| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > evls1addd | Structured version Visualization version GIF version | ||
| Description: Univariate polynomial evaluation of a sum of polynomials. (Contributed by Thierry Arnoux, 8-Feb-2025.) |
| Ref | Expression |
|---|---|
| ressply1evl2.q | ⊢ 𝑄 = (𝑆 evalSub1 𝑅) |
| ressply1evl2.k | ⊢ 𝐾 = (Base‘𝑆) |
| ressply1evl2.w | ⊢ 𝑊 = (Poly1‘𝑈) |
| ressply1evl2.u | ⊢ 𝑈 = (𝑆 ↾s 𝑅) |
| ressply1evl2.b | ⊢ 𝐵 = (Base‘𝑊) |
| evls1addd.1 | ⊢ ⨣ = (+g‘𝑊) |
| evls1addd.2 | ⊢ + = (+g‘𝑆) |
| evls1addd.s | ⊢ (𝜑 → 𝑆 ∈ CRing) |
| evls1addd.r | ⊢ (𝜑 → 𝑅 ∈ (SubRing‘𝑆)) |
| evls1addd.m | ⊢ (𝜑 → 𝑀 ∈ 𝐵) |
| evls1addd.n | ⊢ (𝜑 → 𝑁 ∈ 𝐵) |
| evls1addd.y | ⊢ (𝜑 → 𝐶 ∈ 𝐾) |
| Ref | Expression |
|---|---|
| evls1addd | ⊢ (𝜑 → ((𝑄‘(𝑀 ⨣ 𝑁))‘𝐶) = (((𝑄‘𝑀)‘𝐶) + ((𝑄‘𝑁)‘𝐶))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . . . . . 6 ⊢ (𝜑 → 𝜑) | |
| 2 | evls1addd.m | . . . . . 6 ⊢ (𝜑 → 𝑀 ∈ 𝐵) | |
| 3 | evls1addd.n | . . . . . 6 ⊢ (𝜑 → 𝑁 ∈ 𝐵) | |
| 4 | eqid 2736 | . . . . . . 7 ⊢ (Poly1‘𝑆) = (Poly1‘𝑆) | |
| 5 | ressply1evl2.u | . . . . . . 7 ⊢ 𝑈 = (𝑆 ↾s 𝑅) | |
| 6 | ressply1evl2.w | . . . . . . 7 ⊢ 𝑊 = (Poly1‘𝑈) | |
| 7 | ressply1evl2.b | . . . . . . 7 ⊢ 𝐵 = (Base‘𝑊) | |
| 8 | evls1addd.r | . . . . . . 7 ⊢ (𝜑 → 𝑅 ∈ (SubRing‘𝑆)) | |
| 9 | eqid 2736 | . . . . . . 7 ⊢ ((Poly1‘𝑆) ↾s 𝐵) = ((Poly1‘𝑆) ↾s 𝐵) | |
| 10 | 4, 5, 6, 7, 8, 9 | ressply1add 22170 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑀 ∈ 𝐵 ∧ 𝑁 ∈ 𝐵)) → (𝑀(+g‘𝑊)𝑁) = (𝑀(+g‘((Poly1‘𝑆) ↾s 𝐵))𝑁)) |
| 11 | 1, 2, 3, 10 | syl12anc 836 | . . . . 5 ⊢ (𝜑 → (𝑀(+g‘𝑊)𝑁) = (𝑀(+g‘((Poly1‘𝑆) ↾s 𝐵))𝑁)) |
| 12 | evls1addd.1 | . . . . . 6 ⊢ ⨣ = (+g‘𝑊) | |
| 13 | 12 | oveqi 7423 | . . . . 5 ⊢ (𝑀 ⨣ 𝑁) = (𝑀(+g‘𝑊)𝑁) |
| 14 | 7 | fvexi 6895 | . . . . . . 7 ⊢ 𝐵 ∈ V |
| 15 | eqid 2736 | . . . . . . . 8 ⊢ (+g‘(Poly1‘𝑆)) = (+g‘(Poly1‘𝑆)) | |
| 16 | 9, 15 | ressplusg 17310 | . . . . . . 7 ⊢ (𝐵 ∈ V → (+g‘(Poly1‘𝑆)) = (+g‘((Poly1‘𝑆) ↾s 𝐵))) |
| 17 | 14, 16 | ax-mp 5 | . . . . . 6 ⊢ (+g‘(Poly1‘𝑆)) = (+g‘((Poly1‘𝑆) ↾s 𝐵)) |
| 18 | 17 | oveqi 7423 | . . . . 5 ⊢ (𝑀(+g‘(Poly1‘𝑆))𝑁) = (𝑀(+g‘((Poly1‘𝑆) ↾s 𝐵))𝑁) |
| 19 | 11, 13, 18 | 3eqtr4g 2796 | . . . 4 ⊢ (𝜑 → (𝑀 ⨣ 𝑁) = (𝑀(+g‘(Poly1‘𝑆))𝑁)) |
| 20 | 19 | fveq2d 6885 | . . 3 ⊢ (𝜑 → ((eval1‘𝑆)‘(𝑀 ⨣ 𝑁)) = ((eval1‘𝑆)‘(𝑀(+g‘(Poly1‘𝑆))𝑁))) |
| 21 | 20 | fveq1d 6883 | . 2 ⊢ (𝜑 → (((eval1‘𝑆)‘(𝑀 ⨣ 𝑁))‘𝐶) = (((eval1‘𝑆)‘(𝑀(+g‘(Poly1‘𝑆))𝑁))‘𝐶)) |
| 22 | ressply1evl2.q | . . . . . 6 ⊢ 𝑄 = (𝑆 evalSub1 𝑅) | |
| 23 | ressply1evl2.k | . . . . . 6 ⊢ 𝐾 = (Base‘𝑆) | |
| 24 | eqid 2736 | . . . . . 6 ⊢ (eval1‘𝑆) = (eval1‘𝑆) | |
| 25 | evls1addd.s | . . . . . 6 ⊢ (𝜑 → 𝑆 ∈ CRing) | |
| 26 | 22, 23, 6, 5, 7, 24, 25, 8 | ressply1evl 22313 | . . . . 5 ⊢ (𝜑 → 𝑄 = ((eval1‘𝑆) ↾ 𝐵)) |
| 27 | 26 | fveq1d 6883 | . . . 4 ⊢ (𝜑 → (𝑄‘(𝑀 ⨣ 𝑁)) = (((eval1‘𝑆) ↾ 𝐵)‘(𝑀 ⨣ 𝑁))) |
| 28 | 5 | subrgring 20539 | . . . . . . . 8 ⊢ (𝑅 ∈ (SubRing‘𝑆) → 𝑈 ∈ Ring) |
| 29 | 6 | ply1ring 22188 | . . . . . . . 8 ⊢ (𝑈 ∈ Ring → 𝑊 ∈ Ring) |
| 30 | 8, 28, 29 | 3syl 18 | . . . . . . 7 ⊢ (𝜑 → 𝑊 ∈ Ring) |
| 31 | 30 | ringgrpd 20207 | . . . . . 6 ⊢ (𝜑 → 𝑊 ∈ Grp) |
| 32 | 7, 12, 31, 2, 3 | grpcld 18935 | . . . . 5 ⊢ (𝜑 → (𝑀 ⨣ 𝑁) ∈ 𝐵) |
| 33 | 32 | fvresd 6901 | . . . 4 ⊢ (𝜑 → (((eval1‘𝑆) ↾ 𝐵)‘(𝑀 ⨣ 𝑁)) = ((eval1‘𝑆)‘(𝑀 ⨣ 𝑁))) |
| 34 | 27, 33 | eqtr2d 2772 | . . 3 ⊢ (𝜑 → ((eval1‘𝑆)‘(𝑀 ⨣ 𝑁)) = (𝑄‘(𝑀 ⨣ 𝑁))) |
| 35 | 34 | fveq1d 6883 | . 2 ⊢ (𝜑 → (((eval1‘𝑆)‘(𝑀 ⨣ 𝑁))‘𝐶) = ((𝑄‘(𝑀 ⨣ 𝑁))‘𝐶)) |
| 36 | eqid 2736 | . . . 4 ⊢ (Base‘(Poly1‘𝑆)) = (Base‘(Poly1‘𝑆)) | |
| 37 | evls1addd.y | . . . 4 ⊢ (𝜑 → 𝐶 ∈ 𝐾) | |
| 38 | eqid 2736 | . . . . . . . 8 ⊢ (PwSer1‘𝑈) = (PwSer1‘𝑈) | |
| 39 | eqid 2736 | . . . . . . . 8 ⊢ (Base‘(PwSer1‘𝑈)) = (Base‘(PwSer1‘𝑈)) | |
| 40 | 4, 5, 6, 7, 8, 38, 39, 36 | ressply1bas2 22168 | . . . . . . 7 ⊢ (𝜑 → 𝐵 = ((Base‘(PwSer1‘𝑈)) ∩ (Base‘(Poly1‘𝑆)))) |
| 41 | inss2 4218 | . . . . . . 7 ⊢ ((Base‘(PwSer1‘𝑈)) ∩ (Base‘(Poly1‘𝑆))) ⊆ (Base‘(Poly1‘𝑆)) | |
| 42 | 40, 41 | eqsstrdi 4008 | . . . . . 6 ⊢ (𝜑 → 𝐵 ⊆ (Base‘(Poly1‘𝑆))) |
| 43 | 42, 2 | sseldd 3964 | . . . . 5 ⊢ (𝜑 → 𝑀 ∈ (Base‘(Poly1‘𝑆))) |
| 44 | 26 | fveq1d 6883 | . . . . . . 7 ⊢ (𝜑 → (𝑄‘𝑀) = (((eval1‘𝑆) ↾ 𝐵)‘𝑀)) |
| 45 | 2 | fvresd 6901 | . . . . . . 7 ⊢ (𝜑 → (((eval1‘𝑆) ↾ 𝐵)‘𝑀) = ((eval1‘𝑆)‘𝑀)) |
| 46 | 44, 45 | eqtr2d 2772 | . . . . . 6 ⊢ (𝜑 → ((eval1‘𝑆)‘𝑀) = (𝑄‘𝑀)) |
| 47 | 46 | fveq1d 6883 | . . . . 5 ⊢ (𝜑 → (((eval1‘𝑆)‘𝑀)‘𝐶) = ((𝑄‘𝑀)‘𝐶)) |
| 48 | 43, 47 | jca 511 | . . . 4 ⊢ (𝜑 → (𝑀 ∈ (Base‘(Poly1‘𝑆)) ∧ (((eval1‘𝑆)‘𝑀)‘𝐶) = ((𝑄‘𝑀)‘𝐶))) |
| 49 | 42, 3 | sseldd 3964 | . . . . 5 ⊢ (𝜑 → 𝑁 ∈ (Base‘(Poly1‘𝑆))) |
| 50 | 26 | fveq1d 6883 | . . . . . . 7 ⊢ (𝜑 → (𝑄‘𝑁) = (((eval1‘𝑆) ↾ 𝐵)‘𝑁)) |
| 51 | 3 | fvresd 6901 | . . . . . . 7 ⊢ (𝜑 → (((eval1‘𝑆) ↾ 𝐵)‘𝑁) = ((eval1‘𝑆)‘𝑁)) |
| 52 | 50, 51 | eqtr2d 2772 | . . . . . 6 ⊢ (𝜑 → ((eval1‘𝑆)‘𝑁) = (𝑄‘𝑁)) |
| 53 | 52 | fveq1d 6883 | . . . . 5 ⊢ (𝜑 → (((eval1‘𝑆)‘𝑁)‘𝐶) = ((𝑄‘𝑁)‘𝐶)) |
| 54 | 49, 53 | jca 511 | . . . 4 ⊢ (𝜑 → (𝑁 ∈ (Base‘(Poly1‘𝑆)) ∧ (((eval1‘𝑆)‘𝑁)‘𝐶) = ((𝑄‘𝑁)‘𝐶))) |
| 55 | evls1addd.2 | . . . 4 ⊢ + = (+g‘𝑆) | |
| 56 | 24, 4, 23, 36, 25, 37, 48, 54, 15, 55 | evl1addd 22284 | . . 3 ⊢ (𝜑 → ((𝑀(+g‘(Poly1‘𝑆))𝑁) ∈ (Base‘(Poly1‘𝑆)) ∧ (((eval1‘𝑆)‘(𝑀(+g‘(Poly1‘𝑆))𝑁))‘𝐶) = (((𝑄‘𝑀)‘𝐶) + ((𝑄‘𝑁)‘𝐶)))) |
| 57 | 56 | simprd 495 | . 2 ⊢ (𝜑 → (((eval1‘𝑆)‘(𝑀(+g‘(Poly1‘𝑆))𝑁))‘𝐶) = (((𝑄‘𝑀)‘𝐶) + ((𝑄‘𝑁)‘𝐶))) |
| 58 | 21, 35, 57 | 3eqtr3d 2779 | 1 ⊢ (𝜑 → ((𝑄‘(𝑀 ⨣ 𝑁))‘𝐶) = (((𝑄‘𝑀)‘𝐶) + ((𝑄‘𝑁)‘𝐶))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 Vcvv 3464 ∩ cin 3930 ↾ cres 5661 ‘cfv 6536 (class class class)co 7410 Basecbs 17233 ↾s cress 17256 +gcplusg 17276 Ringcrg 20198 CRingccrg 20199 SubRingcsubrg 20534 PwSer1cps1 22115 Poly1cpl1 22117 evalSub1 ces1 22256 eval1ce1 22257 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-tp 4611 df-op 4613 df-uni 4889 df-int 4928 df-iun 4974 df-iin 4975 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-se 5612 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-isom 6545 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-of 7676 df-ofr 7677 df-om 7867 df-1st 7993 df-2nd 7994 df-supp 8165 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-1o 8485 df-2o 8486 df-er 8724 df-map 8847 df-pm 8848 df-ixp 8917 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-fsupp 9379 df-sup 9459 df-oi 9529 df-card 9958 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-nn 12246 df-2 12308 df-3 12309 df-4 12310 df-5 12311 df-6 12312 df-7 12313 df-8 12314 df-9 12315 df-n0 12507 df-z 12594 df-dec 12714 df-uz 12858 df-fz 13530 df-fzo 13677 df-seq 14025 df-hash 14354 df-struct 17171 df-sets 17188 df-slot 17206 df-ndx 17218 df-base 17234 df-ress 17257 df-plusg 17289 df-mulr 17290 df-sca 17292 df-vsca 17293 df-ip 17294 df-tset 17295 df-ple 17296 df-ds 17298 df-hom 17300 df-cco 17301 df-0g 17460 df-gsum 17461 df-prds 17466 df-pws 17468 df-mre 17603 df-mrc 17604 df-acs 17606 df-mgm 18623 df-sgrp 18702 df-mnd 18718 df-mhm 18766 df-submnd 18767 df-grp 18924 df-minusg 18925 df-sbg 18926 df-mulg 19056 df-subg 19111 df-ghm 19201 df-cntz 19305 df-cmn 19768 df-abl 19769 df-mgp 20106 df-rng 20118 df-ur 20147 df-srg 20152 df-ring 20200 df-cring 20201 df-rhm 20437 df-subrng 20511 df-subrg 20535 df-lmod 20824 df-lss 20894 df-lsp 20934 df-assa 21818 df-asp 21819 df-ascl 21820 df-psr 21874 df-mvr 21875 df-mpl 21876 df-opsr 21878 df-evls 22037 df-evl 22038 df-psr1 22120 df-vr1 22121 df-ply1 22122 df-coe1 22123 df-evls1 22258 df-evl1 22259 |
| This theorem is referenced by: evls1maprhm 22319 cos9thpiminplylem6 33826 |
| Copyright terms: Public domain | W3C validator |