MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  evls1addd Structured version   Visualization version   GIF version

Theorem evls1addd 22396
Description: Univariate polynomial evaluation of a sum of polynomials. (Contributed by Thierry Arnoux, 8-Feb-2025.)
Hypotheses
Ref Expression
ressply1evl2.q 𝑄 = (𝑆 evalSub1 𝑅)
ressply1evl2.k 𝐾 = (Base‘𝑆)
ressply1evl2.w 𝑊 = (Poly1𝑈)
ressply1evl2.u 𝑈 = (𝑆s 𝑅)
ressply1evl2.b 𝐵 = (Base‘𝑊)
evls1addd.1 = (+g𝑊)
evls1addd.2 + = (+g𝑆)
evls1addd.s (𝜑𝑆 ∈ CRing)
evls1addd.r (𝜑𝑅 ∈ (SubRing‘𝑆))
evls1addd.m (𝜑𝑀𝐵)
evls1addd.n (𝜑𝑁𝐵)
evls1addd.y (𝜑𝐶𝐾)
Assertion
Ref Expression
evls1addd (𝜑 → ((𝑄‘(𝑀 𝑁))‘𝐶) = (((𝑄𝑀)‘𝐶) + ((𝑄𝑁)‘𝐶)))

Proof of Theorem evls1addd
StepHypRef Expression
1 id 22 . . . . . 6 (𝜑𝜑)
2 evls1addd.m . . . . . 6 (𝜑𝑀𝐵)
3 evls1addd.n . . . . . 6 (𝜑𝑁𝐵)
4 eqid 2740 . . . . . . 7 (Poly1𝑆) = (Poly1𝑆)
5 ressply1evl2.u . . . . . . 7 𝑈 = (𝑆s 𝑅)
6 ressply1evl2.w . . . . . . 7 𝑊 = (Poly1𝑈)
7 ressply1evl2.b . . . . . . 7 𝐵 = (Base‘𝑊)
8 evls1addd.r . . . . . . 7 (𝜑𝑅 ∈ (SubRing‘𝑆))
9 eqid 2740 . . . . . . 7 ((Poly1𝑆) ↾s 𝐵) = ((Poly1𝑆) ↾s 𝐵)
104, 5, 6, 7, 8, 9ressply1add 22252 . . . . . 6 ((𝜑 ∧ (𝑀𝐵𝑁𝐵)) → (𝑀(+g𝑊)𝑁) = (𝑀(+g‘((Poly1𝑆) ↾s 𝐵))𝑁))
111, 2, 3, 10syl12anc 836 . . . . 5 (𝜑 → (𝑀(+g𝑊)𝑁) = (𝑀(+g‘((Poly1𝑆) ↾s 𝐵))𝑁))
12 evls1addd.1 . . . . . 6 = (+g𝑊)
1312oveqi 7461 . . . . 5 (𝑀 𝑁) = (𝑀(+g𝑊)𝑁)
147fvexi 6934 . . . . . . 7 𝐵 ∈ V
15 eqid 2740 . . . . . . . 8 (+g‘(Poly1𝑆)) = (+g‘(Poly1𝑆))
169, 15ressplusg 17349 . . . . . . 7 (𝐵 ∈ V → (+g‘(Poly1𝑆)) = (+g‘((Poly1𝑆) ↾s 𝐵)))
1714, 16ax-mp 5 . . . . . 6 (+g‘(Poly1𝑆)) = (+g‘((Poly1𝑆) ↾s 𝐵))
1817oveqi 7461 . . . . 5 (𝑀(+g‘(Poly1𝑆))𝑁) = (𝑀(+g‘((Poly1𝑆) ↾s 𝐵))𝑁)
1911, 13, 183eqtr4g 2805 . . . 4 (𝜑 → (𝑀 𝑁) = (𝑀(+g‘(Poly1𝑆))𝑁))
2019fveq2d 6924 . . 3 (𝜑 → ((eval1𝑆)‘(𝑀 𝑁)) = ((eval1𝑆)‘(𝑀(+g‘(Poly1𝑆))𝑁)))
2120fveq1d 6922 . 2 (𝜑 → (((eval1𝑆)‘(𝑀 𝑁))‘𝐶) = (((eval1𝑆)‘(𝑀(+g‘(Poly1𝑆))𝑁))‘𝐶))
22 ressply1evl2.q . . . . . 6 𝑄 = (𝑆 evalSub1 𝑅)
23 ressply1evl2.k . . . . . 6 𝐾 = (Base‘𝑆)
24 eqid 2740 . . . . . 6 (eval1𝑆) = (eval1𝑆)
25 evls1addd.s . . . . . 6 (𝜑𝑆 ∈ CRing)
2622, 23, 6, 5, 7, 24, 25, 8ressply1evl 22395 . . . . 5 (𝜑𝑄 = ((eval1𝑆) ↾ 𝐵))
2726fveq1d 6922 . . . 4 (𝜑 → (𝑄‘(𝑀 𝑁)) = (((eval1𝑆) ↾ 𝐵)‘(𝑀 𝑁)))
285subrgring 20602 . . . . . . . 8 (𝑅 ∈ (SubRing‘𝑆) → 𝑈 ∈ Ring)
296ply1ring 22270 . . . . . . . 8 (𝑈 ∈ Ring → 𝑊 ∈ Ring)
308, 28, 293syl 18 . . . . . . 7 (𝜑𝑊 ∈ Ring)
3130ringgrpd 20269 . . . . . 6 (𝜑𝑊 ∈ Grp)
327, 12, 31, 2, 3grpcld 18987 . . . . 5 (𝜑 → (𝑀 𝑁) ∈ 𝐵)
3332fvresd 6940 . . . 4 (𝜑 → (((eval1𝑆) ↾ 𝐵)‘(𝑀 𝑁)) = ((eval1𝑆)‘(𝑀 𝑁)))
3427, 33eqtr2d 2781 . . 3 (𝜑 → ((eval1𝑆)‘(𝑀 𝑁)) = (𝑄‘(𝑀 𝑁)))
3534fveq1d 6922 . 2 (𝜑 → (((eval1𝑆)‘(𝑀 𝑁))‘𝐶) = ((𝑄‘(𝑀 𝑁))‘𝐶))
36 eqid 2740 . . . 4 (Base‘(Poly1𝑆)) = (Base‘(Poly1𝑆))
37 evls1addd.y . . . 4 (𝜑𝐶𝐾)
38 eqid 2740 . . . . . . . 8 (PwSer1𝑈) = (PwSer1𝑈)
39 eqid 2740 . . . . . . . 8 (Base‘(PwSer1𝑈)) = (Base‘(PwSer1𝑈))
404, 5, 6, 7, 8, 38, 39, 36ressply1bas2 22250 . . . . . . 7 (𝜑𝐵 = ((Base‘(PwSer1𝑈)) ∩ (Base‘(Poly1𝑆))))
41 inss2 4259 . . . . . . 7 ((Base‘(PwSer1𝑈)) ∩ (Base‘(Poly1𝑆))) ⊆ (Base‘(Poly1𝑆))
4240, 41eqsstrdi 4063 . . . . . 6 (𝜑𝐵 ⊆ (Base‘(Poly1𝑆)))
4342, 2sseldd 4009 . . . . 5 (𝜑𝑀 ∈ (Base‘(Poly1𝑆)))
4426fveq1d 6922 . . . . . . 7 (𝜑 → (𝑄𝑀) = (((eval1𝑆) ↾ 𝐵)‘𝑀))
452fvresd 6940 . . . . . . 7 (𝜑 → (((eval1𝑆) ↾ 𝐵)‘𝑀) = ((eval1𝑆)‘𝑀))
4644, 45eqtr2d 2781 . . . . . 6 (𝜑 → ((eval1𝑆)‘𝑀) = (𝑄𝑀))
4746fveq1d 6922 . . . . 5 (𝜑 → (((eval1𝑆)‘𝑀)‘𝐶) = ((𝑄𝑀)‘𝐶))
4843, 47jca 511 . . . 4 (𝜑 → (𝑀 ∈ (Base‘(Poly1𝑆)) ∧ (((eval1𝑆)‘𝑀)‘𝐶) = ((𝑄𝑀)‘𝐶)))
4942, 3sseldd 4009 . . . . 5 (𝜑𝑁 ∈ (Base‘(Poly1𝑆)))
5026fveq1d 6922 . . . . . . 7 (𝜑 → (𝑄𝑁) = (((eval1𝑆) ↾ 𝐵)‘𝑁))
513fvresd 6940 . . . . . . 7 (𝜑 → (((eval1𝑆) ↾ 𝐵)‘𝑁) = ((eval1𝑆)‘𝑁))
5250, 51eqtr2d 2781 . . . . . 6 (𝜑 → ((eval1𝑆)‘𝑁) = (𝑄𝑁))
5352fveq1d 6922 . . . . 5 (𝜑 → (((eval1𝑆)‘𝑁)‘𝐶) = ((𝑄𝑁)‘𝐶))
5449, 53jca 511 . . . 4 (𝜑 → (𝑁 ∈ (Base‘(Poly1𝑆)) ∧ (((eval1𝑆)‘𝑁)‘𝐶) = ((𝑄𝑁)‘𝐶)))
55 evls1addd.2 . . . 4 + = (+g𝑆)
5624, 4, 23, 36, 25, 37, 48, 54, 15, 55evl1addd 22366 . . 3 (𝜑 → ((𝑀(+g‘(Poly1𝑆))𝑁) ∈ (Base‘(Poly1𝑆)) ∧ (((eval1𝑆)‘(𝑀(+g‘(Poly1𝑆))𝑁))‘𝐶) = (((𝑄𝑀)‘𝐶) + ((𝑄𝑁)‘𝐶))))
5756simprd 495 . 2 (𝜑 → (((eval1𝑆)‘(𝑀(+g‘(Poly1𝑆))𝑁))‘𝐶) = (((𝑄𝑀)‘𝐶) + ((𝑄𝑁)‘𝐶)))
5821, 35, 573eqtr3d 2788 1 (𝜑 → ((𝑄‘(𝑀 𝑁))‘𝐶) = (((𝑄𝑀)‘𝐶) + ((𝑄𝑁)‘𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2108  Vcvv 3488  cin 3975  cres 5702  cfv 6573  (class class class)co 7448  Basecbs 17258  s cress 17287  +gcplusg 17311  Ringcrg 20260  CRingccrg 20261  SubRingcsubrg 20595  PwSer1cps1 22197  Poly1cpl1 22199   evalSub1 ces1 22338  eval1ce1 22339
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-ofr 7715  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-er 8763  df-map 8886  df-pm 8887  df-ixp 8956  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fsupp 9432  df-sup 9511  df-oi 9579  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-fz 13568  df-fzo 13712  df-seq 14053  df-hash 14380  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-sca 17327  df-vsca 17328  df-ip 17329  df-tset 17330  df-ple 17331  df-ds 17333  df-hom 17335  df-cco 17336  df-0g 17501  df-gsum 17502  df-prds 17507  df-pws 17509  df-mre 17644  df-mrc 17645  df-acs 17647  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-mhm 18818  df-submnd 18819  df-grp 18976  df-minusg 18977  df-sbg 18978  df-mulg 19108  df-subg 19163  df-ghm 19253  df-cntz 19357  df-cmn 19824  df-abl 19825  df-mgp 20162  df-rng 20180  df-ur 20209  df-srg 20214  df-ring 20262  df-cring 20263  df-rhm 20498  df-subrng 20572  df-subrg 20597  df-lmod 20882  df-lss 20953  df-lsp 20993  df-assa 21896  df-asp 21897  df-ascl 21898  df-psr 21952  df-mvr 21953  df-mpl 21954  df-opsr 21956  df-evls 22121  df-evl 22122  df-psr1 22202  df-vr1 22203  df-ply1 22204  df-coe1 22205  df-evls1 22340  df-evl1 22341
This theorem is referenced by:  evls1maprhm  22401
  Copyright terms: Public domain W3C validator