Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  r1padd1 Structured version   Visualization version   GIF version

Theorem r1padd1 33579
Description: Addition property of the polynomial remainder operation, similar to modadd1 13822. (Contributed by Thierry Arnoux, 2-Apr-2025.)
Hypotheses
Ref Expression
r1padd1.p 𝑃 = (Poly1𝑅)
r1padd1.u 𝑈 = (Base‘𝑃)
r1padd1.n 𝑁 = (Unic1p𝑅)
r1padd1.e 𝐸 = (rem1p𝑅)
r1padd1.r (𝜑𝑅 ∈ Ring)
r1padd1.a (𝜑𝐴𝑈)
r1padd1.d (𝜑𝐷𝑁)
r1padd1.1 (𝜑 → (𝐴𝐸𝐷) = (𝐵𝐸𝐷))
r1padd1.2 + = (+g𝑃)
r1padd1.b (𝜑𝐵𝑈)
r1padd1.c (𝜑𝐶𝑈)
Assertion
Ref Expression
r1padd1 (𝜑 → ((𝐴 + 𝐶)𝐸𝐷) = ((𝐵 + 𝐶)𝐸𝐷))

Proof of Theorem r1padd1
StepHypRef Expression
1 r1padd1.1 . . . . . 6 (𝜑 → (𝐴𝐸𝐷) = (𝐵𝐸𝐷))
2 r1padd1.a . . . . . . 7 (𝜑𝐴𝑈)
3 r1padd1.d . . . . . . . 8 (𝜑𝐷𝑁)
4 r1padd1.p . . . . . . . . 9 𝑃 = (Poly1𝑅)
5 r1padd1.u . . . . . . . . 9 𝑈 = (Base‘𝑃)
6 r1padd1.n . . . . . . . . 9 𝑁 = (Unic1p𝑅)
74, 5, 6uc1pcl 26086 . . . . . . . 8 (𝐷𝑁𝐷𝑈)
83, 7syl 17 . . . . . . 7 (𝜑𝐷𝑈)
9 r1padd1.e . . . . . . . 8 𝐸 = (rem1p𝑅)
10 eqid 2733 . . . . . . . 8 (quot1p𝑅) = (quot1p𝑅)
11 eqid 2733 . . . . . . . 8 (.r𝑃) = (.r𝑃)
12 eqid 2733 . . . . . . . 8 (-g𝑃) = (-g𝑃)
139, 4, 5, 10, 11, 12r1pval 26100 . . . . . . 7 ((𝐴𝑈𝐷𝑈) → (𝐴𝐸𝐷) = (𝐴(-g𝑃)((𝐴(quot1p𝑅)𝐷)(.r𝑃)𝐷)))
142, 8, 13syl2anc 584 . . . . . 6 (𝜑 → (𝐴𝐸𝐷) = (𝐴(-g𝑃)((𝐴(quot1p𝑅)𝐷)(.r𝑃)𝐷)))
15 r1padd1.b . . . . . . 7 (𝜑𝐵𝑈)
169, 4, 5, 10, 11, 12r1pval 26100 . . . . . . 7 ((𝐵𝑈𝐷𝑈) → (𝐵𝐸𝐷) = (𝐵(-g𝑃)((𝐵(quot1p𝑅)𝐷)(.r𝑃)𝐷)))
1715, 8, 16syl2anc 584 . . . . . 6 (𝜑 → (𝐵𝐸𝐷) = (𝐵(-g𝑃)((𝐵(quot1p𝑅)𝐷)(.r𝑃)𝐷)))
181, 14, 173eqtr3d 2776 . . . . 5 (𝜑 → (𝐴(-g𝑃)((𝐴(quot1p𝑅)𝐷)(.r𝑃)𝐷)) = (𝐵(-g𝑃)((𝐵(quot1p𝑅)𝐷)(.r𝑃)𝐷)))
1918oveq1d 7370 . . . 4 (𝜑 → ((𝐴(-g𝑃)((𝐴(quot1p𝑅)𝐷)(.r𝑃)𝐷)) + 𝐶) = ((𝐵(-g𝑃)((𝐵(quot1p𝑅)𝐷)(.r𝑃)𝐷)) + 𝐶))
20 eqid 2733 . . . . . . 7 (invg𝑃) = (invg𝑃)
21 r1padd1.r . . . . . . . 8 (𝜑𝑅 ∈ Ring)
224ply1ring 22170 . . . . . . . 8 (𝑅 ∈ Ring → 𝑃 ∈ Ring)
2321, 22syl 17 . . . . . . 7 (𝜑𝑃 ∈ Ring)
2410, 4, 5, 6q1pcl 26099 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝐴𝑈𝐷𝑁) → (𝐴(quot1p𝑅)𝐷) ∈ 𝑈)
2521, 2, 3, 24syl3anc 1373 . . . . . . 7 (𝜑 → (𝐴(quot1p𝑅)𝐷) ∈ 𝑈)
265, 11, 20, 23, 25, 8ringmneg1 20232 . . . . . 6 (𝜑 → (((invg𝑃)‘(𝐴(quot1p𝑅)𝐷))(.r𝑃)𝐷) = ((invg𝑃)‘((𝐴(quot1p𝑅)𝐷)(.r𝑃)𝐷)))
2726oveq2d 7371 . . . . 5 (𝜑 → ((𝐴 + 𝐶) + (((invg𝑃)‘(𝐴(quot1p𝑅)𝐷))(.r𝑃)𝐷)) = ((𝐴 + 𝐶) + ((invg𝑃)‘((𝐴(quot1p𝑅)𝐷)(.r𝑃)𝐷))))
28 r1padd1.2 . . . . . . 7 + = (+g𝑃)
2923ringgrpd 20170 . . . . . . 7 (𝜑𝑃 ∈ Grp)
30 r1padd1.c . . . . . . 7 (𝜑𝐶𝑈)
315, 28, 29, 2, 30grpcld 18870 . . . . . 6 (𝜑 → (𝐴 + 𝐶) ∈ 𝑈)
325, 11, 23, 25, 8ringcld 20188 . . . . . 6 (𝜑 → ((𝐴(quot1p𝑅)𝐷)(.r𝑃)𝐷) ∈ 𝑈)
335, 28, 20, 12grpsubval 18908 . . . . . 6 (((𝐴 + 𝐶) ∈ 𝑈 ∧ ((𝐴(quot1p𝑅)𝐷)(.r𝑃)𝐷) ∈ 𝑈) → ((𝐴 + 𝐶)(-g𝑃)((𝐴(quot1p𝑅)𝐷)(.r𝑃)𝐷)) = ((𝐴 + 𝐶) + ((invg𝑃)‘((𝐴(quot1p𝑅)𝐷)(.r𝑃)𝐷))))
3431, 32, 33syl2anc 584 . . . . 5 (𝜑 → ((𝐴 + 𝐶)(-g𝑃)((𝐴(quot1p𝑅)𝐷)(.r𝑃)𝐷)) = ((𝐴 + 𝐶) + ((invg𝑃)‘((𝐴(quot1p𝑅)𝐷)(.r𝑃)𝐷))))
3523ringabld 20211 . . . . . 6 (𝜑𝑃 ∈ Abel)
365, 28, 12abladdsub 19734 . . . . . 6 ((𝑃 ∈ Abel ∧ (𝐴𝑈𝐶𝑈 ∧ ((𝐴(quot1p𝑅)𝐷)(.r𝑃)𝐷) ∈ 𝑈)) → ((𝐴 + 𝐶)(-g𝑃)((𝐴(quot1p𝑅)𝐷)(.r𝑃)𝐷)) = ((𝐴(-g𝑃)((𝐴(quot1p𝑅)𝐷)(.r𝑃)𝐷)) + 𝐶))
3735, 2, 30, 32, 36syl13anc 1374 . . . . 5 (𝜑 → ((𝐴 + 𝐶)(-g𝑃)((𝐴(quot1p𝑅)𝐷)(.r𝑃)𝐷)) = ((𝐴(-g𝑃)((𝐴(quot1p𝑅)𝐷)(.r𝑃)𝐷)) + 𝐶))
3827, 34, 373eqtr2d 2774 . . . 4 (𝜑 → ((𝐴 + 𝐶) + (((invg𝑃)‘(𝐴(quot1p𝑅)𝐷))(.r𝑃)𝐷)) = ((𝐴(-g𝑃)((𝐴(quot1p𝑅)𝐷)(.r𝑃)𝐷)) + 𝐶))
3910, 4, 5, 6q1pcl 26099 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝐵𝑈𝐷𝑁) → (𝐵(quot1p𝑅)𝐷) ∈ 𝑈)
4021, 15, 3, 39syl3anc 1373 . . . . . . 7 (𝜑 → (𝐵(quot1p𝑅)𝐷) ∈ 𝑈)
415, 11, 20, 23, 40, 8ringmneg1 20232 . . . . . 6 (𝜑 → (((invg𝑃)‘(𝐵(quot1p𝑅)𝐷))(.r𝑃)𝐷) = ((invg𝑃)‘((𝐵(quot1p𝑅)𝐷)(.r𝑃)𝐷)))
4241oveq2d 7371 . . . . 5 (𝜑 → ((𝐵 + 𝐶) + (((invg𝑃)‘(𝐵(quot1p𝑅)𝐷))(.r𝑃)𝐷)) = ((𝐵 + 𝐶) + ((invg𝑃)‘((𝐵(quot1p𝑅)𝐷)(.r𝑃)𝐷))))
435, 28, 29, 15, 30grpcld 18870 . . . . . 6 (𝜑 → (𝐵 + 𝐶) ∈ 𝑈)
445, 11, 23, 40, 8ringcld 20188 . . . . . 6 (𝜑 → ((𝐵(quot1p𝑅)𝐷)(.r𝑃)𝐷) ∈ 𝑈)
455, 28, 20, 12grpsubval 18908 . . . . . 6 (((𝐵 + 𝐶) ∈ 𝑈 ∧ ((𝐵(quot1p𝑅)𝐷)(.r𝑃)𝐷) ∈ 𝑈) → ((𝐵 + 𝐶)(-g𝑃)((𝐵(quot1p𝑅)𝐷)(.r𝑃)𝐷)) = ((𝐵 + 𝐶) + ((invg𝑃)‘((𝐵(quot1p𝑅)𝐷)(.r𝑃)𝐷))))
4643, 44, 45syl2anc 584 . . . . 5 (𝜑 → ((𝐵 + 𝐶)(-g𝑃)((𝐵(quot1p𝑅)𝐷)(.r𝑃)𝐷)) = ((𝐵 + 𝐶) + ((invg𝑃)‘((𝐵(quot1p𝑅)𝐷)(.r𝑃)𝐷))))
475, 28, 12abladdsub 19734 . . . . . 6 ((𝑃 ∈ Abel ∧ (𝐵𝑈𝐶𝑈 ∧ ((𝐵(quot1p𝑅)𝐷)(.r𝑃)𝐷) ∈ 𝑈)) → ((𝐵 + 𝐶)(-g𝑃)((𝐵(quot1p𝑅)𝐷)(.r𝑃)𝐷)) = ((𝐵(-g𝑃)((𝐵(quot1p𝑅)𝐷)(.r𝑃)𝐷)) + 𝐶))
4835, 15, 30, 44, 47syl13anc 1374 . . . . 5 (𝜑 → ((𝐵 + 𝐶)(-g𝑃)((𝐵(quot1p𝑅)𝐷)(.r𝑃)𝐷)) = ((𝐵(-g𝑃)((𝐵(quot1p𝑅)𝐷)(.r𝑃)𝐷)) + 𝐶))
4942, 46, 483eqtr2d 2774 . . . 4 (𝜑 → ((𝐵 + 𝐶) + (((invg𝑃)‘(𝐵(quot1p𝑅)𝐷))(.r𝑃)𝐷)) = ((𝐵(-g𝑃)((𝐵(quot1p𝑅)𝐷)(.r𝑃)𝐷)) + 𝐶))
5019, 38, 493eqtr4d 2778 . . 3 (𝜑 → ((𝐴 + 𝐶) + (((invg𝑃)‘(𝐴(quot1p𝑅)𝐷))(.r𝑃)𝐷)) = ((𝐵 + 𝐶) + (((invg𝑃)‘(𝐵(quot1p𝑅)𝐷))(.r𝑃)𝐷)))
5150oveq1d 7370 . 2 (𝜑 → (((𝐴 + 𝐶) + (((invg𝑃)‘(𝐴(quot1p𝑅)𝐷))(.r𝑃)𝐷))𝐸𝐷) = (((𝐵 + 𝐶) + (((invg𝑃)‘(𝐵(quot1p𝑅)𝐷))(.r𝑃)𝐷))𝐸𝐷))
525, 20, 29, 25grpinvcld 18911 . . 3 (𝜑 → ((invg𝑃)‘(𝐴(quot1p𝑅)𝐷)) ∈ 𝑈)
534, 5, 6, 9, 28, 11, 21, 31, 3, 52r1pcyc 33578 . 2 (𝜑 → (((𝐴 + 𝐶) + (((invg𝑃)‘(𝐴(quot1p𝑅)𝐷))(.r𝑃)𝐷))𝐸𝐷) = ((𝐴 + 𝐶)𝐸𝐷))
545, 20, 29, 40grpinvcld 18911 . . 3 (𝜑 → ((invg𝑃)‘(𝐵(quot1p𝑅)𝐷)) ∈ 𝑈)
554, 5, 6, 9, 28, 11, 21, 43, 3, 54r1pcyc 33578 . 2 (𝜑 → (((𝐵 + 𝐶) + (((invg𝑃)‘(𝐵(quot1p𝑅)𝐷))(.r𝑃)𝐷))𝐸𝐷) = ((𝐵 + 𝐶)𝐸𝐷))
5651, 53, 553eqtr3d 2776 1 (𝜑 → ((𝐴 + 𝐶)𝐸𝐷) = ((𝐵 + 𝐶)𝐸𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2113  cfv 6489  (class class class)co 7355  Basecbs 17130  +gcplusg 17171  .rcmulr 17172  invgcminusg 18857  -gcsg 18858  Abelcabl 19703  Ringcrg 20161  Poly1cpl1 22099  Unic1pcuc1p 26069  quot1pcq1p 26070  rem1pcr1p 26071
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-cnex 11072  ax-resscn 11073  ax-1cn 11074  ax-icn 11075  ax-addcl 11076  ax-addrcl 11077  ax-mulcl 11078  ax-mulrcl 11079  ax-mulcom 11080  ax-addass 11081  ax-mulass 11082  ax-distr 11083  ax-i2m1 11084  ax-1ne0 11085  ax-1rid 11086  ax-rnegex 11087  ax-rrecex 11088  ax-cnre 11089  ax-pre-lttri 11090  ax-pre-lttrn 11091  ax-pre-ltadd 11092  ax-pre-mulgt0 11093  ax-pre-sup 11094  ax-addf 11095
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2883  df-ne 2931  df-nel 3035  df-ral 3050  df-rex 3059  df-rmo 3348  df-reu 3349  df-rab 3398  df-v 3440  df-sbc 3739  df-csb 3848  df-dif 3902  df-un 3904  df-in 3906  df-ss 3916  df-pss 3919  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4861  df-int 4900  df-iun 4945  df-iin 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-se 5575  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-isom 6498  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-of 7619  df-ofr 7620  df-om 7806  df-1st 7930  df-2nd 7931  df-supp 8100  df-tpos 8165  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-1o 8394  df-2o 8395  df-er 8631  df-map 8761  df-pm 8762  df-ixp 8831  df-en 8879  df-dom 8880  df-sdom 8881  df-fin 8882  df-fsupp 9256  df-sup 9336  df-oi 9406  df-card 9842  df-pnf 11158  df-mnf 11159  df-xr 11160  df-ltxr 11161  df-le 11162  df-sub 11356  df-neg 11357  df-nn 12136  df-2 12198  df-3 12199  df-4 12200  df-5 12201  df-6 12202  df-7 12203  df-8 12204  df-9 12205  df-n0 12392  df-z 12479  df-dec 12599  df-uz 12743  df-fz 13418  df-fzo 13565  df-seq 13919  df-hash 14248  df-struct 17068  df-sets 17085  df-slot 17103  df-ndx 17115  df-base 17131  df-ress 17152  df-plusg 17184  df-mulr 17185  df-starv 17186  df-sca 17187  df-vsca 17188  df-ip 17189  df-tset 17190  df-ple 17191  df-ds 17193  df-unif 17194  df-hom 17195  df-cco 17196  df-0g 17355  df-gsum 17356  df-prds 17361  df-pws 17363  df-mre 17498  df-mrc 17499  df-acs 17501  df-mgm 18558  df-sgrp 18637  df-mnd 18653  df-mhm 18701  df-submnd 18702  df-grp 18859  df-minusg 18860  df-sbg 18861  df-mulg 18991  df-subg 19046  df-ghm 19135  df-cntz 19239  df-cmn 19704  df-abl 19705  df-mgp 20069  df-rng 20081  df-ur 20110  df-ring 20163  df-cring 20164  df-oppr 20265  df-dvdsr 20285  df-unit 20286  df-invr 20316  df-subrng 20471  df-subrg 20495  df-rlreg 20619  df-lmod 20805  df-lss 20875  df-cnfld 21302  df-psr 21856  df-mvr 21857  df-mpl 21858  df-opsr 21860  df-psr1 22102  df-vr1 22103  df-ply1 22104  df-coe1 22105  df-mdeg 25997  df-deg1 25998  df-uc1p 26074  df-q1p 26075  df-r1p 26076
This theorem is referenced by:  r1plmhm  33581
  Copyright terms: Public domain W3C validator