Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  r1padd1 Structured version   Visualization version   GIF version

Theorem r1padd1 33617
Description: Addition property of the polynomial remainder operation, similar to modadd1 13925. (Contributed by Thierry Arnoux, 2-Apr-2025.)
Hypotheses
Ref Expression
r1padd1.p 𝑃 = (Poly1𝑅)
r1padd1.u 𝑈 = (Base‘𝑃)
r1padd1.n 𝑁 = (Unic1p𝑅)
r1padd1.e 𝐸 = (rem1p𝑅)
r1padd1.r (𝜑𝑅 ∈ Ring)
r1padd1.a (𝜑𝐴𝑈)
r1padd1.d (𝜑𝐷𝑁)
r1padd1.1 (𝜑 → (𝐴𝐸𝐷) = (𝐵𝐸𝐷))
r1padd1.2 + = (+g𝑃)
r1padd1.b (𝜑𝐵𝑈)
r1padd1.c (𝜑𝐶𝑈)
Assertion
Ref Expression
r1padd1 (𝜑 → ((𝐴 + 𝐶)𝐸𝐷) = ((𝐵 + 𝐶)𝐸𝐷))

Proof of Theorem r1padd1
StepHypRef Expression
1 r1padd1.1 . . . . . 6 (𝜑 → (𝐴𝐸𝐷) = (𝐵𝐸𝐷))
2 r1padd1.a . . . . . . 7 (𝜑𝐴𝑈)
3 r1padd1.d . . . . . . . 8 (𝜑𝐷𝑁)
4 r1padd1.p . . . . . . . . 9 𝑃 = (Poly1𝑅)
5 r1padd1.u . . . . . . . . 9 𝑈 = (Base‘𝑃)
6 r1padd1.n . . . . . . . . 9 𝑁 = (Unic1p𝑅)
74, 5, 6uc1pcl 26101 . . . . . . . 8 (𝐷𝑁𝐷𝑈)
83, 7syl 17 . . . . . . 7 (𝜑𝐷𝑈)
9 r1padd1.e . . . . . . . 8 𝐸 = (rem1p𝑅)
10 eqid 2735 . . . . . . . 8 (quot1p𝑅) = (quot1p𝑅)
11 eqid 2735 . . . . . . . 8 (.r𝑃) = (.r𝑃)
12 eqid 2735 . . . . . . . 8 (-g𝑃) = (-g𝑃)
139, 4, 5, 10, 11, 12r1pval 26115 . . . . . . 7 ((𝐴𝑈𝐷𝑈) → (𝐴𝐸𝐷) = (𝐴(-g𝑃)((𝐴(quot1p𝑅)𝐷)(.r𝑃)𝐷)))
142, 8, 13syl2anc 584 . . . . . 6 (𝜑 → (𝐴𝐸𝐷) = (𝐴(-g𝑃)((𝐴(quot1p𝑅)𝐷)(.r𝑃)𝐷)))
15 r1padd1.b . . . . . . 7 (𝜑𝐵𝑈)
169, 4, 5, 10, 11, 12r1pval 26115 . . . . . . 7 ((𝐵𝑈𝐷𝑈) → (𝐵𝐸𝐷) = (𝐵(-g𝑃)((𝐵(quot1p𝑅)𝐷)(.r𝑃)𝐷)))
1715, 8, 16syl2anc 584 . . . . . 6 (𝜑 → (𝐵𝐸𝐷) = (𝐵(-g𝑃)((𝐵(quot1p𝑅)𝐷)(.r𝑃)𝐷)))
181, 14, 173eqtr3d 2778 . . . . 5 (𝜑 → (𝐴(-g𝑃)((𝐴(quot1p𝑅)𝐷)(.r𝑃)𝐷)) = (𝐵(-g𝑃)((𝐵(quot1p𝑅)𝐷)(.r𝑃)𝐷)))
1918oveq1d 7420 . . . 4 (𝜑 → ((𝐴(-g𝑃)((𝐴(quot1p𝑅)𝐷)(.r𝑃)𝐷)) + 𝐶) = ((𝐵(-g𝑃)((𝐵(quot1p𝑅)𝐷)(.r𝑃)𝐷)) + 𝐶))
20 eqid 2735 . . . . . . 7 (invg𝑃) = (invg𝑃)
21 r1padd1.r . . . . . . . 8 (𝜑𝑅 ∈ Ring)
224ply1ring 22183 . . . . . . . 8 (𝑅 ∈ Ring → 𝑃 ∈ Ring)
2321, 22syl 17 . . . . . . 7 (𝜑𝑃 ∈ Ring)
2410, 4, 5, 6q1pcl 26114 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝐴𝑈𝐷𝑁) → (𝐴(quot1p𝑅)𝐷) ∈ 𝑈)
2521, 2, 3, 24syl3anc 1373 . . . . . . 7 (𝜑 → (𝐴(quot1p𝑅)𝐷) ∈ 𝑈)
265, 11, 20, 23, 25, 8ringmneg1 20264 . . . . . 6 (𝜑 → (((invg𝑃)‘(𝐴(quot1p𝑅)𝐷))(.r𝑃)𝐷) = ((invg𝑃)‘((𝐴(quot1p𝑅)𝐷)(.r𝑃)𝐷)))
2726oveq2d 7421 . . . . 5 (𝜑 → ((𝐴 + 𝐶) + (((invg𝑃)‘(𝐴(quot1p𝑅)𝐷))(.r𝑃)𝐷)) = ((𝐴 + 𝐶) + ((invg𝑃)‘((𝐴(quot1p𝑅)𝐷)(.r𝑃)𝐷))))
28 r1padd1.2 . . . . . . 7 + = (+g𝑃)
2923ringgrpd 20202 . . . . . . 7 (𝜑𝑃 ∈ Grp)
30 r1padd1.c . . . . . . 7 (𝜑𝐶𝑈)
315, 28, 29, 2, 30grpcld 18930 . . . . . 6 (𝜑 → (𝐴 + 𝐶) ∈ 𝑈)
325, 11, 23, 25, 8ringcld 20220 . . . . . 6 (𝜑 → ((𝐴(quot1p𝑅)𝐷)(.r𝑃)𝐷) ∈ 𝑈)
335, 28, 20, 12grpsubval 18968 . . . . . 6 (((𝐴 + 𝐶) ∈ 𝑈 ∧ ((𝐴(quot1p𝑅)𝐷)(.r𝑃)𝐷) ∈ 𝑈) → ((𝐴 + 𝐶)(-g𝑃)((𝐴(quot1p𝑅)𝐷)(.r𝑃)𝐷)) = ((𝐴 + 𝐶) + ((invg𝑃)‘((𝐴(quot1p𝑅)𝐷)(.r𝑃)𝐷))))
3431, 32, 33syl2anc 584 . . . . 5 (𝜑 → ((𝐴 + 𝐶)(-g𝑃)((𝐴(quot1p𝑅)𝐷)(.r𝑃)𝐷)) = ((𝐴 + 𝐶) + ((invg𝑃)‘((𝐴(quot1p𝑅)𝐷)(.r𝑃)𝐷))))
3523ringabld 20243 . . . . . 6 (𝜑𝑃 ∈ Abel)
365, 28, 12abladdsub 19793 . . . . . 6 ((𝑃 ∈ Abel ∧ (𝐴𝑈𝐶𝑈 ∧ ((𝐴(quot1p𝑅)𝐷)(.r𝑃)𝐷) ∈ 𝑈)) → ((𝐴 + 𝐶)(-g𝑃)((𝐴(quot1p𝑅)𝐷)(.r𝑃)𝐷)) = ((𝐴(-g𝑃)((𝐴(quot1p𝑅)𝐷)(.r𝑃)𝐷)) + 𝐶))
3735, 2, 30, 32, 36syl13anc 1374 . . . . 5 (𝜑 → ((𝐴 + 𝐶)(-g𝑃)((𝐴(quot1p𝑅)𝐷)(.r𝑃)𝐷)) = ((𝐴(-g𝑃)((𝐴(quot1p𝑅)𝐷)(.r𝑃)𝐷)) + 𝐶))
3827, 34, 373eqtr2d 2776 . . . 4 (𝜑 → ((𝐴 + 𝐶) + (((invg𝑃)‘(𝐴(quot1p𝑅)𝐷))(.r𝑃)𝐷)) = ((𝐴(-g𝑃)((𝐴(quot1p𝑅)𝐷)(.r𝑃)𝐷)) + 𝐶))
3910, 4, 5, 6q1pcl 26114 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝐵𝑈𝐷𝑁) → (𝐵(quot1p𝑅)𝐷) ∈ 𝑈)
4021, 15, 3, 39syl3anc 1373 . . . . . . 7 (𝜑 → (𝐵(quot1p𝑅)𝐷) ∈ 𝑈)
415, 11, 20, 23, 40, 8ringmneg1 20264 . . . . . 6 (𝜑 → (((invg𝑃)‘(𝐵(quot1p𝑅)𝐷))(.r𝑃)𝐷) = ((invg𝑃)‘((𝐵(quot1p𝑅)𝐷)(.r𝑃)𝐷)))
4241oveq2d 7421 . . . . 5 (𝜑 → ((𝐵 + 𝐶) + (((invg𝑃)‘(𝐵(quot1p𝑅)𝐷))(.r𝑃)𝐷)) = ((𝐵 + 𝐶) + ((invg𝑃)‘((𝐵(quot1p𝑅)𝐷)(.r𝑃)𝐷))))
435, 28, 29, 15, 30grpcld 18930 . . . . . 6 (𝜑 → (𝐵 + 𝐶) ∈ 𝑈)
445, 11, 23, 40, 8ringcld 20220 . . . . . 6 (𝜑 → ((𝐵(quot1p𝑅)𝐷)(.r𝑃)𝐷) ∈ 𝑈)
455, 28, 20, 12grpsubval 18968 . . . . . 6 (((𝐵 + 𝐶) ∈ 𝑈 ∧ ((𝐵(quot1p𝑅)𝐷)(.r𝑃)𝐷) ∈ 𝑈) → ((𝐵 + 𝐶)(-g𝑃)((𝐵(quot1p𝑅)𝐷)(.r𝑃)𝐷)) = ((𝐵 + 𝐶) + ((invg𝑃)‘((𝐵(quot1p𝑅)𝐷)(.r𝑃)𝐷))))
4643, 44, 45syl2anc 584 . . . . 5 (𝜑 → ((𝐵 + 𝐶)(-g𝑃)((𝐵(quot1p𝑅)𝐷)(.r𝑃)𝐷)) = ((𝐵 + 𝐶) + ((invg𝑃)‘((𝐵(quot1p𝑅)𝐷)(.r𝑃)𝐷))))
475, 28, 12abladdsub 19793 . . . . . 6 ((𝑃 ∈ Abel ∧ (𝐵𝑈𝐶𝑈 ∧ ((𝐵(quot1p𝑅)𝐷)(.r𝑃)𝐷) ∈ 𝑈)) → ((𝐵 + 𝐶)(-g𝑃)((𝐵(quot1p𝑅)𝐷)(.r𝑃)𝐷)) = ((𝐵(-g𝑃)((𝐵(quot1p𝑅)𝐷)(.r𝑃)𝐷)) + 𝐶))
4835, 15, 30, 44, 47syl13anc 1374 . . . . 5 (𝜑 → ((𝐵 + 𝐶)(-g𝑃)((𝐵(quot1p𝑅)𝐷)(.r𝑃)𝐷)) = ((𝐵(-g𝑃)((𝐵(quot1p𝑅)𝐷)(.r𝑃)𝐷)) + 𝐶))
4942, 46, 483eqtr2d 2776 . . . 4 (𝜑 → ((𝐵 + 𝐶) + (((invg𝑃)‘(𝐵(quot1p𝑅)𝐷))(.r𝑃)𝐷)) = ((𝐵(-g𝑃)((𝐵(quot1p𝑅)𝐷)(.r𝑃)𝐷)) + 𝐶))
5019, 38, 493eqtr4d 2780 . . 3 (𝜑 → ((𝐴 + 𝐶) + (((invg𝑃)‘(𝐴(quot1p𝑅)𝐷))(.r𝑃)𝐷)) = ((𝐵 + 𝐶) + (((invg𝑃)‘(𝐵(quot1p𝑅)𝐷))(.r𝑃)𝐷)))
5150oveq1d 7420 . 2 (𝜑 → (((𝐴 + 𝐶) + (((invg𝑃)‘(𝐴(quot1p𝑅)𝐷))(.r𝑃)𝐷))𝐸𝐷) = (((𝐵 + 𝐶) + (((invg𝑃)‘(𝐵(quot1p𝑅)𝐷))(.r𝑃)𝐷))𝐸𝐷))
525, 20, 29, 25grpinvcld 18971 . . 3 (𝜑 → ((invg𝑃)‘(𝐴(quot1p𝑅)𝐷)) ∈ 𝑈)
534, 5, 6, 9, 28, 11, 21, 31, 3, 52r1pcyc 33616 . 2 (𝜑 → (((𝐴 + 𝐶) + (((invg𝑃)‘(𝐴(quot1p𝑅)𝐷))(.r𝑃)𝐷))𝐸𝐷) = ((𝐴 + 𝐶)𝐸𝐷))
545, 20, 29, 40grpinvcld 18971 . . 3 (𝜑 → ((invg𝑃)‘(𝐵(quot1p𝑅)𝐷)) ∈ 𝑈)
554, 5, 6, 9, 28, 11, 21, 43, 3, 54r1pcyc 33616 . 2 (𝜑 → (((𝐵 + 𝐶) + (((invg𝑃)‘(𝐵(quot1p𝑅)𝐷))(.r𝑃)𝐷))𝐸𝐷) = ((𝐵 + 𝐶)𝐸𝐷))
5651, 53, 553eqtr3d 2778 1 (𝜑 → ((𝐴 + 𝐶)𝐸𝐷) = ((𝐵 + 𝐶)𝐸𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2108  cfv 6531  (class class class)co 7405  Basecbs 17228  +gcplusg 17271  .rcmulr 17272  invgcminusg 18917  -gcsg 18918  Abelcabl 19762  Ringcrg 20193  Poly1cpl1 22112  Unic1pcuc1p 26084  quot1pcq1p 26085  rem1pcr1p 26086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206  ax-pre-sup 11207  ax-addf 11208
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-iin 4970  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-isom 6540  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-of 7671  df-ofr 7672  df-om 7862  df-1st 7988  df-2nd 7989  df-supp 8160  df-tpos 8225  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-2o 8481  df-er 8719  df-map 8842  df-pm 8843  df-ixp 8912  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-fsupp 9374  df-sup 9454  df-oi 9524  df-card 9953  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-nn 12241  df-2 12303  df-3 12304  df-4 12305  df-5 12306  df-6 12307  df-7 12308  df-8 12309  df-9 12310  df-n0 12502  df-z 12589  df-dec 12709  df-uz 12853  df-fz 13525  df-fzo 13672  df-seq 14020  df-hash 14349  df-struct 17166  df-sets 17183  df-slot 17201  df-ndx 17213  df-base 17229  df-ress 17252  df-plusg 17284  df-mulr 17285  df-starv 17286  df-sca 17287  df-vsca 17288  df-ip 17289  df-tset 17290  df-ple 17291  df-ds 17293  df-unif 17294  df-hom 17295  df-cco 17296  df-0g 17455  df-gsum 17456  df-prds 17461  df-pws 17463  df-mre 17598  df-mrc 17599  df-acs 17601  df-mgm 18618  df-sgrp 18697  df-mnd 18713  df-mhm 18761  df-submnd 18762  df-grp 18919  df-minusg 18920  df-sbg 18921  df-mulg 19051  df-subg 19106  df-ghm 19196  df-cntz 19300  df-cmn 19763  df-abl 19764  df-mgp 20101  df-rng 20113  df-ur 20142  df-ring 20195  df-cring 20196  df-oppr 20297  df-dvdsr 20317  df-unit 20318  df-invr 20348  df-subrng 20506  df-subrg 20530  df-rlreg 20654  df-lmod 20819  df-lss 20889  df-cnfld 21316  df-psr 21869  df-mvr 21870  df-mpl 21871  df-opsr 21873  df-psr1 22115  df-vr1 22116  df-ply1 22117  df-coe1 22118  df-mdeg 26012  df-deg1 26013  df-uc1p 26089  df-q1p 26090  df-r1p 26091
This theorem is referenced by:  r1plmhm  33619
  Copyright terms: Public domain W3C validator