Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  r1padd1 Structured version   Visualization version   GIF version

Theorem r1padd1 33580
Description: Addition property of the polynomial remainder operation, similar to modadd1 13877. (Contributed by Thierry Arnoux, 2-Apr-2025.)
Hypotheses
Ref Expression
r1padd1.p 𝑃 = (Poly1𝑅)
r1padd1.u 𝑈 = (Base‘𝑃)
r1padd1.n 𝑁 = (Unic1p𝑅)
r1padd1.e 𝐸 = (rem1p𝑅)
r1padd1.r (𝜑𝑅 ∈ Ring)
r1padd1.a (𝜑𝐴𝑈)
r1padd1.d (𝜑𝐷𝑁)
r1padd1.1 (𝜑 → (𝐴𝐸𝐷) = (𝐵𝐸𝐷))
r1padd1.2 + = (+g𝑃)
r1padd1.b (𝜑𝐵𝑈)
r1padd1.c (𝜑𝐶𝑈)
Assertion
Ref Expression
r1padd1 (𝜑 → ((𝐴 + 𝐶)𝐸𝐷) = ((𝐵 + 𝐶)𝐸𝐷))

Proof of Theorem r1padd1
StepHypRef Expression
1 r1padd1.1 . . . . . 6 (𝜑 → (𝐴𝐸𝐷) = (𝐵𝐸𝐷))
2 r1padd1.a . . . . . . 7 (𝜑𝐴𝑈)
3 r1padd1.d . . . . . . . 8 (𝜑𝐷𝑁)
4 r1padd1.p . . . . . . . . 9 𝑃 = (Poly1𝑅)
5 r1padd1.u . . . . . . . . 9 𝑈 = (Base‘𝑃)
6 r1padd1.n . . . . . . . . 9 𝑁 = (Unic1p𝑅)
74, 5, 6uc1pcl 26056 . . . . . . . 8 (𝐷𝑁𝐷𝑈)
83, 7syl 17 . . . . . . 7 (𝜑𝐷𝑈)
9 r1padd1.e . . . . . . . 8 𝐸 = (rem1p𝑅)
10 eqid 2730 . . . . . . . 8 (quot1p𝑅) = (quot1p𝑅)
11 eqid 2730 . . . . . . . 8 (.r𝑃) = (.r𝑃)
12 eqid 2730 . . . . . . . 8 (-g𝑃) = (-g𝑃)
139, 4, 5, 10, 11, 12r1pval 26070 . . . . . . 7 ((𝐴𝑈𝐷𝑈) → (𝐴𝐸𝐷) = (𝐴(-g𝑃)((𝐴(quot1p𝑅)𝐷)(.r𝑃)𝐷)))
142, 8, 13syl2anc 584 . . . . . 6 (𝜑 → (𝐴𝐸𝐷) = (𝐴(-g𝑃)((𝐴(quot1p𝑅)𝐷)(.r𝑃)𝐷)))
15 r1padd1.b . . . . . . 7 (𝜑𝐵𝑈)
169, 4, 5, 10, 11, 12r1pval 26070 . . . . . . 7 ((𝐵𝑈𝐷𝑈) → (𝐵𝐸𝐷) = (𝐵(-g𝑃)((𝐵(quot1p𝑅)𝐷)(.r𝑃)𝐷)))
1715, 8, 16syl2anc 584 . . . . . 6 (𝜑 → (𝐵𝐸𝐷) = (𝐵(-g𝑃)((𝐵(quot1p𝑅)𝐷)(.r𝑃)𝐷)))
181, 14, 173eqtr3d 2773 . . . . 5 (𝜑 → (𝐴(-g𝑃)((𝐴(quot1p𝑅)𝐷)(.r𝑃)𝐷)) = (𝐵(-g𝑃)((𝐵(quot1p𝑅)𝐷)(.r𝑃)𝐷)))
1918oveq1d 7405 . . . 4 (𝜑 → ((𝐴(-g𝑃)((𝐴(quot1p𝑅)𝐷)(.r𝑃)𝐷)) + 𝐶) = ((𝐵(-g𝑃)((𝐵(quot1p𝑅)𝐷)(.r𝑃)𝐷)) + 𝐶))
20 eqid 2730 . . . . . . 7 (invg𝑃) = (invg𝑃)
21 r1padd1.r . . . . . . . 8 (𝜑𝑅 ∈ Ring)
224ply1ring 22139 . . . . . . . 8 (𝑅 ∈ Ring → 𝑃 ∈ Ring)
2321, 22syl 17 . . . . . . 7 (𝜑𝑃 ∈ Ring)
2410, 4, 5, 6q1pcl 26069 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝐴𝑈𝐷𝑁) → (𝐴(quot1p𝑅)𝐷) ∈ 𝑈)
2521, 2, 3, 24syl3anc 1373 . . . . . . 7 (𝜑 → (𝐴(quot1p𝑅)𝐷) ∈ 𝑈)
265, 11, 20, 23, 25, 8ringmneg1 20220 . . . . . 6 (𝜑 → (((invg𝑃)‘(𝐴(quot1p𝑅)𝐷))(.r𝑃)𝐷) = ((invg𝑃)‘((𝐴(quot1p𝑅)𝐷)(.r𝑃)𝐷)))
2726oveq2d 7406 . . . . 5 (𝜑 → ((𝐴 + 𝐶) + (((invg𝑃)‘(𝐴(quot1p𝑅)𝐷))(.r𝑃)𝐷)) = ((𝐴 + 𝐶) + ((invg𝑃)‘((𝐴(quot1p𝑅)𝐷)(.r𝑃)𝐷))))
28 r1padd1.2 . . . . . . 7 + = (+g𝑃)
2923ringgrpd 20158 . . . . . . 7 (𝜑𝑃 ∈ Grp)
30 r1padd1.c . . . . . . 7 (𝜑𝐶𝑈)
315, 28, 29, 2, 30grpcld 18886 . . . . . 6 (𝜑 → (𝐴 + 𝐶) ∈ 𝑈)
325, 11, 23, 25, 8ringcld 20176 . . . . . 6 (𝜑 → ((𝐴(quot1p𝑅)𝐷)(.r𝑃)𝐷) ∈ 𝑈)
335, 28, 20, 12grpsubval 18924 . . . . . 6 (((𝐴 + 𝐶) ∈ 𝑈 ∧ ((𝐴(quot1p𝑅)𝐷)(.r𝑃)𝐷) ∈ 𝑈) → ((𝐴 + 𝐶)(-g𝑃)((𝐴(quot1p𝑅)𝐷)(.r𝑃)𝐷)) = ((𝐴 + 𝐶) + ((invg𝑃)‘((𝐴(quot1p𝑅)𝐷)(.r𝑃)𝐷))))
3431, 32, 33syl2anc 584 . . . . 5 (𝜑 → ((𝐴 + 𝐶)(-g𝑃)((𝐴(quot1p𝑅)𝐷)(.r𝑃)𝐷)) = ((𝐴 + 𝐶) + ((invg𝑃)‘((𝐴(quot1p𝑅)𝐷)(.r𝑃)𝐷))))
3523ringabld 20199 . . . . . 6 (𝜑𝑃 ∈ Abel)
365, 28, 12abladdsub 19749 . . . . . 6 ((𝑃 ∈ Abel ∧ (𝐴𝑈𝐶𝑈 ∧ ((𝐴(quot1p𝑅)𝐷)(.r𝑃)𝐷) ∈ 𝑈)) → ((𝐴 + 𝐶)(-g𝑃)((𝐴(quot1p𝑅)𝐷)(.r𝑃)𝐷)) = ((𝐴(-g𝑃)((𝐴(quot1p𝑅)𝐷)(.r𝑃)𝐷)) + 𝐶))
3735, 2, 30, 32, 36syl13anc 1374 . . . . 5 (𝜑 → ((𝐴 + 𝐶)(-g𝑃)((𝐴(quot1p𝑅)𝐷)(.r𝑃)𝐷)) = ((𝐴(-g𝑃)((𝐴(quot1p𝑅)𝐷)(.r𝑃)𝐷)) + 𝐶))
3827, 34, 373eqtr2d 2771 . . . 4 (𝜑 → ((𝐴 + 𝐶) + (((invg𝑃)‘(𝐴(quot1p𝑅)𝐷))(.r𝑃)𝐷)) = ((𝐴(-g𝑃)((𝐴(quot1p𝑅)𝐷)(.r𝑃)𝐷)) + 𝐶))
3910, 4, 5, 6q1pcl 26069 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝐵𝑈𝐷𝑁) → (𝐵(quot1p𝑅)𝐷) ∈ 𝑈)
4021, 15, 3, 39syl3anc 1373 . . . . . . 7 (𝜑 → (𝐵(quot1p𝑅)𝐷) ∈ 𝑈)
415, 11, 20, 23, 40, 8ringmneg1 20220 . . . . . 6 (𝜑 → (((invg𝑃)‘(𝐵(quot1p𝑅)𝐷))(.r𝑃)𝐷) = ((invg𝑃)‘((𝐵(quot1p𝑅)𝐷)(.r𝑃)𝐷)))
4241oveq2d 7406 . . . . 5 (𝜑 → ((𝐵 + 𝐶) + (((invg𝑃)‘(𝐵(quot1p𝑅)𝐷))(.r𝑃)𝐷)) = ((𝐵 + 𝐶) + ((invg𝑃)‘((𝐵(quot1p𝑅)𝐷)(.r𝑃)𝐷))))
435, 28, 29, 15, 30grpcld 18886 . . . . . 6 (𝜑 → (𝐵 + 𝐶) ∈ 𝑈)
445, 11, 23, 40, 8ringcld 20176 . . . . . 6 (𝜑 → ((𝐵(quot1p𝑅)𝐷)(.r𝑃)𝐷) ∈ 𝑈)
455, 28, 20, 12grpsubval 18924 . . . . . 6 (((𝐵 + 𝐶) ∈ 𝑈 ∧ ((𝐵(quot1p𝑅)𝐷)(.r𝑃)𝐷) ∈ 𝑈) → ((𝐵 + 𝐶)(-g𝑃)((𝐵(quot1p𝑅)𝐷)(.r𝑃)𝐷)) = ((𝐵 + 𝐶) + ((invg𝑃)‘((𝐵(quot1p𝑅)𝐷)(.r𝑃)𝐷))))
4643, 44, 45syl2anc 584 . . . . 5 (𝜑 → ((𝐵 + 𝐶)(-g𝑃)((𝐵(quot1p𝑅)𝐷)(.r𝑃)𝐷)) = ((𝐵 + 𝐶) + ((invg𝑃)‘((𝐵(quot1p𝑅)𝐷)(.r𝑃)𝐷))))
475, 28, 12abladdsub 19749 . . . . . 6 ((𝑃 ∈ Abel ∧ (𝐵𝑈𝐶𝑈 ∧ ((𝐵(quot1p𝑅)𝐷)(.r𝑃)𝐷) ∈ 𝑈)) → ((𝐵 + 𝐶)(-g𝑃)((𝐵(quot1p𝑅)𝐷)(.r𝑃)𝐷)) = ((𝐵(-g𝑃)((𝐵(quot1p𝑅)𝐷)(.r𝑃)𝐷)) + 𝐶))
4835, 15, 30, 44, 47syl13anc 1374 . . . . 5 (𝜑 → ((𝐵 + 𝐶)(-g𝑃)((𝐵(quot1p𝑅)𝐷)(.r𝑃)𝐷)) = ((𝐵(-g𝑃)((𝐵(quot1p𝑅)𝐷)(.r𝑃)𝐷)) + 𝐶))
4942, 46, 483eqtr2d 2771 . . . 4 (𝜑 → ((𝐵 + 𝐶) + (((invg𝑃)‘(𝐵(quot1p𝑅)𝐷))(.r𝑃)𝐷)) = ((𝐵(-g𝑃)((𝐵(quot1p𝑅)𝐷)(.r𝑃)𝐷)) + 𝐶))
5019, 38, 493eqtr4d 2775 . . 3 (𝜑 → ((𝐴 + 𝐶) + (((invg𝑃)‘(𝐴(quot1p𝑅)𝐷))(.r𝑃)𝐷)) = ((𝐵 + 𝐶) + (((invg𝑃)‘(𝐵(quot1p𝑅)𝐷))(.r𝑃)𝐷)))
5150oveq1d 7405 . 2 (𝜑 → (((𝐴 + 𝐶) + (((invg𝑃)‘(𝐴(quot1p𝑅)𝐷))(.r𝑃)𝐷))𝐸𝐷) = (((𝐵 + 𝐶) + (((invg𝑃)‘(𝐵(quot1p𝑅)𝐷))(.r𝑃)𝐷))𝐸𝐷))
525, 20, 29, 25grpinvcld 18927 . . 3 (𝜑 → ((invg𝑃)‘(𝐴(quot1p𝑅)𝐷)) ∈ 𝑈)
534, 5, 6, 9, 28, 11, 21, 31, 3, 52r1pcyc 33579 . 2 (𝜑 → (((𝐴 + 𝐶) + (((invg𝑃)‘(𝐴(quot1p𝑅)𝐷))(.r𝑃)𝐷))𝐸𝐷) = ((𝐴 + 𝐶)𝐸𝐷))
545, 20, 29, 40grpinvcld 18927 . . 3 (𝜑 → ((invg𝑃)‘(𝐵(quot1p𝑅)𝐷)) ∈ 𝑈)
554, 5, 6, 9, 28, 11, 21, 43, 3, 54r1pcyc 33579 . 2 (𝜑 → (((𝐵 + 𝐶) + (((invg𝑃)‘(𝐵(quot1p𝑅)𝐷))(.r𝑃)𝐷))𝐸𝐷) = ((𝐵 + 𝐶)𝐸𝐷))
5651, 53, 553eqtr3d 2773 1 (𝜑 → ((𝐴 + 𝐶)𝐸𝐷) = ((𝐵 + 𝐶)𝐸𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  cfv 6514  (class class class)co 7390  Basecbs 17186  +gcplusg 17227  .rcmulr 17228  invgcminusg 18873  -gcsg 18874  Abelcabl 19718  Ringcrg 20149  Poly1cpl1 22068  Unic1pcuc1p 26039  quot1pcq1p 26040  rem1pcr1p 26041
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153  ax-addf 11154
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656  df-ofr 7657  df-om 7846  df-1st 7971  df-2nd 7972  df-supp 8143  df-tpos 8208  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-er 8674  df-map 8804  df-pm 8805  df-ixp 8874  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-fsupp 9320  df-sup 9400  df-oi 9470  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-z 12537  df-dec 12657  df-uz 12801  df-fz 13476  df-fzo 13623  df-seq 13974  df-hash 14303  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-starv 17242  df-sca 17243  df-vsca 17244  df-ip 17245  df-tset 17246  df-ple 17247  df-ds 17249  df-unif 17250  df-hom 17251  df-cco 17252  df-0g 17411  df-gsum 17412  df-prds 17417  df-pws 17419  df-mre 17554  df-mrc 17555  df-acs 17557  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-mhm 18717  df-submnd 18718  df-grp 18875  df-minusg 18876  df-sbg 18877  df-mulg 19007  df-subg 19062  df-ghm 19152  df-cntz 19256  df-cmn 19719  df-abl 19720  df-mgp 20057  df-rng 20069  df-ur 20098  df-ring 20151  df-cring 20152  df-oppr 20253  df-dvdsr 20273  df-unit 20274  df-invr 20304  df-subrng 20462  df-subrg 20486  df-rlreg 20610  df-lmod 20775  df-lss 20845  df-cnfld 21272  df-psr 21825  df-mvr 21826  df-mpl 21827  df-opsr 21829  df-psr1 22071  df-vr1 22072  df-ply1 22073  df-coe1 22074  df-mdeg 25967  df-deg1 25968  df-uc1p 26044  df-q1p 26045  df-r1p 26046
This theorem is referenced by:  r1plmhm  33582
  Copyright terms: Public domain W3C validator