Step | Hyp | Ref
| Expression |
1 | | evlsmaprhm.b |
. 2
β’ π΅ = (Baseβπ) |
2 | | eqid 2732 |
. 2
β’
(1rβπ) = (1rβπ) |
3 | | eqid 2732 |
. 2
β’
(1rβπ
) = (1rβπ
) |
4 | | eqid 2732 |
. 2
β’
(.rβπ) = (.rβπ) |
5 | | eqid 2732 |
. 2
β’
(.rβπ
) = (.rβπ
) |
6 | | evlsmaprhm.p |
. . 3
β’ π = (πΌ mPoly π) |
7 | | evlsmaprhm.i |
. . 3
β’ (π β πΌ β π) |
8 | | evlsmaprhm.s |
. . . 4
β’ (π β π β (SubRingβπ
)) |
9 | | evlsmaprhm.u |
. . . . 5
β’ π = (π
βΎs π) |
10 | 9 | subrgring 20358 |
. . . 4
β’ (π β (SubRingβπ
) β π β Ring) |
11 | 8, 10 | syl 17 |
. . 3
β’ (π β π β Ring) |
12 | 6, 7, 11 | mplringd 41114 |
. 2
β’ (π β π β Ring) |
13 | | evlsmaprhm.r |
. . 3
β’ (π β π
β CRing) |
14 | 13 | crngringd 20062 |
. 2
β’ (π β π
β Ring) |
15 | | evlsmaprhm.f |
. . . 4
β’ πΉ = (π β π΅ β¦ ((πβπ)βπ΄)) |
16 | | fveq2 6888 |
. . . . 5
β’ (π = (1rβπ) β (πβπ) = (πβ(1rβπ))) |
17 | 16 | fveq1d 6890 |
. . . 4
β’ (π = (1rβπ) β ((πβπ)βπ΄) = ((πβ(1rβπ))βπ΄)) |
18 | 1, 2 | ringidcl 20076 |
. . . . 5
β’ (π β Ring β
(1rβπ)
β π΅) |
19 | 12, 18 | syl 17 |
. . . 4
β’ (π β (1rβπ) β π΅) |
20 | | fvexd 6903 |
. . . 4
β’ (π β ((πβ(1rβπ))βπ΄) β V) |
21 | 15, 17, 19, 20 | fvmptd3 7018 |
. . 3
β’ (π β (πΉβ(1rβπ)) = ((πβ(1rβπ))βπ΄)) |
22 | | eqid 2732 |
. . . . . . 7
β’
(algScβπ) =
(algScβπ) |
23 | | eqid 2732 |
. . . . . . 7
β’
(1rβπ) = (1rβπ) |
24 | 6, 22, 23, 2, 7, 11 | mplascl1 41124 |
. . . . . 6
β’ (π β ((algScβπ)β(1rβπ)) = (1rβπ)) |
25 | 24 | eqcomd 2738 |
. . . . 5
β’ (π β (1rβπ) = ((algScβπ)β(1rβπ))) |
26 | 25 | fveq2d 6892 |
. . . 4
β’ (π β (πβ(1rβπ)) = (πβ((algScβπ)β(1rβπ)))) |
27 | 26 | fveq1d 6890 |
. . 3
β’ (π β ((πβ(1rβπ))βπ΄) = ((πβ((algScβπ)β(1rβπ)))βπ΄)) |
28 | | evlsmaprhm.q |
. . . . . 6
β’ π = ((πΌ evalSub π
)βπ) |
29 | | evlsmaprhm.k |
. . . . . 6
β’ πΎ = (Baseβπ
) |
30 | 9, 3 | subrg1 20365 |
. . . . . . . 8
β’ (π β (SubRingβπ
) β
(1rβπ
) =
(1rβπ)) |
31 | 8, 30 | syl 17 |
. . . . . . 7
β’ (π β (1rβπ
) = (1rβπ)) |
32 | 3 | subrg1cl 20363 |
. . . . . . . 8
β’ (π β (SubRingβπ
) β
(1rβπ
)
β π) |
33 | 8, 32 | syl 17 |
. . . . . . 7
β’ (π β (1rβπ
) β π) |
34 | 31, 33 | eqeltrrd 2834 |
. . . . . 6
β’ (π β (1rβπ) β π) |
35 | | evlsmaprhm.a |
. . . . . 6
β’ (π β π΄ β (πΎ βm πΌ)) |
36 | 28, 6, 9, 29, 1, 22, 7, 13, 8, 34, 35 | evlsscaval 41133 |
. . . . 5
β’ (π β (((algScβπ)β(1rβπ)) β π΅ β§ ((πβ((algScβπ)β(1rβπ)))βπ΄) = (1rβπ))) |
37 | 36 | simprd 496 |
. . . 4
β’ (π β ((πβ((algScβπ)β(1rβπ)))βπ΄) = (1rβπ)) |
38 | 37, 31 | eqtr4d 2775 |
. . 3
β’ (π β ((πβ((algScβπ)β(1rβπ)))βπ΄) = (1rβπ
)) |
39 | 21, 27, 38 | 3eqtrd 2776 |
. 2
β’ (π β (πΉβ(1rβπ)) = (1rβπ
)) |
40 | 7 | adantr 481 |
. . . . 5
β’ ((π β§ (π β π΅ β§ π β π΅)) β πΌ β π) |
41 | 13 | adantr 481 |
. . . . 5
β’ ((π β§ (π β π΅ β§ π β π΅)) β π
β CRing) |
42 | 8 | adantr 481 |
. . . . 5
β’ ((π β§ (π β π΅ β§ π β π΅)) β π β (SubRingβπ
)) |
43 | 35 | adantr 481 |
. . . . 5
β’ ((π β§ (π β π΅ β§ π β π΅)) β π΄ β (πΎ βm πΌ)) |
44 | | simprl 769 |
. . . . . 6
β’ ((π β§ (π β π΅ β§ π β π΅)) β π β π΅) |
45 | | eqidd 2733 |
. . . . . 6
β’ ((π β§ (π β π΅ β§ π β π΅)) β ((πβπ)βπ΄) = ((πβπ)βπ΄)) |
46 | 44, 45 | jca 512 |
. . . . 5
β’ ((π β§ (π β π΅ β§ π β π΅)) β (π β π΅ β§ ((πβπ)βπ΄) = ((πβπ)βπ΄))) |
47 | | simprr 771 |
. . . . . 6
β’ ((π β§ (π β π΅ β§ π β π΅)) β π β π΅) |
48 | | eqidd 2733 |
. . . . . 6
β’ ((π β§ (π β π΅ β§ π β π΅)) β ((πβπ)βπ΄) = ((πβπ)βπ΄)) |
49 | 47, 48 | jca 512 |
. . . . 5
β’ ((π β§ (π β π΅ β§ π β π΅)) β (π β π΅ β§ ((πβπ)βπ΄) = ((πβπ)βπ΄))) |
50 | 28, 6, 9, 29, 1, 40, 41, 42, 43, 46, 49, 4, 5 | evlsmulval 41138 |
. . . 4
β’ ((π β§ (π β π΅ β§ π β π΅)) β ((π(.rβπ)π) β π΅ β§ ((πβ(π(.rβπ)π))βπ΄) = (((πβπ)βπ΄)(.rβπ
)((πβπ)βπ΄)))) |
51 | 50 | simprd 496 |
. . 3
β’ ((π β§ (π β π΅ β§ π β π΅)) β ((πβ(π(.rβπ)π))βπ΄) = (((πβπ)βπ΄)(.rβπ
)((πβπ)βπ΄))) |
52 | | fveq2 6888 |
. . . . 5
β’ (π = (π(.rβπ)π) β (πβπ) = (πβ(π(.rβπ)π))) |
53 | 52 | fveq1d 6890 |
. . . 4
β’ (π = (π(.rβπ)π) β ((πβπ)βπ΄) = ((πβ(π(.rβπ)π))βπ΄)) |
54 | 12 | adantr 481 |
. . . . 5
β’ ((π β§ (π β π΅ β§ π β π΅)) β π β Ring) |
55 | 1, 4, 54, 44, 47 | ringcld 20073 |
. . . 4
β’ ((π β§ (π β π΅ β§ π β π΅)) β (π(.rβπ)π) β π΅) |
56 | | fvexd 6903 |
. . . 4
β’ ((π β§ (π β π΅ β§ π β π΅)) β ((πβ(π(.rβπ)π))βπ΄) β V) |
57 | 15, 53, 55, 56 | fvmptd3 7018 |
. . 3
β’ ((π β§ (π β π΅ β§ π β π΅)) β (πΉβ(π(.rβπ)π)) = ((πβ(π(.rβπ)π))βπ΄)) |
58 | | fveq2 6888 |
. . . . . 6
β’ (π = π β (πβπ) = (πβπ)) |
59 | 58 | fveq1d 6890 |
. . . . 5
β’ (π = π β ((πβπ)βπ΄) = ((πβπ)βπ΄)) |
60 | | fvexd 6903 |
. . . . 5
β’ ((π β§ (π β π΅ β§ π β π΅)) β ((πβπ)βπ΄) β V) |
61 | 15, 59, 44, 60 | fvmptd3 7018 |
. . . 4
β’ ((π β§ (π β π΅ β§ π β π΅)) β (πΉβπ) = ((πβπ)βπ΄)) |
62 | | fveq2 6888 |
. . . . . 6
β’ (π = π β (πβπ) = (πβπ)) |
63 | 62 | fveq1d 6890 |
. . . . 5
β’ (π = π β ((πβπ)βπ΄) = ((πβπ)βπ΄)) |
64 | | fvexd 6903 |
. . . . 5
β’ ((π β§ (π β π΅ β§ π β π΅)) β ((πβπ)βπ΄) β V) |
65 | 15, 63, 47, 64 | fvmptd3 7018 |
. . . 4
β’ ((π β§ (π β π΅ β§ π β π΅)) β (πΉβπ) = ((πβπ)βπ΄)) |
66 | 61, 65 | oveq12d 7423 |
. . 3
β’ ((π β§ (π β π΅ β§ π β π΅)) β ((πΉβπ)(.rβπ
)(πΉβπ)) = (((πβπ)βπ΄)(.rβπ
)((πβπ)βπ΄))) |
67 | 51, 57, 66 | 3eqtr4d 2782 |
. 2
β’ ((π β§ (π β π΅ β§ π β π΅)) β (πΉβ(π(.rβπ)π)) = ((πΉβπ)(.rβπ
)(πΉβπ))) |
68 | | eqid 2732 |
. 2
β’
(+gβπ) = (+gβπ) |
69 | | eqid 2732 |
. 2
β’
(+gβπ
) = (+gβπ
) |
70 | 7 | adantr 481 |
. . . 4
β’ ((π β§ π β π΅) β πΌ β π) |
71 | 13 | adantr 481 |
. . . 4
β’ ((π β§ π β π΅) β π
β CRing) |
72 | 8 | adantr 481 |
. . . 4
β’ ((π β§ π β π΅) β π β (SubRingβπ
)) |
73 | | simpr 485 |
. . . 4
β’ ((π β§ π β π΅) β π β π΅) |
74 | 35 | adantr 481 |
. . . 4
β’ ((π β§ π β π΅) β π΄ β (πΎ βm πΌ)) |
75 | 28, 6, 9, 1, 29, 70, 71, 72, 73, 74 | evlscl 41127 |
. . 3
β’ ((π β§ π β π΅) β ((πβπ)βπ΄) β πΎ) |
76 | 75, 15 | fmptd 7110 |
. 2
β’ (π β πΉ:π΅βΆπΎ) |
77 | 28, 6, 9, 29, 1, 40, 41, 42, 43, 46, 49, 68, 69 | evlsaddval 41137 |
. . . 4
β’ ((π β§ (π β π΅ β§ π β π΅)) β ((π(+gβπ)π) β π΅ β§ ((πβ(π(+gβπ)π))βπ΄) = (((πβπ)βπ΄)(+gβπ
)((πβπ)βπ΄)))) |
78 | 77 | simprd 496 |
. . 3
β’ ((π β§ (π β π΅ β§ π β π΅)) β ((πβ(π(+gβπ)π))βπ΄) = (((πβπ)βπ΄)(+gβπ
)((πβπ)βπ΄))) |
79 | | fveq2 6888 |
. . . . 5
β’ (π = (π(+gβπ)π) β (πβπ) = (πβ(π(+gβπ)π))) |
80 | 79 | fveq1d 6890 |
. . . 4
β’ (π = (π(+gβπ)π) β ((πβπ)βπ΄) = ((πβ(π(+gβπ)π))βπ΄)) |
81 | 12 | ringgrpd 20058 |
. . . . . 6
β’ (π β π β Grp) |
82 | 81 | adantr 481 |
. . . . 5
β’ ((π β§ (π β π΅ β§ π β π΅)) β π β Grp) |
83 | 1, 68, 82, 44, 47 | grpcld 18829 |
. . . 4
β’ ((π β§ (π β π΅ β§ π β π΅)) β (π(+gβπ)π) β π΅) |
84 | | fvexd 6903 |
. . . 4
β’ ((π β§ (π β π΅ β§ π β π΅)) β ((πβ(π(+gβπ)π))βπ΄) β V) |
85 | 15, 80, 83, 84 | fvmptd3 7018 |
. . 3
β’ ((π β§ (π β π΅ β§ π β π΅)) β (πΉβ(π(+gβπ)π)) = ((πβ(π(+gβπ)π))βπ΄)) |
86 | 61, 65 | oveq12d 7423 |
. . 3
β’ ((π β§ (π β π΅ β§ π β π΅)) β ((πΉβπ)(+gβπ
)(πΉβπ)) = (((πβπ)βπ΄)(+gβπ
)((πβπ)βπ΄))) |
87 | 78, 85, 86 | 3eqtr4d 2782 |
. 2
β’ ((π β§ (π β π΅ β§ π β π΅)) β (πΉβ(π(+gβπ)π)) = ((πΉβπ)(+gβπ
)(πΉβπ))) |
88 | 1, 2, 3, 4, 5, 12,
14, 39, 67, 29, 68, 69, 76, 87 | isrhmd 20258 |
1
β’ (π β πΉ β (π RingHom π
)) |