176  df-xmul 13177  df-ioo 13411  df-ico 13413  df-icc 13414  df-fz 13568  df-fzo 13712  df-fl 13843  df-seq 14053  df-exp 14113  df-hash 14380  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-clim 15534  df-sum 15735  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-starv 17326  df-sca 17327  df-vsca 17328  df-ip 17329  df-tset 17330  df-ple 17331  df-ds 17333  df-unif 17334  df-hom 17335  df-cco 17336  df-rest 17482  df-topn 17483  df-0g 17501  df-gsum 17502  df-topgen 17503  df-pt 17504  df-prds 17507  df-xrs 17562  df-qtop 17567  df-imas 17568  df-xps 17570  df-mre 17644  df-mrc 17645  df-acs 17647  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-submnd 18819  df-mulg 19108  df-cntz 19357  df-cmn 19824  df-psmet 21379  df-xmet 21380  df-met 21381  df-bl 21382  df-mopn 21383  df-cnfld 21388  df-top 22921  df-topon 22938  df-topsp 22960  df-bases 22974  df-cld 23048  df-ntr 23049  df-cls 23050  df-nei 23127  df-cn 23256  df-cnp 23257  df-cmp 23416  df-conn 23441  df-lly 23495  df-nlly 23496  df-tx 23591  df-hmeo 23784  df-xms 24351  df-ms 24352  df-tms 24353  df-ii 24922  df-cncf 24923  df-htpy 25021  df-phtpy 25022  df-phtpc 25043  df-pconn 35189  df-sconn 35190  df-cvm 35224
This theorem is referenced by:  cvmlift3lem1  35287
  Copyright terms: Public domain W3C validator