![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > evls1addd | Structured version Visualization version GIF version |
Description: Univariate polynomial evaluation of a sum of polynomials. (Contributed by Thierry Arnoux, 8-Feb-2025.) |
Ref | Expression |
---|---|
ressply1evl2.q | ⊢ 𝑄 = (𝑆 evalSub1 𝑅) |
ressply1evl2.k | ⊢ 𝐾 = (Base‘𝑆) |
ressply1evl2.w | ⊢ 𝑊 = (Poly1‘𝑈) |
ressply1evl2.u | ⊢ 𝑈 = (𝑆 ↾s 𝑅) |
ressply1evl2.b | ⊢ 𝐵 = (Base‘𝑊) |
evls1addd.1 | ⊢ ⨣ = (+g‘𝑊) |
evls1addd.2 | ⊢ + = (+g‘𝑆) |
evls1addd.s | ⊢ (𝜑 → 𝑆 ∈ CRing) |
evls1addd.r | ⊢ (𝜑 → 𝑅 ∈ (SubRing‘𝑆)) |
evls1addd.m | ⊢ (𝜑 → 𝑀 ∈ 𝐵) |
evls1addd.n | ⊢ (𝜑 → 𝑁 ∈ 𝐵) |
evls1addd.y | ⊢ (𝜑 → 𝐶 ∈ 𝐾) |
Ref | Expression |
---|---|
evls1addd | ⊢ (𝜑 → ((𝑄‘(𝑀 ⨣ 𝑁))‘𝐶) = (((𝑄‘𝑀)‘𝐶) + ((𝑄‘𝑁)‘𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . . . . . 6 ⊢ (𝜑 → 𝜑) | |
2 | evls1addd.m | . . . . . 6 ⊢ (𝜑 → 𝑀 ∈ 𝐵) | |
3 | evls1addd.n | . . . . . 6 ⊢ (𝜑 → 𝑁 ∈ 𝐵) | |
4 | eqid 2725 | . . . . . . 7 ⊢ (Poly1‘𝑆) = (Poly1‘𝑆) | |
5 | ressply1evl2.u | . . . . . . 7 ⊢ 𝑈 = (𝑆 ↾s 𝑅) | |
6 | ressply1evl2.w | . . . . . . 7 ⊢ 𝑊 = (Poly1‘𝑈) | |
7 | ressply1evl2.b | . . . . . . 7 ⊢ 𝐵 = (Base‘𝑊) | |
8 | evls1addd.r | . . . . . . 7 ⊢ (𝜑 → 𝑅 ∈ (SubRing‘𝑆)) | |
9 | eqid 2725 | . . . . . . 7 ⊢ ((Poly1‘𝑆) ↾s 𝐵) = ((Poly1‘𝑆) ↾s 𝐵) | |
10 | 4, 5, 6, 7, 8, 9 | ressply1add 22172 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑀 ∈ 𝐵 ∧ 𝑁 ∈ 𝐵)) → (𝑀(+g‘𝑊)𝑁) = (𝑀(+g‘((Poly1‘𝑆) ↾s 𝐵))𝑁)) |
11 | 1, 2, 3, 10 | syl12anc 835 | . . . . 5 ⊢ (𝜑 → (𝑀(+g‘𝑊)𝑁) = (𝑀(+g‘((Poly1‘𝑆) ↾s 𝐵))𝑁)) |
12 | evls1addd.1 | . . . . . 6 ⊢ ⨣ = (+g‘𝑊) | |
13 | 12 | oveqi 7432 | . . . . 5 ⊢ (𝑀 ⨣ 𝑁) = (𝑀(+g‘𝑊)𝑁) |
14 | 7 | fvexi 6910 | . . . . . . 7 ⊢ 𝐵 ∈ V |
15 | eqid 2725 | . . . . . . . 8 ⊢ (+g‘(Poly1‘𝑆)) = (+g‘(Poly1‘𝑆)) | |
16 | 9, 15 | ressplusg 17274 | . . . . . . 7 ⊢ (𝐵 ∈ V → (+g‘(Poly1‘𝑆)) = (+g‘((Poly1‘𝑆) ↾s 𝐵))) |
17 | 14, 16 | ax-mp 5 | . . . . . 6 ⊢ (+g‘(Poly1‘𝑆)) = (+g‘((Poly1‘𝑆) ↾s 𝐵)) |
18 | 17 | oveqi 7432 | . . . . 5 ⊢ (𝑀(+g‘(Poly1‘𝑆))𝑁) = (𝑀(+g‘((Poly1‘𝑆) ↾s 𝐵))𝑁) |
19 | 11, 13, 18 | 3eqtr4g 2790 | . . . 4 ⊢ (𝜑 → (𝑀 ⨣ 𝑁) = (𝑀(+g‘(Poly1‘𝑆))𝑁)) |
20 | 19 | fveq2d 6900 | . . 3 ⊢ (𝜑 → ((eval1‘𝑆)‘(𝑀 ⨣ 𝑁)) = ((eval1‘𝑆)‘(𝑀(+g‘(Poly1‘𝑆))𝑁))) |
21 | 20 | fveq1d 6898 | . 2 ⊢ (𝜑 → (((eval1‘𝑆)‘(𝑀 ⨣ 𝑁))‘𝐶) = (((eval1‘𝑆)‘(𝑀(+g‘(Poly1‘𝑆))𝑁))‘𝐶)) |
22 | ressply1evl2.q | . . . . . 6 ⊢ 𝑄 = (𝑆 evalSub1 𝑅) | |
23 | ressply1evl2.k | . . . . . 6 ⊢ 𝐾 = (Base‘𝑆) | |
24 | eqid 2725 | . . . . . 6 ⊢ (eval1‘𝑆) = (eval1‘𝑆) | |
25 | evls1addd.s | . . . . . 6 ⊢ (𝜑 → 𝑆 ∈ CRing) | |
26 | 22, 23, 6, 5, 7, 24, 25, 8 | ressply1evl 22314 | . . . . 5 ⊢ (𝜑 → 𝑄 = ((eval1‘𝑆) ↾ 𝐵)) |
27 | 26 | fveq1d 6898 | . . . 4 ⊢ (𝜑 → (𝑄‘(𝑀 ⨣ 𝑁)) = (((eval1‘𝑆) ↾ 𝐵)‘(𝑀 ⨣ 𝑁))) |
28 | 5 | subrgring 20525 | . . . . . . . 8 ⊢ (𝑅 ∈ (SubRing‘𝑆) → 𝑈 ∈ Ring) |
29 | 6 | ply1ring 22190 | . . . . . . . 8 ⊢ (𝑈 ∈ Ring → 𝑊 ∈ Ring) |
30 | 8, 28, 29 | 3syl 18 | . . . . . . 7 ⊢ (𝜑 → 𝑊 ∈ Ring) |
31 | 30 | ringgrpd 20194 | . . . . . 6 ⊢ (𝜑 → 𝑊 ∈ Grp) |
32 | 7, 12, 31, 2, 3 | grpcld 18912 | . . . . 5 ⊢ (𝜑 → (𝑀 ⨣ 𝑁) ∈ 𝐵) |
33 | 32 | fvresd 6916 | . . . 4 ⊢ (𝜑 → (((eval1‘𝑆) ↾ 𝐵)‘(𝑀 ⨣ 𝑁)) = ((eval1‘𝑆)‘(𝑀 ⨣ 𝑁))) |
34 | 27, 33 | eqtr2d 2766 | . . 3 ⊢ (𝜑 → ((eval1‘𝑆)‘(𝑀 ⨣ 𝑁)) = (𝑄‘(𝑀 ⨣ 𝑁))) |
35 | 34 | fveq1d 6898 | . 2 ⊢ (𝜑 → (((eval1‘𝑆)‘(𝑀 ⨣ 𝑁))‘𝐶) = ((𝑄‘(𝑀 ⨣ 𝑁))‘𝐶)) |
36 | eqid 2725 | . . . 4 ⊢ (Base‘(Poly1‘𝑆)) = (Base‘(Poly1‘𝑆)) | |
37 | evls1addd.y | . . . 4 ⊢ (𝜑 → 𝐶 ∈ 𝐾) | |
38 | eqid 2725 | . . . . . . . 8 ⊢ (PwSer1‘𝑈) = (PwSer1‘𝑈) | |
39 | eqid 2725 | . . . . . . . 8 ⊢ (Base‘(PwSer1‘𝑈)) = (Base‘(PwSer1‘𝑈)) | |
40 | 4, 5, 6, 7, 8, 38, 39, 36 | ressply1bas2 22170 | . . . . . . 7 ⊢ (𝜑 → 𝐵 = ((Base‘(PwSer1‘𝑈)) ∩ (Base‘(Poly1‘𝑆)))) |
41 | inss2 4228 | . . . . . . 7 ⊢ ((Base‘(PwSer1‘𝑈)) ∩ (Base‘(Poly1‘𝑆))) ⊆ (Base‘(Poly1‘𝑆)) | |
42 | 40, 41 | eqsstrdi 4031 | . . . . . 6 ⊢ (𝜑 → 𝐵 ⊆ (Base‘(Poly1‘𝑆))) |
43 | 42, 2 | sseldd 3977 | . . . . 5 ⊢ (𝜑 → 𝑀 ∈ (Base‘(Poly1‘𝑆))) |
44 | 26 | fveq1d 6898 | . . . . . . 7 ⊢ (𝜑 → (𝑄‘𝑀) = (((eval1‘𝑆) ↾ 𝐵)‘𝑀)) |
45 | 2 | fvresd 6916 | . . . . . . 7 ⊢ (𝜑 → (((eval1‘𝑆) ↾ 𝐵)‘𝑀) = ((eval1‘𝑆)‘𝑀)) |
46 | 44, 45 | eqtr2d 2766 | . . . . . 6 ⊢ (𝜑 → ((eval1‘𝑆)‘𝑀) = (𝑄‘𝑀)) |
47 | 46 | fveq1d 6898 | . . . . 5 ⊢ (𝜑 → (((eval1‘𝑆)‘𝑀)‘𝐶) = ((𝑄‘𝑀)‘𝐶)) |
48 | 43, 47 | jca 510 | . . . 4 ⊢ (𝜑 → (𝑀 ∈ (Base‘(Poly1‘𝑆)) ∧ (((eval1‘𝑆)‘𝑀)‘𝐶) = ((𝑄‘𝑀)‘𝐶))) |
49 | 42, 3 | sseldd 3977 | . . . . 5 ⊢ (𝜑 → 𝑁 ∈ (Base‘(Poly1‘𝑆))) |
50 | 26 | fveq1d 6898 | . . . . . . 7 ⊢ (𝜑 → (𝑄‘𝑁) = (((eval1‘𝑆) ↾ 𝐵)‘𝑁)) |
51 | 3 | fvresd 6916 | . . . . . . 7 ⊢ (𝜑 → (((eval1‘𝑆) ↾ 𝐵)‘𝑁) = ((eval1‘𝑆)‘𝑁)) |
52 | 50, 51 | eqtr2d 2766 | . . . . . 6 ⊢ (𝜑 → ((eval1‘𝑆)‘𝑁) = (𝑄‘𝑁)) |
53 | 52 | fveq1d 6898 | . . . . 5 ⊢ (𝜑 → (((eval1‘𝑆)‘𝑁)‘𝐶) = ((𝑄‘𝑁)‘𝐶)) |
54 | 49, 53 | jca 510 | . . . 4 ⊢ (𝜑 → (𝑁 ∈ (Base‘(Poly1‘𝑆)) ∧ (((eval1‘𝑆)‘𝑁)‘𝐶) = ((𝑄‘𝑁)‘𝐶))) |
55 | evls1addd.2 | . . . 4 ⊢ + = (+g‘𝑆) | |
56 | 24, 4, 23, 36, 25, 37, 48, 54, 15, 55 | evl1addd 22285 | . . 3 ⊢ (𝜑 → ((𝑀(+g‘(Poly1‘𝑆))𝑁) ∈ (Base‘(Poly1‘𝑆)) ∧ (((eval1‘𝑆)‘(𝑀(+g‘(Poly1‘𝑆))𝑁))‘𝐶) = (((𝑄‘𝑀)‘𝐶) + ((𝑄‘𝑁)‘𝐶)))) |
57 | 56 | simprd 494 | . 2 ⊢ (𝜑 → (((eval1‘𝑆)‘(𝑀(+g‘(Poly1‘𝑆))𝑁))‘𝐶) = (((𝑄‘𝑀)‘𝐶) + ((𝑄‘𝑁)‘𝐶))) |
58 | 21, 35, 57 | 3eqtr3d 2773 | 1 ⊢ (𝜑 → ((𝑄‘(𝑀 ⨣ 𝑁))‘𝐶) = (((𝑄‘𝑀)‘𝐶) + ((𝑄‘𝑁)‘𝐶))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1533 ∈ wcel 2098 Vcvv 3461 ∩ cin 3943 ↾ cres 5680 ‘cfv 6549 (class class class)co 7419 Basecbs 17183 ↾s cress 17212 +gcplusg 17236 Ringcrg 20185 CRingccrg 20186 SubRingcsubrg 20518 PwSer1cps1 22117 Poly1cpl1 22119 evalSub1 ces1 22257 eval1ce1 22258 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5365 ax-pr 5429 ax-un 7741 ax-cnex 11196 ax-resscn 11197 ax-1cn 11198 ax-icn 11199 ax-addcl 11200 ax-addrcl 11201 ax-mulcl 11202 ax-mulrcl 11203 ax-mulcom 11204 ax-addass 11205 ax-mulass 11206 ax-distr 11207 ax-i2m1 11208 ax-1ne0 11209 ax-1rid 11210 ax-rnegex 11211 ax-rrecex 11212 ax-cnre 11213 ax-pre-lttri 11214 ax-pre-lttrn 11215 ax-pre-ltadd 11216 ax-pre-mulgt0 11217 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3964 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-tp 4635 df-op 4637 df-uni 4910 df-int 4951 df-iun 4999 df-iin 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-se 5634 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6307 df-ord 6374 df-on 6375 df-lim 6376 df-suc 6377 df-iota 6501 df-fun 6551 df-fn 6552 df-f 6553 df-f1 6554 df-fo 6555 df-f1o 6556 df-fv 6557 df-isom 6558 df-riota 7375 df-ov 7422 df-oprab 7423 df-mpo 7424 df-of 7685 df-ofr 7686 df-om 7872 df-1st 7994 df-2nd 7995 df-supp 8166 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-1o 8487 df-er 8725 df-map 8847 df-pm 8848 df-ixp 8917 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-fsupp 9388 df-sup 9467 df-oi 9535 df-card 9964 df-pnf 11282 df-mnf 11283 df-xr 11284 df-ltxr 11285 df-le 11286 df-sub 11478 df-neg 11479 df-nn 12246 df-2 12308 df-3 12309 df-4 12310 df-5 12311 df-6 12312 df-7 12313 df-8 12314 df-9 12315 df-n0 12506 df-z 12592 df-dec 12711 df-uz 12856 df-fz 13520 df-fzo 13663 df-seq 14003 df-hash 14326 df-struct 17119 df-sets 17136 df-slot 17154 df-ndx 17166 df-base 17184 df-ress 17213 df-plusg 17249 df-mulr 17250 df-sca 17252 df-vsca 17253 df-ip 17254 df-tset 17255 df-ple 17256 df-ds 17258 df-hom 17260 df-cco 17261 df-0g 17426 df-gsum 17427 df-prds 17432 df-pws 17434 df-mre 17569 df-mrc 17570 df-acs 17572 df-mgm 18603 df-sgrp 18682 df-mnd 18698 df-mhm 18743 df-submnd 18744 df-grp 18901 df-minusg 18902 df-sbg 18903 df-mulg 19032 df-subg 19086 df-ghm 19176 df-cntz 19280 df-cmn 19749 df-abl 19750 df-mgp 20087 df-rng 20105 df-ur 20134 df-srg 20139 df-ring 20187 df-cring 20188 df-rhm 20423 df-subrng 20495 df-subrg 20520 df-lmod 20757 df-lss 20828 df-lsp 20868 df-assa 21804 df-asp 21805 df-ascl 21806 df-psr 21859 df-mvr 21860 df-mpl 21861 df-opsr 21863 df-evls 22040 df-evl 22041 df-psr1 22122 df-vr1 22123 df-ply1 22124 df-coe1 22125 df-evls1 22259 df-evl1 22260 |
This theorem is referenced by: evls1maprhm 22320 |
Copyright terms: Public domain | W3C validator |