![]() |
Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cvmliftpht | Structured version Visualization version GIF version |
Description: If 𝐺 and 𝐻 are path-homotopic, then their lifts 𝑀 and 𝑁 are also path-homotopic. (Contributed by Mario Carneiro, 6-Jul-2015.) |
Ref | Expression |
---|---|
cvmliftpht.b | ⊢ 𝐵 = ∪ 𝐶 |
cvmliftpht.m | ⊢ 𝑀 = (℩𝑓 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑓) = 𝐺 ∧ (𝑓‘0) = 𝑃)) |
cvmliftpht.n | ⊢ 𝑁 = (℩𝑓 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑓) = 𝐻 ∧ (𝑓‘0) = 𝑃)) |
cvmliftpht.f | ⊢ (𝜑 → 𝐹 ∈ (𝐶 CovMap 𝐽)) |
cvmliftpht.p | ⊢ (𝜑 → 𝑃 ∈ 𝐵) |
cvmliftpht.e | ⊢ (𝜑 → (𝐹‘𝑃) = (𝐺‘0)) |
cvmliftpht.g | ⊢ (𝜑 → 𝐺( ≃ph‘𝐽)𝐻) |
Ref | Expression |
---|---|
cvmliftpht | ⊢ (𝜑 → 𝑀( ≃ph‘𝐶)𝑁) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cvmliftpht.b | . . . 4 ⊢ 𝐵 = ∪ 𝐶 | |
2 | cvmliftpht.m | . . . 4 ⊢ 𝑀 = (℩𝑓 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑓) = 𝐺 ∧ (𝑓‘0) = 𝑃)) | |
3 | cvmliftpht.f | . . . 4 ⊢ (𝜑 → 𝐹 ∈ (𝐶 CovMap 𝐽)) | |
4 | cvmliftpht.g | . . . . . 6 ⊢ (𝜑 → 𝐺( ≃ph‘𝐽)𝐻) | |
5 | isphtpc 25039 | . . . . . 6 ⊢ (𝐺( ≃ph‘𝐽)𝐻 ↔ (𝐺 ∈ (II Cn 𝐽) ∧ 𝐻 ∈ (II Cn 𝐽) ∧ (𝐺(PHtpy‘𝐽)𝐻) ≠ ∅)) | |
6 | 4, 5 | sylib 218 | . . . . 5 ⊢ (𝜑 → (𝐺 ∈ (II Cn 𝐽) ∧ 𝐻 ∈ (II Cn 𝐽) ∧ (𝐺(PHtpy‘𝐽)𝐻) ≠ ∅)) |
7 | 6 | simp1d 1141 | . . . 4 ⊢ (𝜑 → 𝐺 ∈ (II Cn 𝐽)) |
8 | cvmliftpht.p | . . . 4 ⊢ (𝜑 → 𝑃 ∈ 𝐵) | |
9 | cvmliftpht.e | . . . 4 ⊢ (𝜑 → (𝐹‘𝑃) = (𝐺‘0)) | |
10 | 1, 2, 3, 7, 8, 9 | cvmliftiota 35285 | . . 3 ⊢ (𝜑 → (𝑀 ∈ (II Cn 𝐶) ∧ (𝐹 ∘ 𝑀) = 𝐺 ∧ (𝑀‘0) = 𝑃)) |
11 | 10 | simp1d 1141 | . 2 ⊢ (𝜑 → 𝑀 ∈ (II Cn 𝐶)) |
12 | cvmliftpht.n | . . . 4 ⊢ 𝑁 = (℩𝑓 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑓) = 𝐻 ∧ (𝑓‘0) = 𝑃)) | |
13 | 6 | simp2d 1142 | . . . 4 ⊢ (𝜑 → 𝐻 ∈ (II Cn 𝐽)) |
14 | phtpc01 25041 | . . . . . . 7 ⊢ (𝐺( ≃ph‘𝐽)𝐻 → ((𝐺‘0) = (𝐻‘0) ∧ (𝐺‘1) = (𝐻‘1))) | |
15 | 4, 14 | syl 17 | . . . . . 6 ⊢ (𝜑 → ((𝐺‘0) = (𝐻‘0) ∧ (𝐺‘1) = (𝐻‘1))) |
16 | 15 | simpld 494 | . . . . 5 ⊢ (𝜑 → (𝐺‘0) = (𝐻‘0)) |
17 | 9, 16 | eqtrd 2774 | . . . 4 ⊢ (𝜑 → (𝐹‘𝑃) = (𝐻‘0)) |
18 | 1, 12, 3, 13, 8, 17 | cvmliftiota 35285 | . . 3 ⊢ (𝜑 → (𝑁 ∈ (II Cn 𝐶) ∧ (𝐹 ∘ 𝑁) = 𝐻 ∧ (𝑁‘0) = 𝑃)) |
19 | 18 | simp1d 1141 | . 2 ⊢ (𝜑 → 𝑁 ∈ (II Cn 𝐶)) |
20 | 6 | simp3d 1143 | . . . 4 ⊢ (𝜑 → (𝐺(PHtpy‘𝐽)𝐻) ≠ ∅) |
21 | n0 4358 | . . . 4 ⊢ ((𝐺(PHtpy‘𝐽)𝐻) ≠ ∅ ↔ ∃𝑔 𝑔 ∈ (𝐺(PHtpy‘𝐽)𝐻)) | |
22 | 20, 21 | sylib 218 | . . 3 ⊢ (𝜑 → ∃𝑔 𝑔 ∈ (𝐺(PHtpy‘𝐽)𝐻)) |
23 | 3 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑔 ∈ (𝐺(PHtpy‘𝐽)𝐻)) → 𝐹 ∈ (𝐶 CovMap 𝐽)) |
24 | 7, 13 | phtpycn 25028 | . . . . . . 7 ⊢ (𝜑 → (𝐺(PHtpy‘𝐽)𝐻) ⊆ ((II ×t II) Cn 𝐽)) |
25 | 24 | sselda 3994 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑔 ∈ (𝐺(PHtpy‘𝐽)𝐻)) → 𝑔 ∈ ((II ×t II) Cn 𝐽)) |
26 | 8 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑔 ∈ (𝐺(PHtpy‘𝐽)𝐻)) → 𝑃 ∈ 𝐵) |
27 | 9 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑔 ∈ (𝐺(PHtpy‘𝐽)𝐻)) → (𝐹‘𝑃) = (𝐺‘0)) |
28 | 0elunit 13505 | . . . . . . . . 9 ⊢ 0 ∈ (0[,]1) | |
29 | 7 | adantr 480 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑔 ∈ (𝐺(PHtpy‘𝐽)𝐻)) → 𝐺 ∈ (II Cn 𝐽)) |
30 | 13 | adantr 480 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑔 ∈ (𝐺(PHtpy‘𝐽)𝐻)) → 𝐻 ∈ (II Cn 𝐽)) |
31 | simpr 484 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑔 ∈ (𝐺(PHtpy‘𝐽)𝐻)) → 𝑔 ∈ (𝐺(PHtpy‘𝐽)𝐻)) | |
32 | 29, 30, 31 | phtpyi 25029 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝑔 ∈ (𝐺(PHtpy‘𝐽)𝐻)) ∧ 0 ∈ (0[,]1)) → ((0𝑔0) = (𝐺‘0) ∧ (1𝑔0) = (𝐺‘1))) |
33 | 28, 32 | mpan2 691 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑔 ∈ (𝐺(PHtpy‘𝐽)𝐻)) → ((0𝑔0) = (𝐺‘0) ∧ (1𝑔0) = (𝐺‘1))) |
34 | 33 | simpld 494 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑔 ∈ (𝐺(PHtpy‘𝐽)𝐻)) → (0𝑔0) = (𝐺‘0)) |
35 | 27, 34 | eqtr4d 2777 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑔 ∈ (𝐺(PHtpy‘𝐽)𝐻)) → (𝐹‘𝑃) = (0𝑔0)) |
36 | 1, 23, 25, 26, 35 | cvmlift2 35300 | . . . . 5 ⊢ ((𝜑 ∧ 𝑔 ∈ (𝐺(PHtpy‘𝐽)𝐻)) → ∃!ℎ ∈ ((II ×t II) Cn 𝐶)((𝐹 ∘ ℎ) = 𝑔 ∧ (0ℎ0) = 𝑃)) |
37 | reurex 3381 | . . . . 5 ⊢ (∃!ℎ ∈ ((II ×t II) Cn 𝐶)((𝐹 ∘ ℎ) = 𝑔 ∧ (0ℎ0) = 𝑃) → ∃ℎ ∈ ((II ×t II) Cn 𝐶)((𝐹 ∘ ℎ) = 𝑔 ∧ (0ℎ0) = 𝑃)) | |
38 | 36, 37 | syl 17 | . . . 4 ⊢ ((𝜑 ∧ 𝑔 ∈ (𝐺(PHtpy‘𝐽)𝐻)) → ∃ℎ ∈ ((II ×t II) Cn 𝐶)((𝐹 ∘ ℎ) = 𝑔 ∧ (0ℎ0) = 𝑃)) |
39 | 3 | ad2antrr 726 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑔 ∈ (𝐺(PHtpy‘𝐽)𝐻)) ∧ (ℎ ∈ ((II ×t II) Cn 𝐶) ∧ ((𝐹 ∘ ℎ) = 𝑔 ∧ (0ℎ0) = 𝑃))) → 𝐹 ∈ (𝐶 CovMap 𝐽)) |
40 | 8 | ad2antrr 726 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑔 ∈ (𝐺(PHtpy‘𝐽)𝐻)) ∧ (ℎ ∈ ((II ×t II) Cn 𝐶) ∧ ((𝐹 ∘ ℎ) = 𝑔 ∧ (0ℎ0) = 𝑃))) → 𝑃 ∈ 𝐵) |
41 | 9 | ad2antrr 726 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑔 ∈ (𝐺(PHtpy‘𝐽)𝐻)) ∧ (ℎ ∈ ((II ×t II) Cn 𝐶) ∧ ((𝐹 ∘ ℎ) = 𝑔 ∧ (0ℎ0) = 𝑃))) → (𝐹‘𝑃) = (𝐺‘0)) |
42 | 7 | ad2antrr 726 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑔 ∈ (𝐺(PHtpy‘𝐽)𝐻)) ∧ (ℎ ∈ ((II ×t II) Cn 𝐶) ∧ ((𝐹 ∘ ℎ) = 𝑔 ∧ (0ℎ0) = 𝑃))) → 𝐺 ∈ (II Cn 𝐽)) |
43 | 13 | ad2antrr 726 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑔 ∈ (𝐺(PHtpy‘𝐽)𝐻)) ∧ (ℎ ∈ ((II ×t II) Cn 𝐶) ∧ ((𝐹 ∘ ℎ) = 𝑔 ∧ (0ℎ0) = 𝑃))) → 𝐻 ∈ (II Cn 𝐽)) |
44 | simplr 769 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑔 ∈ (𝐺(PHtpy‘𝐽)𝐻)) ∧ (ℎ ∈ ((II ×t II) Cn 𝐶) ∧ ((𝐹 ∘ ℎ) = 𝑔 ∧ (0ℎ0) = 𝑃))) → 𝑔 ∈ (𝐺(PHtpy‘𝐽)𝐻)) | |
45 | simprl 771 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑔 ∈ (𝐺(PHtpy‘𝐽)𝐻)) ∧ (ℎ ∈ ((II ×t II) Cn 𝐶) ∧ ((𝐹 ∘ ℎ) = 𝑔 ∧ (0ℎ0) = 𝑃))) → ℎ ∈ ((II ×t II) Cn 𝐶)) | |
46 | simprrl 781 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑔 ∈ (𝐺(PHtpy‘𝐽)𝐻)) ∧ (ℎ ∈ ((II ×t II) Cn 𝐶) ∧ ((𝐹 ∘ ℎ) = 𝑔 ∧ (0ℎ0) = 𝑃))) → (𝐹 ∘ ℎ) = 𝑔) | |
47 | simprrr 782 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑔 ∈ (𝐺(PHtpy‘𝐽)𝐻)) ∧ (ℎ ∈ ((II ×t II) Cn 𝐶) ∧ ((𝐹 ∘ ℎ) = 𝑔 ∧ (0ℎ0) = 𝑃))) → (0ℎ0) = 𝑃) | |
48 | 1, 2, 12, 39, 40, 41, 42, 43, 44, 45, 46, 47 | cvmliftphtlem 35301 | . . . . 5 ⊢ (((𝜑 ∧ 𝑔 ∈ (𝐺(PHtpy‘𝐽)𝐻)) ∧ (ℎ ∈ ((II ×t II) Cn 𝐶) ∧ ((𝐹 ∘ ℎ) = 𝑔 ∧ (0ℎ0) = 𝑃))) → ℎ ∈ (𝑀(PHtpy‘𝐶)𝑁)) |
49 | 48 | ne0d 4347 | . . . 4 ⊢ (((𝜑 ∧ 𝑔 ∈ (𝐺(PHtpy‘𝐽)𝐻)) ∧ (ℎ ∈ ((II ×t II) Cn 𝐶) ∧ ((𝐹 ∘ ℎ) = 𝑔 ∧ (0ℎ0) = 𝑃))) → (𝑀(PHtpy‘𝐶)𝑁) ≠ ∅) |
50 | 38, 49 | rexlimddv 3158 | . . 3 ⊢ ((𝜑 ∧ 𝑔 ∈ (𝐺(PHtpy‘𝐽)𝐻)) → (𝑀(PHtpy‘𝐶)𝑁) ≠ ∅) |
51 | 22, 50 | exlimddv 1932 | . 2 ⊢ (𝜑 → (𝑀(PHtpy‘𝐶)𝑁) ≠ ∅) |
52 | isphtpc 25039 | . 2 ⊢ (𝑀( ≃ph‘𝐶)𝑁 ↔ (𝑀 ∈ (II Cn 𝐶) ∧ 𝑁 ∈ (II Cn 𝐶) ∧ (𝑀(PHtpy‘𝐶)𝑁) ≠ ∅)) | |
53 | 11, 19, 51, 52 | syl3anbrc 1342 | 1 ⊢ (𝜑 → 𝑀( ≃ph‘𝐶)𝑁) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1536 ∃wex 1775 ∈ wcel 2105 ≠ wne 2937 ∃wrex 3067 ∃!wreu 3375 ∅c0 4338 ∪ cuni 4911 class class class wbr 5147 ∘ ccom 5692 ‘cfv 6562 ℩crio 7386 (class class class)co 7430 0cc0 11152 1c1 11153 [,]cicc 13386 Cn ccn 23247 ×t ctx 23583 IIcii 24914 PHtpycphtpy 25013 ≃phcphtpc 25014 CovMap ccvm 35239 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-rep 5284 ax-sep 5301 ax-nul 5311 ax-pow 5370 ax-pr 5437 ax-un 7753 ax-inf2 9678 ax-cnex 11208 ax-resscn 11209 ax-1cn 11210 ax-icn 11211 ax-addcl 11212 ax-addrcl 11213 ax-mulcl 11214 ax-mulrcl 11215 ax-mulcom 11216 ax-addass 11217 ax-mulass 11218 ax-distr 11219 ax-i2m1 11220 ax-1ne0 11221 ax-1rid 11222 ax-rnegex 11223 ax-rrecex 11224 ax-cnre 11225 ax-pre-lttri 11226 ax-pre-lttrn 11227 ax-pre-ltadd 11228 ax-pre-mulgt0 11229 ax-pre-sup 11230 ax-addf 11231 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3377 df-reu 3378 df-rab 3433 df-v 3479 df-sbc 3791 df-csb 3908 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-pss 3982 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-tp 4635 df-op 4637 df-uni 4912 df-int 4951 df-iun 4997 df-iin 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5582 df-eprel 5588 df-po 5596 df-so 5597 df-fr 5640 df-se 5641 df-we 5642 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-pred 6322 df-ord 6388 df-on 6389 df-lim 6390 df-suc 6391 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-f1 6567 df-fo 6568 df-f1o 6569 df-fv 6570 df-isom 6571 df-riota 7387 df-ov 7433 df-oprab 7434 df-mpo 7435 df-of 7696 df-om 7887 df-1st 8012 df-2nd 8013 df-supp 8184 df-frecs 8304 df-wrecs 8335 df-recs 8409 df-rdg 8448 df-1o 8504 df-2o 8505 df-er 8743 df-ec 8745 df-map 8866 df-ixp 8936 df-en 8984 df-dom 8985 df-sdom 8986 df-fin 8987 df-fsupp 9399 df-fi 9448 df-sup 9479 df-inf 9480 df-oi 9547 df-card 9976 df-pnf 11294 df-mnf 11295 df-xr 11296 df-ltxr 11297 df-le 11298 df-sub 11491 df-neg 11492 df-div 11918 df-nn 12264 df-2 12326 df-3 12327 df-4 12328 df-5 12329 df-6 12330 df-7 12331 df-8 12332 df-9 12333 df-n0 12524 df-z 12611 df-dec 12731 df-uz 12876 df-q 12988 df-rp 13032 df-xneg 13151 df-xadd 13152 df-xmul 13153 df-ioo 13387 df-ico 13389 df-icc 13390 df-fz 13544 df-fzo 13691 df-fl 13828 df-seq 14039 df-exp 14099 df-hash 14366 df-cj 15134 df-re 15135 df-im 15136 df-sqrt 15270 df-abs 15271 df-clim 15520 df-sum 15719 df-struct 17180 df-sets 17197 df-slot 17215 df-ndx 17227 df-base 17245 df-ress 17274 df-plusg 17310 df-mulr 17311 df-starv 17312 df-sca 17313 df-vsca 17314 df-ip 17315 df-tset 17316 df-ple 17317 df-ds 17319 df-unif 17320 df-hom 17321 df-cco 17322 df-rest 17468 df-topn 17469 df-0g 17487 df-gsum 17488 df-topgen 17489 df-pt 17490 df-prds 17493 df-xrs 17548 df-qtop 17553 df-imas 17554 df-xps 17556 df-mre 17630 df-mrc 17631 df-acs 17633 df-mgm 18665 df-sgrp 18744 df-mnd 18760 df-submnd 18809 df-mulg 19098 df-cntz 19347 df-cmn 19814 df-psmet 21373 df-xmet 21374 df-met 21375 df-bl 21376 df-mopn 21377 df-cnfld 21382 df-top 22915 df-topon 22932 df-topsp 22954 df-bases 22968 df-cld 23042 df-ntr 23043 df-cls 23044 df-nei 23121 df-cn 23250 df-cnp 23251 df-cmp 23410 df-conn 23435 df-lly 23489 df-nlly 23490 df-tx 23585 df-hmeo 23778 df-xms 24345 df-ms 24346 df-tms 24347 df-ii 24916 df-cncf 24917 df-htpy 25015 df-phtpy 25016 df-phtpc 25037 df-pconn 35205 df-sconn 35206 df-cvm 35240 |
This theorem is referenced by: cvmlift3lem1 35303 |
Copyright terms: Public domain | W3C validator |