Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvmliftpht Structured version   Visualization version   GIF version

Theorem cvmliftpht 31899
Description: If 𝐺 and 𝐻 are path-homotopic, then their lifts 𝑀 and 𝑁 are also path-homotopic. (Contributed by Mario Carneiro, 6-Jul-2015.)
Hypotheses
Ref Expression
cvmliftpht.b 𝐵 = 𝐶
cvmliftpht.m 𝑀 = (𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = 𝐺 ∧ (𝑓‘0) = 𝑃))
cvmliftpht.n 𝑁 = (𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = 𝐻 ∧ (𝑓‘0) = 𝑃))
cvmliftpht.f (𝜑𝐹 ∈ (𝐶 CovMap 𝐽))
cvmliftpht.p (𝜑𝑃𝐵)
cvmliftpht.e (𝜑 → (𝐹𝑃) = (𝐺‘0))
cvmliftpht.g (𝜑𝐺( ≃ph𝐽)𝐻)
Assertion
Ref Expression
cvmliftpht (𝜑𝑀( ≃ph𝐶)𝑁)
Distinct variable groups:   𝐵,𝑓   𝑓,𝐹   𝑓,𝐽   𝐶,𝑓   𝑓,𝐺   𝑓,𝐻   𝑃,𝑓
Allowed substitution hints:   𝜑(𝑓)   𝑀(𝑓)   𝑁(𝑓)

Proof of Theorem cvmliftpht
Dummy variables 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cvmliftpht.b . . . 4 𝐵 = 𝐶
2 cvmliftpht.m . . . 4 𝑀 = (𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = 𝐺 ∧ (𝑓‘0) = 𝑃))
3 cvmliftpht.f . . . 4 (𝜑𝐹 ∈ (𝐶 CovMap 𝐽))
4 cvmliftpht.g . . . . . 6 (𝜑𝐺( ≃ph𝐽)𝐻)
5 isphtpc 23201 . . . . . 6 (𝐺( ≃ph𝐽)𝐻 ↔ (𝐺 ∈ (II Cn 𝐽) ∧ 𝐻 ∈ (II Cn 𝐽) ∧ (𝐺(PHtpy‘𝐽)𝐻) ≠ ∅))
64, 5sylib 210 . . . . 5 (𝜑 → (𝐺 ∈ (II Cn 𝐽) ∧ 𝐻 ∈ (II Cn 𝐽) ∧ (𝐺(PHtpy‘𝐽)𝐻) ≠ ∅))
76simp1d 1133 . . . 4 (𝜑𝐺 ∈ (II Cn 𝐽))
8 cvmliftpht.p . . . 4 (𝜑𝑃𝐵)
9 cvmliftpht.e . . . 4 (𝜑 → (𝐹𝑃) = (𝐺‘0))
101, 2, 3, 7, 8, 9cvmliftiota 31882 . . 3 (𝜑 → (𝑀 ∈ (II Cn 𝐶) ∧ (𝐹𝑀) = 𝐺 ∧ (𝑀‘0) = 𝑃))
1110simp1d 1133 . 2 (𝜑𝑀 ∈ (II Cn 𝐶))
12 cvmliftpht.n . . . 4 𝑁 = (𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = 𝐻 ∧ (𝑓‘0) = 𝑃))
136simp2d 1134 . . . 4 (𝜑𝐻 ∈ (II Cn 𝐽))
14 phtpc01 23203 . . . . . . 7 (𝐺( ≃ph𝐽)𝐻 → ((𝐺‘0) = (𝐻‘0) ∧ (𝐺‘1) = (𝐻‘1)))
154, 14syl 17 . . . . . 6 (𝜑 → ((𝐺‘0) = (𝐻‘0) ∧ (𝐺‘1) = (𝐻‘1)))
1615simpld 490 . . . . 5 (𝜑 → (𝐺‘0) = (𝐻‘0))
179, 16eqtrd 2814 . . . 4 (𝜑 → (𝐹𝑃) = (𝐻‘0))
181, 12, 3, 13, 8, 17cvmliftiota 31882 . . 3 (𝜑 → (𝑁 ∈ (II Cn 𝐶) ∧ (𝐹𝑁) = 𝐻 ∧ (𝑁‘0) = 𝑃))
1918simp1d 1133 . 2 (𝜑𝑁 ∈ (II Cn 𝐶))
206simp3d 1135 . . . 4 (𝜑 → (𝐺(PHtpy‘𝐽)𝐻) ≠ ∅)
21 n0 4159 . . . 4 ((𝐺(PHtpy‘𝐽)𝐻) ≠ ∅ ↔ ∃𝑔 𝑔 ∈ (𝐺(PHtpy‘𝐽)𝐻))
2220, 21sylib 210 . . 3 (𝜑 → ∃𝑔 𝑔 ∈ (𝐺(PHtpy‘𝐽)𝐻))
233adantr 474 . . . . . 6 ((𝜑𝑔 ∈ (𝐺(PHtpy‘𝐽)𝐻)) → 𝐹 ∈ (𝐶 CovMap 𝐽))
247, 13phtpycn 23190 . . . . . . 7 (𝜑 → (𝐺(PHtpy‘𝐽)𝐻) ⊆ ((II ×t II) Cn 𝐽))
2524sselda 3821 . . . . . 6 ((𝜑𝑔 ∈ (𝐺(PHtpy‘𝐽)𝐻)) → 𝑔 ∈ ((II ×t II) Cn 𝐽))
268adantr 474 . . . . . 6 ((𝜑𝑔 ∈ (𝐺(PHtpy‘𝐽)𝐻)) → 𝑃𝐵)
279adantr 474 . . . . . . 7 ((𝜑𝑔 ∈ (𝐺(PHtpy‘𝐽)𝐻)) → (𝐹𝑃) = (𝐺‘0))
28 0elunit 12605 . . . . . . . . 9 0 ∈ (0[,]1)
297adantr 474 . . . . . . . . . 10 ((𝜑𝑔 ∈ (𝐺(PHtpy‘𝐽)𝐻)) → 𝐺 ∈ (II Cn 𝐽))
3013adantr 474 . . . . . . . . . 10 ((𝜑𝑔 ∈ (𝐺(PHtpy‘𝐽)𝐻)) → 𝐻 ∈ (II Cn 𝐽))
31 simpr 479 . . . . . . . . . 10 ((𝜑𝑔 ∈ (𝐺(PHtpy‘𝐽)𝐻)) → 𝑔 ∈ (𝐺(PHtpy‘𝐽)𝐻))
3229, 30, 31phtpyi 23191 . . . . . . . . 9 (((𝜑𝑔 ∈ (𝐺(PHtpy‘𝐽)𝐻)) ∧ 0 ∈ (0[,]1)) → ((0𝑔0) = (𝐺‘0) ∧ (1𝑔0) = (𝐺‘1)))
3328, 32mpan2 681 . . . . . . . 8 ((𝜑𝑔 ∈ (𝐺(PHtpy‘𝐽)𝐻)) → ((0𝑔0) = (𝐺‘0) ∧ (1𝑔0) = (𝐺‘1)))
3433simpld 490 . . . . . . 7 ((𝜑𝑔 ∈ (𝐺(PHtpy‘𝐽)𝐻)) → (0𝑔0) = (𝐺‘0))
3527, 34eqtr4d 2817 . . . . . 6 ((𝜑𝑔 ∈ (𝐺(PHtpy‘𝐽)𝐻)) → (𝐹𝑃) = (0𝑔0))
361, 23, 25, 26, 35cvmlift2 31897 . . . . 5 ((𝜑𝑔 ∈ (𝐺(PHtpy‘𝐽)𝐻)) → ∃! ∈ ((II ×t II) Cn 𝐶)((𝐹) = 𝑔 ∧ (00) = 𝑃))
37 reurex 3356 . . . . 5 (∃! ∈ ((II ×t II) Cn 𝐶)((𝐹) = 𝑔 ∧ (00) = 𝑃) → ∃ ∈ ((II ×t II) Cn 𝐶)((𝐹) = 𝑔 ∧ (00) = 𝑃))
3836, 37syl 17 . . . 4 ((𝜑𝑔 ∈ (𝐺(PHtpy‘𝐽)𝐻)) → ∃ ∈ ((II ×t II) Cn 𝐶)((𝐹) = 𝑔 ∧ (00) = 𝑃))
393ad2antrr 716 . . . . . 6 (((𝜑𝑔 ∈ (𝐺(PHtpy‘𝐽)𝐻)) ∧ ( ∈ ((II ×t II) Cn 𝐶) ∧ ((𝐹) = 𝑔 ∧ (00) = 𝑃))) → 𝐹 ∈ (𝐶 CovMap 𝐽))
408ad2antrr 716 . . . . . 6 (((𝜑𝑔 ∈ (𝐺(PHtpy‘𝐽)𝐻)) ∧ ( ∈ ((II ×t II) Cn 𝐶) ∧ ((𝐹) = 𝑔 ∧ (00) = 𝑃))) → 𝑃𝐵)
419ad2antrr 716 . . . . . 6 (((𝜑𝑔 ∈ (𝐺(PHtpy‘𝐽)𝐻)) ∧ ( ∈ ((II ×t II) Cn 𝐶) ∧ ((𝐹) = 𝑔 ∧ (00) = 𝑃))) → (𝐹𝑃) = (𝐺‘0))
427ad2antrr 716 . . . . . 6 (((𝜑𝑔 ∈ (𝐺(PHtpy‘𝐽)𝐻)) ∧ ( ∈ ((II ×t II) Cn 𝐶) ∧ ((𝐹) = 𝑔 ∧ (00) = 𝑃))) → 𝐺 ∈ (II Cn 𝐽))
4313ad2antrr 716 . . . . . 6 (((𝜑𝑔 ∈ (𝐺(PHtpy‘𝐽)𝐻)) ∧ ( ∈ ((II ×t II) Cn 𝐶) ∧ ((𝐹) = 𝑔 ∧ (00) = 𝑃))) → 𝐻 ∈ (II Cn 𝐽))
44 simplr 759 . . . . . 6 (((𝜑𝑔 ∈ (𝐺(PHtpy‘𝐽)𝐻)) ∧ ( ∈ ((II ×t II) Cn 𝐶) ∧ ((𝐹) = 𝑔 ∧ (00) = 𝑃))) → 𝑔 ∈ (𝐺(PHtpy‘𝐽)𝐻))
45 simprl 761 . . . . . 6 (((𝜑𝑔 ∈ (𝐺(PHtpy‘𝐽)𝐻)) ∧ ( ∈ ((II ×t II) Cn 𝐶) ∧ ((𝐹) = 𝑔 ∧ (00) = 𝑃))) → ∈ ((II ×t II) Cn 𝐶))
46 simprrl 771 . . . . . 6 (((𝜑𝑔 ∈ (𝐺(PHtpy‘𝐽)𝐻)) ∧ ( ∈ ((II ×t II) Cn 𝐶) ∧ ((𝐹) = 𝑔 ∧ (00) = 𝑃))) → (𝐹) = 𝑔)
47 simprrr 772 . . . . . 6 (((𝜑𝑔 ∈ (𝐺(PHtpy‘𝐽)𝐻)) ∧ ( ∈ ((II ×t II) Cn 𝐶) ∧ ((𝐹) = 𝑔 ∧ (00) = 𝑃))) → (00) = 𝑃)
481, 2, 12, 39, 40, 41, 42, 43, 44, 45, 46, 47cvmliftphtlem 31898 . . . . 5 (((𝜑𝑔 ∈ (𝐺(PHtpy‘𝐽)𝐻)) ∧ ( ∈ ((II ×t II) Cn 𝐶) ∧ ((𝐹) = 𝑔 ∧ (00) = 𝑃))) → ∈ (𝑀(PHtpy‘𝐶)𝑁))
4948ne0d 4150 . . . 4 (((𝜑𝑔 ∈ (𝐺(PHtpy‘𝐽)𝐻)) ∧ ( ∈ ((II ×t II) Cn 𝐶) ∧ ((𝐹) = 𝑔 ∧ (00) = 𝑃))) → (𝑀(PHtpy‘𝐶)𝑁) ≠ ∅)
5038, 49rexlimddv 3218 . . 3 ((𝜑𝑔 ∈ (𝐺(PHtpy‘𝐽)𝐻)) → (𝑀(PHtpy‘𝐶)𝑁) ≠ ∅)
5122, 50exlimddv 1978 . 2 (𝜑 → (𝑀(PHtpy‘𝐶)𝑁) ≠ ∅)
52 isphtpc 23201 . 2 (𝑀( ≃ph𝐶)𝑁 ↔ (𝑀 ∈ (II Cn 𝐶) ∧ 𝑁 ∈ (II Cn 𝐶) ∧ (𝑀(PHtpy‘𝐶)𝑁) ≠ ∅))
5311, 19, 51, 52syl3anbrc 1400 1 (𝜑𝑀( ≃ph𝐶)𝑁)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386  w3a 1071   = wceq 1601  wex 1823  wcel 2107  wne 2969  wrex 3091  ∃!wreu 3092  c0 4141   cuni 4671   class class class wbr 4886  ccom 5359  cfv 6135  crio 6882  (class class class)co 6922  0cc0 10272  1c1 10273  [,]cicc 12490   Cn ccn 21436   ×t ctx 21772  IIcii 23086  PHtpycphtpy 23175  phcphtpc 23176   CovMap ccvm 31836
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-rep 5006  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138  ax-un 7226  ax-inf2 8835  ax-cnex 10328  ax-resscn 10329  ax-1cn 10330  ax-icn 10331  ax-addcl 10332  ax-addrcl 10333  ax-mulcl 10334  ax-mulrcl 10335  ax-mulcom 10336  ax-addass 10337  ax-mulass 10338  ax-distr 10339  ax-i2m1 10340  ax-1ne0 10341  ax-1rid 10342  ax-rnegex 10343  ax-rrecex 10344  ax-cnre 10345  ax-pre-lttri 10346  ax-pre-lttrn 10347  ax-pre-ltadd 10348  ax-pre-mulgt0 10349  ax-pre-sup 10350  ax-addf 10351  ax-mulf 10352
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-fal 1615  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-nel 3076  df-ral 3095  df-rex 3096  df-reu 3097  df-rmo 3098  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-pss 3808  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4672  df-int 4711  df-iun 4755  df-iin 4756  df-br 4887  df-opab 4949  df-mpt 4966  df-tr 4988  df-id 5261  df-eprel 5266  df-po 5274  df-so 5275  df-fr 5314  df-se 5315  df-we 5316  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-pred 5933  df-ord 5979  df-on 5980  df-lim 5981  df-suc 5982  df-iota 6099  df-fun 6137  df-fn 6138  df-f 6139  df-f1 6140  df-fo 6141  df-f1o 6142  df-fv 6143  df-isom 6144  df-riota 6883  df-ov 6925  df-oprab 6926  df-mpt2 6927  df-of 7174  df-om 7344  df-1st 7445  df-2nd 7446  df-supp 7577  df-wrecs 7689  df-recs 7751  df-rdg 7789  df-1o 7843  df-2o 7844  df-oadd 7847  df-er 8026  df-ec 8028  df-map 8142  df-ixp 8195  df-en 8242  df-dom 8243  df-sdom 8244  df-fin 8245  df-fsupp 8564  df-fi 8605  df-sup 8636  df-inf 8637  df-oi 8704  df-card 9098  df-cda 9325  df-pnf 10413  df-mnf 10414  df-xr 10415  df-ltxr 10416  df-le 10417  df-sub 10608  df-neg 10609  df-div 11033  df-nn 11375  df-2 11438  df-3 11439  df-4 11440  df-5 11441  df-6 11442  df-7 11443  df-8 11444  df-9 11445  df-n0 11643  df-z 11729  df-dec 11846  df-uz 11993  df-q 12096  df-rp 12138  df-xneg 12257  df-xadd 12258  df-xmul 12259  df-ioo 12491  df-ico 12493  df-icc 12494  df-fz 12644  df-fzo 12785  df-fl 12912  df-seq 13120  df-exp 13179  df-hash 13436  df-cj 14246  df-re 14247  df-im 14248  df-sqrt 14382  df-abs 14383  df-clim 14627  df-sum 14825  df-struct 16257  df-ndx 16258  df-slot 16259  df-base 16261  df-sets 16262  df-ress 16263  df-plusg 16351  df-mulr 16352  df-starv 16353  df-sca 16354  df-vsca 16355  df-ip 16356  df-tset 16357  df-ple 16358  df-ds 16360  df-unif 16361  df-hom 16362  df-cco 16363  df-rest 16469  df-topn 16470  df-0g 16488  df-gsum 16489  df-topgen 16490  df-pt 16491  df-prds 16494  df-xrs 16548  df-qtop 16553  df-imas 16554  df-xps 16556  df-mre 16632  df-mrc 16633  df-acs 16635  df-mgm 17628  df-sgrp 17670  df-mnd 17681  df-submnd 17722  df-mulg 17928  df-cntz 18133  df-cmn 18581  df-psmet 20134  df-xmet 20135  df-met 20136  df-bl 20137  df-mopn 20138  df-cnfld 20143  df-top 21106  df-topon 21123  df-topsp 21145  df-bases 21158  df-cld 21231  df-ntr 21232  df-cls 21233  df-nei 21310  df-cn 21439  df-cnp 21440  df-cmp 21599  df-conn 21624  df-lly 21678  df-nlly 21679  df-tx 21774  df-hmeo 21967  df-xms 22533  df-ms 22534  df-tms 22535  df-ii 23088  df-htpy 23177  df-phtpy 23178  df-phtpc 23199  df-pconn 31802  df-sconn 31803  df-cvm 31837
This theorem is referenced by:  cvmlift3lem1  31900
  Copyright terms: Public domain W3C validator