Step | Hyp | Ref
| Expression |
1 | | evls1maprhm.u |
. 2
β’ π = (Baseβπ) |
2 | | eqid 2732 |
. 2
β’
(1rβπ) = (1rβπ) |
3 | | eqid 2732 |
. 2
β’
(1rβπ
) = (1rβπ
) |
4 | | eqid 2732 |
. 2
β’
(.rβπ) = (.rβπ) |
5 | | eqid 2732 |
. 2
β’
(.rβπ
) = (.rβπ
) |
6 | | evls1maprhm.r |
. . . . 5
β’ (π β π
β CRing) |
7 | | evls1maprhm.s |
. . . . 5
β’ (π β π β (SubRingβπ
)) |
8 | | eqid 2732 |
. . . . . 6
β’ (π
βΎs π) = (π
βΎs π) |
9 | 8 | subrgcrng 20359 |
. . . . 5
β’ ((π
β CRing β§ π β (SubRingβπ
)) β (π
βΎs π) β CRing) |
10 | 6, 7, 9 | syl2anc 584 |
. . . 4
β’ (π β (π
βΎs π) β CRing) |
11 | | evls1maprhm.p |
. . . . 5
β’ π =
(Poly1β(π
βΎs π)) |
12 | 11 | ply1crng 21713 |
. . . 4
β’ ((π
βΎs π) β CRing β π β CRing) |
13 | 10, 12 | syl 17 |
. . 3
β’ (π β π β CRing) |
14 | 13 | crngringd 20062 |
. 2
β’ (π β π β Ring) |
15 | 6 | crngringd 20062 |
. 2
β’ (π β π
β Ring) |
16 | | evls1maprhm.f |
. . . 4
β’ πΉ = (π β π β¦ ((πβπ)βπ)) |
17 | | fveq2 6888 |
. . . . 5
β’ (π = (1rβπ) β (πβπ) = (πβ(1rβπ))) |
18 | 17 | fveq1d 6890 |
. . . 4
β’ (π = (1rβπ) β ((πβπ)βπ) = ((πβ(1rβπ))βπ)) |
19 | 1, 2 | ringidcl 20076 |
. . . . 5
β’ (π β Ring β
(1rβπ)
β π) |
20 | 14, 19 | syl 17 |
. . . 4
β’ (π β (1rβπ) β π) |
21 | | fvexd 6903 |
. . . 4
β’ (π β ((πβ(1rβπ))βπ) β V) |
22 | 16, 18, 20, 21 | fvmptd3 7018 |
. . 3
β’ (π β (πΉβ(1rβπ)) = ((πβ(1rβπ))βπ)) |
23 | 8, 3 | subrg1 20365 |
. . . . . . . 8
β’ (π β (SubRingβπ
) β
(1rβπ
) =
(1rβ(π
βΎs π))) |
24 | 7, 23 | syl 17 |
. . . . . . 7
β’ (π β (1rβπ
) = (1rβ(π
βΎs π))) |
25 | 24 | fveq2d 6892 |
. . . . . 6
β’ (π β ((algScβπ)β(1rβπ
)) = ((algScβπ)β(1rβ(π
βΎs π)))) |
26 | 10 | crngringd 20062 |
. . . . . . 7
β’ (π β (π
βΎs π) β Ring) |
27 | | eqid 2732 |
. . . . . . . 8
β’
(algScβπ) =
(algScβπ) |
28 | | eqid 2732 |
. . . . . . . 8
β’
(1rβ(π
βΎs π)) = (1rβ(π
βΎs π)) |
29 | 11, 27, 28, 2 | ply1scl1 21806 |
. . . . . . 7
β’ ((π
βΎs π) β Ring β
((algScβπ)β(1rβ(π
βΎs π))) = (1rβπ)) |
30 | 26, 29 | syl 17 |
. . . . . 6
β’ (π β ((algScβπ)β(1rβ(π
βΎs π))) = (1rβπ)) |
31 | 25, 30 | eqtr2d 2773 |
. . . . 5
β’ (π β (1rβπ) = ((algScβπ)β(1rβπ
))) |
32 | 31 | fveq2d 6892 |
. . . 4
β’ (π β (πβ(1rβπ)) = (πβ((algScβπ)β(1rβπ
)))) |
33 | 32 | fveq1d 6890 |
. . 3
β’ (π β ((πβ(1rβπ))βπ) = ((πβ((algScβπ)β(1rβπ
)))βπ)) |
34 | | evls1maprhm.q |
. . . 4
β’ π = (π
evalSub1 π) |
35 | | evls1maprhm.b |
. . . 4
β’ π΅ = (Baseβπ
) |
36 | 3 | subrg1cl 20363 |
. . . . 5
β’ (π β (SubRingβπ
) β
(1rβπ
)
β π) |
37 | 7, 36 | syl 17 |
. . . 4
β’ (π β (1rβπ
) β π) |
38 | | evls1maprhm.y |
. . . 4
β’ (π β π β π΅) |
39 | 34, 11, 8, 35, 27, 6, 7, 37, 38 | evls1scafv 32631 |
. . 3
β’ (π β ((πβ((algScβπ)β(1rβπ
)))βπ) = (1rβπ
)) |
40 | 22, 33, 39 | 3eqtrd 2776 |
. 2
β’ (π β (πΉβ(1rβπ)) = (1rβπ
)) |
41 | 6 | adantr 481 |
. . . 4
β’ ((π β§ (π β π β§ π β π)) β π
β CRing) |
42 | 7 | adantr 481 |
. . . 4
β’ ((π β§ (π β π β§ π β π)) β π β (SubRingβπ
)) |
43 | | simprl 769 |
. . . 4
β’ ((π β§ (π β π β§ π β π)) β π β π) |
44 | | simprr 771 |
. . . 4
β’ ((π β§ (π β π β§ π β π)) β π β π) |
45 | 38 | adantr 481 |
. . . 4
β’ ((π β§ (π β π β§ π β π)) β π β π΅) |
46 | 34, 35, 11, 8, 1, 4,
5, 41, 42, 43, 44, 45 | evls1muld 32637 |
. . 3
β’ ((π β§ (π β π β§ π β π)) β ((πβ(π(.rβπ)π))βπ) = (((πβπ)βπ)(.rβπ
)((πβπ)βπ))) |
47 | | fveq2 6888 |
. . . . 5
β’ (π = (π(.rβπ)π) β (πβπ) = (πβ(π(.rβπ)π))) |
48 | 47 | fveq1d 6890 |
. . . 4
β’ (π = (π(.rβπ)π) β ((πβπ)βπ) = ((πβ(π(.rβπ)π))βπ)) |
49 | 14 | adantr 481 |
. . . . 5
β’ ((π β§ (π β π β§ π β π)) β π β Ring) |
50 | 1, 4, 49, 43, 44 | ringcld 20073 |
. . . 4
β’ ((π β§ (π β π β§ π β π)) β (π(.rβπ)π) β π) |
51 | | fvexd 6903 |
. . . 4
β’ ((π β§ (π β π β§ π β π)) β ((πβ(π(.rβπ)π))βπ) β V) |
52 | 16, 48, 50, 51 | fvmptd3 7018 |
. . 3
β’ ((π β§ (π β π β§ π β π)) β (πΉβ(π(.rβπ)π)) = ((πβ(π(.rβπ)π))βπ)) |
53 | | fveq2 6888 |
. . . . . 6
β’ (π = π β (πβπ) = (πβπ)) |
54 | 53 | fveq1d 6890 |
. . . . 5
β’ (π = π β ((πβπ)βπ) = ((πβπ)βπ)) |
55 | | fvexd 6903 |
. . . . 5
β’ ((π β§ (π β π β§ π β π)) β ((πβπ)βπ) β V) |
56 | 16, 54, 43, 55 | fvmptd3 7018 |
. . . 4
β’ ((π β§ (π β π β§ π β π)) β (πΉβπ) = ((πβπ)βπ)) |
57 | | fveq2 6888 |
. . . . . 6
β’ (π = π β (πβπ) = (πβπ)) |
58 | 57 | fveq1d 6890 |
. . . . 5
β’ (π = π β ((πβπ)βπ) = ((πβπ)βπ)) |
59 | | fvexd 6903 |
. . . . 5
β’ ((π β§ (π β π β§ π β π)) β ((πβπ)βπ) β V) |
60 | 16, 58, 44, 59 | fvmptd3 7018 |
. . . 4
β’ ((π β§ (π β π β§ π β π)) β (πΉβπ) = ((πβπ)βπ)) |
61 | 56, 60 | oveq12d 7423 |
. . 3
β’ ((π β§ (π β π β§ π β π)) β ((πΉβπ)(.rβπ
)(πΉβπ)) = (((πβπ)βπ)(.rβπ
)((πβπ)βπ))) |
62 | 46, 52, 61 | 3eqtr4d 2782 |
. 2
β’ ((π β§ (π β π β§ π β π)) β (πΉβ(π(.rβπ)π)) = ((πΉβπ)(.rβπ
)(πΉβπ))) |
63 | | eqid 2732 |
. 2
β’
(+gβπ) = (+gβπ) |
64 | | eqid 2732 |
. 2
β’
(+gβπ
) = (+gβπ
) |
65 | | eqid 2732 |
. . . . . . . . 9
β’
(eval1βπ
) = (eval1βπ
) |
66 | 34, 35, 11, 8, 1, 65, 6, 7 | ressply1evl 32635 |
. . . . . . . 8
β’ (π β π = ((eval1βπ
) βΎ π)) |
67 | 66 | adantr 481 |
. . . . . . 7
β’ ((π β§ π β π) β π = ((eval1βπ
) βΎ π)) |
68 | 67 | fveq1d 6890 |
. . . . . 6
β’ ((π β§ π β π) β (πβπ) = (((eval1βπ
) βΎ π)βπ)) |
69 | | simpr 485 |
. . . . . . 7
β’ ((π β§ π β π) β π β π) |
70 | 69 | fvresd 6908 |
. . . . . 6
β’ ((π β§ π β π) β (((eval1βπ
) βΎ π)βπ) = ((eval1βπ
)βπ)) |
71 | 68, 70 | eqtrd 2772 |
. . . . 5
β’ ((π β§ π β π) β (πβπ) = ((eval1βπ
)βπ)) |
72 | 71 | fveq1d 6890 |
. . . 4
β’ ((π β§ π β π) β ((πβπ)βπ) = (((eval1βπ
)βπ)βπ)) |
73 | | eqid 2732 |
. . . . 5
β’
(Poly1βπ
) = (Poly1βπ
) |
74 | | eqid 2732 |
. . . . 5
β’
(Baseβ(Poly1βπ
)) =
(Baseβ(Poly1βπ
)) |
75 | 6 | adantr 481 |
. . . . 5
β’ ((π β§ π β π) β π
β CRing) |
76 | 38 | adantr 481 |
. . . . 5
β’ ((π β§ π β π) β π β π΅) |
77 | | eqid 2732 |
. . . . . . . 8
β’
(PwSer1β(π
βΎs π)) = (PwSer1β(π
βΎs π)) |
78 | | eqid 2732 |
. . . . . . . 8
β’
(Baseβ(PwSer1β(π
βΎs π))) =
(Baseβ(PwSer1β(π
βΎs π))) |
79 | 73, 8, 11, 1, 7, 77, 78, 74 | ressply1bas2 21741 |
. . . . . . 7
β’ (π β π =
((Baseβ(PwSer1β(π
βΎs π))) β©
(Baseβ(Poly1βπ
)))) |
80 | | inss2 4228 |
. . . . . . 7
β’
((Baseβ(PwSer1β(π
βΎs π))) β©
(Baseβ(Poly1βπ
))) β
(Baseβ(Poly1βπ
)) |
81 | 79, 80 | eqsstrdi 4035 |
. . . . . 6
β’ (π β π β
(Baseβ(Poly1βπ
))) |
82 | 81 | sselda 3981 |
. . . . 5
β’ ((π β§ π β π) β π β
(Baseβ(Poly1βπ
))) |
83 | 65, 73, 35, 74, 75, 76, 82 | fveval1fvcl 21843 |
. . . 4
β’ ((π β§ π β π) β (((eval1βπ
)βπ)βπ) β π΅) |
84 | 72, 83 | eqeltrd 2833 |
. . 3
β’ ((π β§ π β π) β ((πβπ)βπ) β π΅) |
85 | 84, 16 | fmptd 7110 |
. 2
β’ (π β πΉ:πβΆπ΅) |
86 | 34, 35, 11, 8, 1, 63, 64, 41, 42, 43, 44, 45 | evls1addd 32636 |
. . 3
β’ ((π β§ (π β π β§ π β π)) β ((πβ(π(+gβπ)π))βπ) = (((πβπ)βπ)(+gβπ
)((πβπ)βπ))) |
87 | | fveq2 6888 |
. . . . 5
β’ (π = (π(+gβπ)π) β (πβπ) = (πβ(π(+gβπ)π))) |
88 | 87 | fveq1d 6890 |
. . . 4
β’ (π = (π(+gβπ)π) β ((πβπ)βπ) = ((πβ(π(+gβπ)π))βπ)) |
89 | 49 | ringgrpd 20058 |
. . . . 5
β’ ((π β§ (π β π β§ π β π)) β π β Grp) |
90 | 1, 63, 89, 43, 44 | grpcld 18829 |
. . . 4
β’ ((π β§ (π β π β§ π β π)) β (π(+gβπ)π) β π) |
91 | | fvexd 6903 |
. . . 4
β’ ((π β§ (π β π β§ π β π)) β ((πβ(π(+gβπ)π))βπ) β V) |
92 | 16, 88, 90, 91 | fvmptd3 7018 |
. . 3
β’ ((π β§ (π β π β§ π β π)) β (πΉβ(π(+gβπ)π)) = ((πβ(π(+gβπ)π))βπ)) |
93 | 56, 60 | oveq12d 7423 |
. . 3
β’ ((π β§ (π β π β§ π β π)) β ((πΉβπ)(+gβπ
)(πΉβπ)) = (((πβπ)βπ)(+gβπ
)((πβπ)βπ))) |
94 | 86, 92, 93 | 3eqtr4d 2782 |
. 2
β’ ((π β§ (π β π β§ π β π)) β (πΉβ(π(+gβπ)π)) = ((πΉβπ)(+gβπ
)(πΉβπ))) |
95 | 1, 2, 3, 4, 5, 14,
15, 40, 62, 35, 63, 64, 85, 94 | isrhmd 20258 |
1
β’ (π β πΉ β (π RingHom π
)) |