| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > evls1addd | Structured version Visualization version GIF version | ||
| Description: Univariate polynomial evaluation of a sum of polynomials. (Contributed by Thierry Arnoux, 8-Feb-2025.) |
| Ref | Expression |
|---|---|
| ressply1evl2.q | ⊢ 𝑄 = (𝑆 evalSub1 𝑅) |
| ressply1evl2.k | ⊢ 𝐾 = (Base‘𝑆) |
| ressply1evl2.w | ⊢ 𝑊 = (Poly1‘𝑈) |
| ressply1evl2.u | ⊢ 𝑈 = (𝑆 ↾s 𝑅) |
| ressply1evl2.b | ⊢ 𝐵 = (Base‘𝑊) |
| evls1addd.1 | ⊢ ⨣ = (+g‘𝑊) |
| evls1addd.2 | ⊢ + = (+g‘𝑆) |
| evls1addd.s | ⊢ (𝜑 → 𝑆 ∈ CRing) |
| evls1addd.r | ⊢ (𝜑 → 𝑅 ∈ (SubRing‘𝑆)) |
| evls1addd.m | ⊢ (𝜑 → 𝑀 ∈ 𝐵) |
| evls1addd.n | ⊢ (𝜑 → 𝑁 ∈ 𝐵) |
| evls1addd.y | ⊢ (𝜑 → 𝐶 ∈ 𝐾) |
| Ref | Expression |
|---|---|
| evls1addd | ⊢ (𝜑 → ((𝑄‘(𝑀 ⨣ 𝑁))‘𝐶) = (((𝑄‘𝑀)‘𝐶) + ((𝑄‘𝑁)‘𝐶))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . . . . . 6 ⊢ (𝜑 → 𝜑) | |
| 2 | evls1addd.m | . . . . . 6 ⊢ (𝜑 → 𝑀 ∈ 𝐵) | |
| 3 | evls1addd.n | . . . . . 6 ⊢ (𝜑 → 𝑁 ∈ 𝐵) | |
| 4 | eqid 2729 | . . . . . . 7 ⊢ (Poly1‘𝑆) = (Poly1‘𝑆) | |
| 5 | ressply1evl2.u | . . . . . . 7 ⊢ 𝑈 = (𝑆 ↾s 𝑅) | |
| 6 | ressply1evl2.w | . . . . . . 7 ⊢ 𝑊 = (Poly1‘𝑈) | |
| 7 | ressply1evl2.b | . . . . . . 7 ⊢ 𝐵 = (Base‘𝑊) | |
| 8 | evls1addd.r | . . . . . . 7 ⊢ (𝜑 → 𝑅 ∈ (SubRing‘𝑆)) | |
| 9 | eqid 2729 | . . . . . . 7 ⊢ ((Poly1‘𝑆) ↾s 𝐵) = ((Poly1‘𝑆) ↾s 𝐵) | |
| 10 | 4, 5, 6, 7, 8, 9 | ressply1add 22114 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑀 ∈ 𝐵 ∧ 𝑁 ∈ 𝐵)) → (𝑀(+g‘𝑊)𝑁) = (𝑀(+g‘((Poly1‘𝑆) ↾s 𝐵))𝑁)) |
| 11 | 1, 2, 3, 10 | syl12anc 836 | . . . . 5 ⊢ (𝜑 → (𝑀(+g‘𝑊)𝑁) = (𝑀(+g‘((Poly1‘𝑆) ↾s 𝐵))𝑁)) |
| 12 | evls1addd.1 | . . . . . 6 ⊢ ⨣ = (+g‘𝑊) | |
| 13 | 12 | oveqi 7400 | . . . . 5 ⊢ (𝑀 ⨣ 𝑁) = (𝑀(+g‘𝑊)𝑁) |
| 14 | 7 | fvexi 6872 | . . . . . . 7 ⊢ 𝐵 ∈ V |
| 15 | eqid 2729 | . . . . . . . 8 ⊢ (+g‘(Poly1‘𝑆)) = (+g‘(Poly1‘𝑆)) | |
| 16 | 9, 15 | ressplusg 17254 | . . . . . . 7 ⊢ (𝐵 ∈ V → (+g‘(Poly1‘𝑆)) = (+g‘((Poly1‘𝑆) ↾s 𝐵))) |
| 17 | 14, 16 | ax-mp 5 | . . . . . 6 ⊢ (+g‘(Poly1‘𝑆)) = (+g‘((Poly1‘𝑆) ↾s 𝐵)) |
| 18 | 17 | oveqi 7400 | . . . . 5 ⊢ (𝑀(+g‘(Poly1‘𝑆))𝑁) = (𝑀(+g‘((Poly1‘𝑆) ↾s 𝐵))𝑁) |
| 19 | 11, 13, 18 | 3eqtr4g 2789 | . . . 4 ⊢ (𝜑 → (𝑀 ⨣ 𝑁) = (𝑀(+g‘(Poly1‘𝑆))𝑁)) |
| 20 | 19 | fveq2d 6862 | . . 3 ⊢ (𝜑 → ((eval1‘𝑆)‘(𝑀 ⨣ 𝑁)) = ((eval1‘𝑆)‘(𝑀(+g‘(Poly1‘𝑆))𝑁))) |
| 21 | 20 | fveq1d 6860 | . 2 ⊢ (𝜑 → (((eval1‘𝑆)‘(𝑀 ⨣ 𝑁))‘𝐶) = (((eval1‘𝑆)‘(𝑀(+g‘(Poly1‘𝑆))𝑁))‘𝐶)) |
| 22 | ressply1evl2.q | . . . . . 6 ⊢ 𝑄 = (𝑆 evalSub1 𝑅) | |
| 23 | ressply1evl2.k | . . . . . 6 ⊢ 𝐾 = (Base‘𝑆) | |
| 24 | eqid 2729 | . . . . . 6 ⊢ (eval1‘𝑆) = (eval1‘𝑆) | |
| 25 | evls1addd.s | . . . . . 6 ⊢ (𝜑 → 𝑆 ∈ CRing) | |
| 26 | 22, 23, 6, 5, 7, 24, 25, 8 | ressply1evl 22257 | . . . . 5 ⊢ (𝜑 → 𝑄 = ((eval1‘𝑆) ↾ 𝐵)) |
| 27 | 26 | fveq1d 6860 | . . . 4 ⊢ (𝜑 → (𝑄‘(𝑀 ⨣ 𝑁)) = (((eval1‘𝑆) ↾ 𝐵)‘(𝑀 ⨣ 𝑁))) |
| 28 | 5 | subrgring 20483 | . . . . . . . 8 ⊢ (𝑅 ∈ (SubRing‘𝑆) → 𝑈 ∈ Ring) |
| 29 | 6 | ply1ring 22132 | . . . . . . . 8 ⊢ (𝑈 ∈ Ring → 𝑊 ∈ Ring) |
| 30 | 8, 28, 29 | 3syl 18 | . . . . . . 7 ⊢ (𝜑 → 𝑊 ∈ Ring) |
| 31 | 30 | ringgrpd 20151 | . . . . . 6 ⊢ (𝜑 → 𝑊 ∈ Grp) |
| 32 | 7, 12, 31, 2, 3 | grpcld 18879 | . . . . 5 ⊢ (𝜑 → (𝑀 ⨣ 𝑁) ∈ 𝐵) |
| 33 | 32 | fvresd 6878 | . . . 4 ⊢ (𝜑 → (((eval1‘𝑆) ↾ 𝐵)‘(𝑀 ⨣ 𝑁)) = ((eval1‘𝑆)‘(𝑀 ⨣ 𝑁))) |
| 34 | 27, 33 | eqtr2d 2765 | . . 3 ⊢ (𝜑 → ((eval1‘𝑆)‘(𝑀 ⨣ 𝑁)) = (𝑄‘(𝑀 ⨣ 𝑁))) |
| 35 | 34 | fveq1d 6860 | . 2 ⊢ (𝜑 → (((eval1‘𝑆)‘(𝑀 ⨣ 𝑁))‘𝐶) = ((𝑄‘(𝑀 ⨣ 𝑁))‘𝐶)) |
| 36 | eqid 2729 | . . . 4 ⊢ (Base‘(Poly1‘𝑆)) = (Base‘(Poly1‘𝑆)) | |
| 37 | evls1addd.y | . . . 4 ⊢ (𝜑 → 𝐶 ∈ 𝐾) | |
| 38 | eqid 2729 | . . . . . . . 8 ⊢ (PwSer1‘𝑈) = (PwSer1‘𝑈) | |
| 39 | eqid 2729 | . . . . . . . 8 ⊢ (Base‘(PwSer1‘𝑈)) = (Base‘(PwSer1‘𝑈)) | |
| 40 | 4, 5, 6, 7, 8, 38, 39, 36 | ressply1bas2 22112 | . . . . . . 7 ⊢ (𝜑 → 𝐵 = ((Base‘(PwSer1‘𝑈)) ∩ (Base‘(Poly1‘𝑆)))) |
| 41 | inss2 4201 | . . . . . . 7 ⊢ ((Base‘(PwSer1‘𝑈)) ∩ (Base‘(Poly1‘𝑆))) ⊆ (Base‘(Poly1‘𝑆)) | |
| 42 | 40, 41 | eqsstrdi 3991 | . . . . . 6 ⊢ (𝜑 → 𝐵 ⊆ (Base‘(Poly1‘𝑆))) |
| 43 | 42, 2 | sseldd 3947 | . . . . 5 ⊢ (𝜑 → 𝑀 ∈ (Base‘(Poly1‘𝑆))) |
| 44 | 26 | fveq1d 6860 | . . . . . . 7 ⊢ (𝜑 → (𝑄‘𝑀) = (((eval1‘𝑆) ↾ 𝐵)‘𝑀)) |
| 45 | 2 | fvresd 6878 | . . . . . . 7 ⊢ (𝜑 → (((eval1‘𝑆) ↾ 𝐵)‘𝑀) = ((eval1‘𝑆)‘𝑀)) |
| 46 | 44, 45 | eqtr2d 2765 | . . . . . 6 ⊢ (𝜑 → ((eval1‘𝑆)‘𝑀) = (𝑄‘𝑀)) |
| 47 | 46 | fveq1d 6860 | . . . . 5 ⊢ (𝜑 → (((eval1‘𝑆)‘𝑀)‘𝐶) = ((𝑄‘𝑀)‘𝐶)) |
| 48 | 43, 47 | jca 511 | . . . 4 ⊢ (𝜑 → (𝑀 ∈ (Base‘(Poly1‘𝑆)) ∧ (((eval1‘𝑆)‘𝑀)‘𝐶) = ((𝑄‘𝑀)‘𝐶))) |
| 49 | 42, 3 | sseldd 3947 | . . . . 5 ⊢ (𝜑 → 𝑁 ∈ (Base‘(Poly1‘𝑆))) |
| 50 | 26 | fveq1d 6860 | . . . . . . 7 ⊢ (𝜑 → (𝑄‘𝑁) = (((eval1‘𝑆) ↾ 𝐵)‘𝑁)) |
| 51 | 3 | fvresd 6878 | . . . . . . 7 ⊢ (𝜑 → (((eval1‘𝑆) ↾ 𝐵)‘𝑁) = ((eval1‘𝑆)‘𝑁)) |
| 52 | 50, 51 | eqtr2d 2765 | . . . . . 6 ⊢ (𝜑 → ((eval1‘𝑆)‘𝑁) = (𝑄‘𝑁)) |
| 53 | 52 | fveq1d 6860 | . . . . 5 ⊢ (𝜑 → (((eval1‘𝑆)‘𝑁)‘𝐶) = ((𝑄‘𝑁)‘𝐶)) |
| 54 | 49, 53 | jca 511 | . . . 4 ⊢ (𝜑 → (𝑁 ∈ (Base‘(Poly1‘𝑆)) ∧ (((eval1‘𝑆)‘𝑁)‘𝐶) = ((𝑄‘𝑁)‘𝐶))) |
| 55 | evls1addd.2 | . . . 4 ⊢ + = (+g‘𝑆) | |
| 56 | 24, 4, 23, 36, 25, 37, 48, 54, 15, 55 | evl1addd 22228 | . . 3 ⊢ (𝜑 → ((𝑀(+g‘(Poly1‘𝑆))𝑁) ∈ (Base‘(Poly1‘𝑆)) ∧ (((eval1‘𝑆)‘(𝑀(+g‘(Poly1‘𝑆))𝑁))‘𝐶) = (((𝑄‘𝑀)‘𝐶) + ((𝑄‘𝑁)‘𝐶)))) |
| 57 | 56 | simprd 495 | . 2 ⊢ (𝜑 → (((eval1‘𝑆)‘(𝑀(+g‘(Poly1‘𝑆))𝑁))‘𝐶) = (((𝑄‘𝑀)‘𝐶) + ((𝑄‘𝑁)‘𝐶))) |
| 58 | 21, 35, 57 | 3eqtr3d 2772 | 1 ⊢ (𝜑 → ((𝑄‘(𝑀 ⨣ 𝑁))‘𝐶) = (((𝑄‘𝑀)‘𝐶) + ((𝑄‘𝑁)‘𝐶))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 Vcvv 3447 ∩ cin 3913 ↾ cres 5640 ‘cfv 6511 (class class class)co 7387 Basecbs 17179 ↾s cress 17200 +gcplusg 17220 Ringcrg 20142 CRingccrg 20143 SubRingcsubrg 20478 PwSer1cps1 22059 Poly1cpl1 22061 evalSub1 ces1 22200 eval1ce1 22201 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-tp 4594 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-iin 4958 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-se 5592 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-isom 6520 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-of 7653 df-ofr 7654 df-om 7843 df-1st 7968 df-2nd 7969 df-supp 8140 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-2o 8435 df-er 8671 df-map 8801 df-pm 8802 df-ixp 8871 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-fsupp 9313 df-sup 9393 df-oi 9463 df-card 9892 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-2 12249 df-3 12250 df-4 12251 df-5 12252 df-6 12253 df-7 12254 df-8 12255 df-9 12256 df-n0 12443 df-z 12530 df-dec 12650 df-uz 12794 df-fz 13469 df-fzo 13616 df-seq 13967 df-hash 14296 df-struct 17117 df-sets 17134 df-slot 17152 df-ndx 17164 df-base 17180 df-ress 17201 df-plusg 17233 df-mulr 17234 df-sca 17236 df-vsca 17237 df-ip 17238 df-tset 17239 df-ple 17240 df-ds 17242 df-hom 17244 df-cco 17245 df-0g 17404 df-gsum 17405 df-prds 17410 df-pws 17412 df-mre 17547 df-mrc 17548 df-acs 17550 df-mgm 18567 df-sgrp 18646 df-mnd 18662 df-mhm 18710 df-submnd 18711 df-grp 18868 df-minusg 18869 df-sbg 18870 df-mulg 19000 df-subg 19055 df-ghm 19145 df-cntz 19249 df-cmn 19712 df-abl 19713 df-mgp 20050 df-rng 20062 df-ur 20091 df-srg 20096 df-ring 20144 df-cring 20145 df-rhm 20381 df-subrng 20455 df-subrg 20479 df-lmod 20768 df-lss 20838 df-lsp 20878 df-assa 21762 df-asp 21763 df-ascl 21764 df-psr 21818 df-mvr 21819 df-mpl 21820 df-opsr 21822 df-evls 21981 df-evl 21982 df-psr1 22064 df-vr1 22065 df-ply1 22066 df-coe1 22067 df-evls1 22202 df-evl1 22203 |
| This theorem is referenced by: evls1maprhm 22263 cos9thpiminplylem6 33777 |
| Copyright terms: Public domain | W3C validator |