![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > rfovf1od | Structured version Visualization version GIF version |
Description: The value of the operator, (𝐴𝑂𝐵), which maps between relations and functions for relations between base sets, 𝐴 and 𝐵, is a bijection. (Contributed by RP, 27-Apr-2021.) |
Ref | Expression |
---|---|
rfovd.rf | ⊢ 𝑂 = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑟 ∈ 𝒫 (𝑎 × 𝑏) ↦ (𝑥 ∈ 𝑎 ↦ {𝑦 ∈ 𝑏 ∣ 𝑥𝑟𝑦}))) |
rfovd.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
rfovd.b | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
rfovcnvf1od.f | ⊢ 𝐹 = (𝐴𝑂𝐵) |
Ref | Expression |
---|---|
rfovf1od | ⊢ (𝜑 → 𝐹:𝒫 (𝐴 × 𝐵)–1-1-onto→(𝒫 𝐵 ↑m 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rfovd.rf | . . 3 ⊢ 𝑂 = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑟 ∈ 𝒫 (𝑎 × 𝑏) ↦ (𝑥 ∈ 𝑎 ↦ {𝑦 ∈ 𝑏 ∣ 𝑥𝑟𝑦}))) | |
2 | rfovd.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
3 | rfovd.b | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
4 | rfovcnvf1od.f | . . 3 ⊢ 𝐹 = (𝐴𝑂𝐵) | |
5 | 1, 2, 3, 4 | rfovcnvf1od 42350 | . 2 ⊢ (𝜑 → (𝐹:𝒫 (𝐴 × 𝐵)–1-1-onto→(𝒫 𝐵 ↑m 𝐴) ∧ ◡𝐹 = (𝑓 ∈ (𝒫 𝐵 ↑m 𝐴) ↦ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝑓‘𝑥))}))) |
6 | 5 | simpld 496 | 1 ⊢ (𝜑 → 𝐹:𝒫 (𝐴 × 𝐵)–1-1-onto→(𝒫 𝐵 ↑m 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1542 ∈ wcel 2107 {crab 3410 Vcvv 3448 𝒫 cpw 4565 class class class wbr 5110 {copab 5172 ↦ cmpt 5193 × cxp 5636 ◡ccnv 5637 –1-1-onto→wf1o 6500 ‘cfv 6501 (class class class)co 7362 ∈ cmpo 7364 ↑m cmap 8772 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2708 ax-rep 5247 ax-sep 5261 ax-nul 5268 ax-pow 5325 ax-pr 5389 ax-un 7677 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2890 df-ne 2945 df-ral 3066 df-rex 3075 df-reu 3357 df-rab 3411 df-v 3450 df-sbc 3745 df-csb 3861 df-dif 3918 df-un 3920 df-in 3922 df-ss 3932 df-nul 4288 df-if 4492 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4871 df-iun 4961 df-br 5111 df-opab 5173 df-mpt 5194 df-id 5536 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6453 df-fun 6503 df-fn 6504 df-f 6505 df-f1 6506 df-fo 6507 df-f1o 6508 df-fv 6509 df-ov 7365 df-oprab 7366 df-mpo 7367 df-1st 7926 df-2nd 7927 df-map 8774 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |