![]() |
Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cvmliftpht | Structured version Visualization version GIF version |
Description: If 𝐺 and 𝐻 are path-homotopic, then their lifts 𝑀 and 𝑁 are also path-homotopic. (Contributed by Mario Carneiro, 6-Jul-2015.) |
Ref | Expression |
---|---|
cvmliftpht.b | ⊢ 𝐵 = ∪ 𝐶 |
cvmliftpht.m | ⊢ 𝑀 = (℩𝑓 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑓) = 𝐺 ∧ (𝑓‘0) = 𝑃)) |
cvmliftpht.n | ⊢ 𝑁 = (℩𝑓 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑓) = 𝐻 ∧ (𝑓‘0) = 𝑃)) |
cvmliftpht.f | ⊢ (𝜑 → 𝐹 ∈ (𝐶 CovMap 𝐽)) |
cvmliftpht.p | ⊢ (𝜑 → 𝑃 ∈ 𝐵) |
cvmliftpht.e | ⊢ (𝜑 → (𝐹‘𝑃) = (𝐺‘0)) |
cvmliftpht.g | ⊢ (𝜑 → 𝐺( ≃ph‘𝐽)𝐻) |
Ref | Expression |
---|---|
cvmliftpht | ⊢ (𝜑 → 𝑀( ≃ph‘𝐶)𝑁) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cvmliftpht.b | . . . 4 ⊢ 𝐵 = ∪ 𝐶 | |
2 | cvmliftpht.m | . . . 4 ⊢ 𝑀 = (℩𝑓 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑓) = 𝐺 ∧ (𝑓‘0) = 𝑃)) | |
3 | cvmliftpht.f | . . . 4 ⊢ (𝜑 → 𝐹 ∈ (𝐶 CovMap 𝐽)) | |
4 | cvmliftpht.g | . . . . . 6 ⊢ (𝜑 → 𝐺( ≃ph‘𝐽)𝐻) | |
5 | isphtpc 23201 | . . . . . 6 ⊢ (𝐺( ≃ph‘𝐽)𝐻 ↔ (𝐺 ∈ (II Cn 𝐽) ∧ 𝐻 ∈ (II Cn 𝐽) ∧ (𝐺(PHtpy‘𝐽)𝐻) ≠ ∅)) | |
6 | 4, 5 | sylib 210 | . . . . 5 ⊢ (𝜑 → (𝐺 ∈ (II Cn 𝐽) ∧ 𝐻 ∈ (II Cn 𝐽) ∧ (𝐺(PHtpy‘𝐽)𝐻) ≠ ∅)) |
7 | 6 | simp1d 1133 | . . . 4 ⊢ (𝜑 → 𝐺 ∈ (II Cn 𝐽)) |
8 | cvmliftpht.p | . . . 4 ⊢ (𝜑 → 𝑃 ∈ 𝐵) | |
9 | cvmliftpht.e | . . . 4 ⊢ (𝜑 → (𝐹‘𝑃) = (𝐺‘0)) | |
10 | 1, 2, 3, 7, 8, 9 | cvmliftiota 31882 | . . 3 ⊢ (𝜑 → (𝑀 ∈ (II Cn 𝐶) ∧ (𝐹 ∘ 𝑀) = 𝐺 ∧ (𝑀‘0) = 𝑃)) |
11 | 10 | simp1d 1133 | . 2 ⊢ (𝜑 → 𝑀 ∈ (II Cn 𝐶)) |
12 | cvmliftpht.n | . . . 4 ⊢ 𝑁 = (℩𝑓 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑓) = 𝐻 ∧ (𝑓‘0) = 𝑃)) | |
13 | 6 | simp2d 1134 | . . . 4 ⊢ (𝜑 → 𝐻 ∈ (II Cn 𝐽)) |
14 | phtpc01 23203 | . . . . . . 7 ⊢ (𝐺( ≃ph‘𝐽)𝐻 → ((𝐺‘0) = (𝐻‘0) ∧ (𝐺‘1) = (𝐻‘1))) | |
15 | 4, 14 | syl 17 | . . . . . 6 ⊢ (𝜑 → ((𝐺‘0) = (𝐻‘0) ∧ (𝐺‘1) = (𝐻‘1))) |
16 | 15 | simpld 490 | . . . . 5 ⊢ (𝜑 → (𝐺‘0) = (𝐻‘0)) |
17 | 9, 16 | eqtrd 2814 | . . . 4 ⊢ (𝜑 → (𝐹‘𝑃) = (𝐻‘0)) |
18 | 1, 12, 3, 13, 8, 17 | cvmliftiota 31882 | . . 3 ⊢ (𝜑 → (𝑁 ∈ (II Cn 𝐶) ∧ (𝐹 ∘ 𝑁) = 𝐻 ∧ (𝑁‘0) = 𝑃)) |
19 | 18 | simp1d 1133 | . 2 ⊢ (𝜑 → 𝑁 ∈ (II Cn 𝐶)) |
20 | 6 | simp3d 1135 | . . . 4 ⊢ (𝜑 → (𝐺(PHtpy‘𝐽)𝐻) ≠ ∅) |
21 | n0 4159 | . . . 4 ⊢ ((𝐺(PHtpy‘𝐽)𝐻) ≠ ∅ ↔ ∃𝑔 𝑔 ∈ (𝐺(PHtpy‘𝐽)𝐻)) | |
22 | 20, 21 | sylib 210 | . . 3 ⊢ (𝜑 → ∃𝑔 𝑔 ∈ (𝐺(PHtpy‘𝐽)𝐻)) |
23 | 3 | adantr 474 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑔 ∈ (𝐺(PHtpy‘𝐽)𝐻)) → 𝐹 ∈ (𝐶 CovMap 𝐽)) |
24 | 7, 13 | phtpycn 23190 | . . . . . . 7 ⊢ (𝜑 → (𝐺(PHtpy‘𝐽)𝐻) ⊆ ((II ×t II) Cn 𝐽)) |
25 | 24 | sselda 3821 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑔 ∈ (𝐺(PHtpy‘𝐽)𝐻)) → 𝑔 ∈ ((II ×t II) Cn 𝐽)) |
26 | 8 | adantr 474 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑔 ∈ (𝐺(PHtpy‘𝐽)𝐻)) → 𝑃 ∈ 𝐵) |
27 | 9 | adantr 474 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑔 ∈ (𝐺(PHtpy‘𝐽)𝐻)) → (𝐹‘𝑃) = (𝐺‘0)) |
28 | 0elunit 12605 | . . . . . . . . 9 ⊢ 0 ∈ (0[,]1) | |
29 | 7 | adantr 474 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑔 ∈ (𝐺(PHtpy‘𝐽)𝐻)) → 𝐺 ∈ (II Cn 𝐽)) |
30 | 13 | adantr 474 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑔 ∈ (𝐺(PHtpy‘𝐽)𝐻)) → 𝐻 ∈ (II Cn 𝐽)) |
31 | simpr 479 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑔 ∈ (𝐺(PHtpy‘𝐽)𝐻)) → 𝑔 ∈ (𝐺(PHtpy‘𝐽)𝐻)) | |
32 | 29, 30, 31 | phtpyi 23191 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝑔 ∈ (𝐺(PHtpy‘𝐽)𝐻)) ∧ 0 ∈ (0[,]1)) → ((0𝑔0) = (𝐺‘0) ∧ (1𝑔0) = (𝐺‘1))) |
33 | 28, 32 | mpan2 681 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑔 ∈ (𝐺(PHtpy‘𝐽)𝐻)) → ((0𝑔0) = (𝐺‘0) ∧ (1𝑔0) = (𝐺‘1))) |
34 | 33 | simpld 490 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑔 ∈ (𝐺(PHtpy‘𝐽)𝐻)) → (0𝑔0) = (𝐺‘0)) |
35 | 27, 34 | eqtr4d 2817 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑔 ∈ (𝐺(PHtpy‘𝐽)𝐻)) → (𝐹‘𝑃) = (0𝑔0)) |
36 | 1, 23, 25, 26, 35 | cvmlift2 31897 | . . . . 5 ⊢ ((𝜑 ∧ 𝑔 ∈ (𝐺(PHtpy‘𝐽)𝐻)) → ∃!ℎ ∈ ((II ×t II) Cn 𝐶)((𝐹 ∘ ℎ) = 𝑔 ∧ (0ℎ0) = 𝑃)) |
37 | reurex 3356 | . . . . 5 ⊢ (∃!ℎ ∈ ((II ×t II) Cn 𝐶)((𝐹 ∘ ℎ) = 𝑔 ∧ (0ℎ0) = 𝑃) → ∃ℎ ∈ ((II ×t II) Cn 𝐶)((𝐹 ∘ ℎ) = 𝑔 ∧ (0ℎ0) = 𝑃)) | |
38 | 36, 37 | syl 17 | . . . 4 ⊢ ((𝜑 ∧ 𝑔 ∈ (𝐺(PHtpy‘𝐽)𝐻)) → ∃ℎ ∈ ((II ×t II) Cn 𝐶)((𝐹 ∘ ℎ) = 𝑔 ∧ (0ℎ0) = 𝑃)) |
39 | 3 | ad2antrr 716 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑔 ∈ (𝐺(PHtpy‘𝐽)𝐻)) ∧ (ℎ ∈ ((II ×t II) Cn 𝐶) ∧ ((𝐹 ∘ ℎ) = 𝑔 ∧ (0ℎ0) = 𝑃))) → 𝐹 ∈ (𝐶 CovMap 𝐽)) |
40 | 8 | ad2antrr 716 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑔 ∈ (𝐺(PHtpy‘𝐽)𝐻)) ∧ (ℎ ∈ ((II ×t II) Cn 𝐶) ∧ ((𝐹 ∘ ℎ) = 𝑔 ∧ (0ℎ0) = 𝑃))) → 𝑃 ∈ 𝐵) |
41 | 9 | ad2antrr 716 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑔 ∈ (𝐺(PHtpy‘𝐽)𝐻)) ∧ (ℎ ∈ ((II ×t II) Cn 𝐶) ∧ ((𝐹 ∘ ℎ) = 𝑔 ∧ (0ℎ0) = 𝑃))) → (𝐹‘𝑃) = (𝐺‘0)) |
42 | 7 | ad2antrr 716 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑔 ∈ (𝐺(PHtpy‘𝐽)𝐻)) ∧ (ℎ ∈ ((II ×t II) Cn 𝐶) ∧ ((𝐹 ∘ ℎ) = 𝑔 ∧ (0ℎ0) = 𝑃))) → 𝐺 ∈ (II Cn 𝐽)) |
43 | 13 | ad2antrr 716 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑔 ∈ (𝐺(PHtpy‘𝐽)𝐻)) ∧ (ℎ ∈ ((II ×t II) Cn 𝐶) ∧ ((𝐹 ∘ ℎ) = 𝑔 ∧ (0ℎ0) = 𝑃))) → 𝐻 ∈ (II Cn 𝐽)) |
44 | simplr 759 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑔 ∈ (𝐺(PHtpy‘𝐽)𝐻)) ∧ (ℎ ∈ ((II ×t II) Cn 𝐶) ∧ ((𝐹 ∘ ℎ) = 𝑔 ∧ (0ℎ0) = 𝑃))) → 𝑔 ∈ (𝐺(PHtpy‘𝐽)𝐻)) | |
45 | simprl 761 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑔 ∈ (𝐺(PHtpy‘𝐽)𝐻)) ∧ (ℎ ∈ ((II ×t II) Cn 𝐶) ∧ ((𝐹 ∘ ℎ) = 𝑔 ∧ (0ℎ0) = 𝑃))) → ℎ ∈ ((II ×t II) Cn 𝐶)) | |
46 | simprrl 771 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑔 ∈ (𝐺(PHtpy‘𝐽)𝐻)) ∧ (ℎ ∈ ((II ×t II) Cn 𝐶) ∧ ((𝐹 ∘ ℎ) = 𝑔 ∧ (0ℎ0) = 𝑃))) → (𝐹 ∘ ℎ) = 𝑔) | |
47 | simprrr 772 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑔 ∈ (𝐺(PHtpy‘𝐽)𝐻)) ∧ (ℎ ∈ ((II ×t II) Cn 𝐶) ∧ ((𝐹 ∘ ℎ) = 𝑔 ∧ (0ℎ0) = 𝑃))) → (0ℎ0) = 𝑃) | |
48 | 1, 2, 12, 39, 40, 41, 42, 43, 44, 45, 46, 47 | cvmliftphtlem 31898 | . . . . 5 ⊢ (((𝜑 ∧ 𝑔 ∈ (𝐺(PHtpy‘𝐽)𝐻)) ∧ (ℎ ∈ ((II ×t II) Cn 𝐶) ∧ ((𝐹 ∘ ℎ) = 𝑔 ∧ (0ℎ0) = 𝑃))) → ℎ ∈ (𝑀(PHtpy‘𝐶)𝑁)) |
49 | 48 | ne0d 4150 | . . . 4 ⊢ (((𝜑 ∧ 𝑔 ∈ (𝐺(PHtpy‘𝐽)𝐻)) ∧ (ℎ ∈ ((II ×t II) Cn 𝐶) ∧ ((𝐹 ∘ ℎ) = 𝑔 ∧ (0ℎ0) = 𝑃))) → (𝑀(PHtpy‘𝐶)𝑁) ≠ ∅) |
50 | 38, 49 | rexlimddv 3218 | . . 3 ⊢ ((𝜑 ∧ 𝑔 ∈ (𝐺(PHtpy‘𝐽)𝐻)) → (𝑀(PHtpy‘𝐶)𝑁) ≠ ∅) |
51 | 22, 50 | exlimddv 1978 | . 2 ⊢ (𝜑 → (𝑀(PHtpy‘𝐶)𝑁) ≠ ∅) |
52 | isphtpc 23201 | . 2 ⊢ (𝑀( ≃ph‘𝐶)𝑁 ↔ (𝑀 ∈ (II Cn 𝐶) ∧ 𝑁 ∈ (II Cn 𝐶) ∧ (𝑀(PHtpy‘𝐶)𝑁) ≠ ∅)) | |
53 | 11, 19, 51, 52 | syl3anbrc 1400 | 1 ⊢ (𝜑 → 𝑀( ≃ph‘𝐶)𝑁) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 ∧ w3a 1071 = wceq 1601 ∃wex 1823 ∈ wcel 2107 ≠ wne 2969 ∃wrex 3091 ∃!wreu 3092 ∅c0 4141 ∪ cuni 4671 class class class wbr 4886 ∘ ccom 5359 ‘cfv 6135 ℩crio 6882 (class class class)co 6922 0cc0 10272 1c1 10273 [,]cicc 12490 Cn ccn 21436 ×t ctx 21772 IIcii 23086 PHtpycphtpy 23175 ≃phcphtpc 23176 CovMap ccvm 31836 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-8 2109 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-rep 5006 ax-sep 5017 ax-nul 5025 ax-pow 5077 ax-pr 5138 ax-un 7226 ax-inf2 8835 ax-cnex 10328 ax-resscn 10329 ax-1cn 10330 ax-icn 10331 ax-addcl 10332 ax-addrcl 10333 ax-mulcl 10334 ax-mulrcl 10335 ax-mulcom 10336 ax-addass 10337 ax-mulass 10338 ax-distr 10339 ax-i2m1 10340 ax-1ne0 10341 ax-1rid 10342 ax-rnegex 10343 ax-rrecex 10344 ax-cnre 10345 ax-pre-lttri 10346 ax-pre-lttrn 10347 ax-pre-ltadd 10348 ax-pre-mulgt0 10349 ax-pre-sup 10350 ax-addf 10351 ax-mulf 10352 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3or 1072 df-3an 1073 df-tru 1605 df-fal 1615 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ne 2970 df-nel 3076 df-ral 3095 df-rex 3096 df-reu 3097 df-rmo 3098 df-rab 3099 df-v 3400 df-sbc 3653 df-csb 3752 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-pss 3808 df-nul 4142 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-tp 4403 df-op 4405 df-uni 4672 df-int 4711 df-iun 4755 df-iin 4756 df-br 4887 df-opab 4949 df-mpt 4966 df-tr 4988 df-id 5261 df-eprel 5266 df-po 5274 df-so 5275 df-fr 5314 df-se 5315 df-we 5316 df-xp 5361 df-rel 5362 df-cnv 5363 df-co 5364 df-dm 5365 df-rn 5366 df-res 5367 df-ima 5368 df-pred 5933 df-ord 5979 df-on 5980 df-lim 5981 df-suc 5982 df-iota 6099 df-fun 6137 df-fn 6138 df-f 6139 df-f1 6140 df-fo 6141 df-f1o 6142 df-fv 6143 df-isom 6144 df-riota 6883 df-ov 6925 df-oprab 6926 df-mpt2 6927 df-of 7174 df-om 7344 df-1st 7445 df-2nd 7446 df-supp 7577 df-wrecs 7689 df-recs 7751 df-rdg 7789 df-1o 7843 df-2o 7844 df-oadd 7847 df-er 8026 df-ec 8028 df-map 8142 df-ixp 8195 df-en 8242 df-dom 8243 df-sdom 8244 df-fin 8245 df-fsupp 8564 df-fi 8605 df-sup 8636 df-inf 8637 df-oi 8704 df-card 9098 df-cda 9325 df-pnf 10413 df-mnf 10414 df-xr 10415 df-ltxr 10416 df-le 10417 df-sub 10608 df-neg 10609 df-div 11033 df-nn 11375 df-2 11438 df-3 11439 df-4 11440 df-5 11441 df-6 11442 df-7 11443 df-8 11444 df-9 11445 df-n0 11643 df-z 11729 df-dec 11846 df-uz 11993 df-q 12096 df-rp 12138 df-xneg 12257 df-xadd 12258 df-xmul 12259 df-ioo 12491 df-ico 12493 df-icc 12494 df-fz 12644 df-fzo 12785 df-fl 12912 df-seq 13120 df-exp 13179 df-hash 13436 df-cj 14246 df-re 14247 df-im 14248 df-sqrt 14382 df-abs 14383 df-clim 14627 df-sum 14825 df-struct 16257 df-ndx 16258 df-slot 16259 df-base 16261 df-sets 16262 df-ress 16263 df-plusg 16351 df-mulr 16352 df-starv 16353 df-sca 16354 df-vsca 16355 df-ip 16356 df-tset 16357 df-ple 16358 df-ds 16360 df-unif 16361 df-hom 16362 df-cco 16363 df-rest 16469 df-topn 16470 df-0g 16488 df-gsum 16489 df-topgen 16490 df-pt 16491 df-prds 16494 df-xrs 16548 df-qtop 16553 df-imas 16554 df-xps 16556 df-mre 16632 df-mrc 16633 df-acs 16635 df-mgm 17628 df-sgrp 17670 df-mnd 17681 df-submnd 17722 df-mulg 17928 df-cntz 18133 df-cmn 18581 df-psmet 20134 df-xmet 20135 df-met 20136 df-bl 20137 df-mopn 20138 df-cnfld 20143 df-top 21106 df-topon 21123 df-topsp 21145 df-bases 21158 df-cld 21231 df-ntr 21232 df-cls 21233 df-nei 21310 df-cn 21439 df-cnp 21440 df-cmp 21599 df-conn 21624 df-lly 21678 df-nlly 21679 df-tx 21774 df-hmeo 21967 df-xms 22533 df-ms 22534 df-tms 22535 df-ii 23088 df-htpy 23177 df-phtpy 23178 df-phtpc 23199 df-pconn 31802 df-sconn 31803 df-cvm 31837 |
This theorem is referenced by: cvmlift3lem1 31900 |
Copyright terms: Public domain | W3C validator |