Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  r1padd1 Structured version   Visualization version   GIF version

Theorem r1padd1 33566
Description: Addition property of the polynomial remainder operation, similar to modadd1 13846. (Contributed by Thierry Arnoux, 2-Apr-2025.)
Hypotheses
Ref Expression
r1padd1.p 𝑃 = (Poly1𝑅)
r1padd1.u 𝑈 = (Base‘𝑃)
r1padd1.n 𝑁 = (Unic1p𝑅)
r1padd1.e 𝐸 = (rem1p𝑅)
r1padd1.r (𝜑𝑅 ∈ Ring)
r1padd1.a (𝜑𝐴𝑈)
r1padd1.d (𝜑𝐷𝑁)
r1padd1.1 (𝜑 → (𝐴𝐸𝐷) = (𝐵𝐸𝐷))
r1padd1.2 + = (+g𝑃)
r1padd1.b (𝜑𝐵𝑈)
r1padd1.c (𝜑𝐶𝑈)
Assertion
Ref Expression
r1padd1 (𝜑 → ((𝐴 + 𝐶)𝐸𝐷) = ((𝐵 + 𝐶)𝐸𝐷))

Proof of Theorem r1padd1
StepHypRef Expression
1 r1padd1.1 . . . . . 6 (𝜑 → (𝐴𝐸𝐷) = (𝐵𝐸𝐷))
2 r1padd1.a . . . . . . 7 (𝜑𝐴𝑈)
3 r1padd1.d . . . . . . . 8 (𝜑𝐷𝑁)
4 r1padd1.p . . . . . . . . 9 𝑃 = (Poly1𝑅)
5 r1padd1.u . . . . . . . . 9 𝑈 = (Base‘𝑃)
6 r1padd1.n . . . . . . . . 9 𝑁 = (Unic1p𝑅)
74, 5, 6uc1pcl 26082 . . . . . . . 8 (𝐷𝑁𝐷𝑈)
83, 7syl 17 . . . . . . 7 (𝜑𝐷𝑈)
9 r1padd1.e . . . . . . . 8 𝐸 = (rem1p𝑅)
10 eqid 2729 . . . . . . . 8 (quot1p𝑅) = (quot1p𝑅)
11 eqid 2729 . . . . . . . 8 (.r𝑃) = (.r𝑃)
12 eqid 2729 . . . . . . . 8 (-g𝑃) = (-g𝑃)
139, 4, 5, 10, 11, 12r1pval 26096 . . . . . . 7 ((𝐴𝑈𝐷𝑈) → (𝐴𝐸𝐷) = (𝐴(-g𝑃)((𝐴(quot1p𝑅)𝐷)(.r𝑃)𝐷)))
142, 8, 13syl2anc 584 . . . . . 6 (𝜑 → (𝐴𝐸𝐷) = (𝐴(-g𝑃)((𝐴(quot1p𝑅)𝐷)(.r𝑃)𝐷)))
15 r1padd1.b . . . . . . 7 (𝜑𝐵𝑈)
169, 4, 5, 10, 11, 12r1pval 26096 . . . . . . 7 ((𝐵𝑈𝐷𝑈) → (𝐵𝐸𝐷) = (𝐵(-g𝑃)((𝐵(quot1p𝑅)𝐷)(.r𝑃)𝐷)))
1715, 8, 16syl2anc 584 . . . . . 6 (𝜑 → (𝐵𝐸𝐷) = (𝐵(-g𝑃)((𝐵(quot1p𝑅)𝐷)(.r𝑃)𝐷)))
181, 14, 173eqtr3d 2772 . . . . 5 (𝜑 → (𝐴(-g𝑃)((𝐴(quot1p𝑅)𝐷)(.r𝑃)𝐷)) = (𝐵(-g𝑃)((𝐵(quot1p𝑅)𝐷)(.r𝑃)𝐷)))
1918oveq1d 7384 . . . 4 (𝜑 → ((𝐴(-g𝑃)((𝐴(quot1p𝑅)𝐷)(.r𝑃)𝐷)) + 𝐶) = ((𝐵(-g𝑃)((𝐵(quot1p𝑅)𝐷)(.r𝑃)𝐷)) + 𝐶))
20 eqid 2729 . . . . . . 7 (invg𝑃) = (invg𝑃)
21 r1padd1.r . . . . . . . 8 (𝜑𝑅 ∈ Ring)
224ply1ring 22165 . . . . . . . 8 (𝑅 ∈ Ring → 𝑃 ∈ Ring)
2321, 22syl 17 . . . . . . 7 (𝜑𝑃 ∈ Ring)
2410, 4, 5, 6q1pcl 26095 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝐴𝑈𝐷𝑁) → (𝐴(quot1p𝑅)𝐷) ∈ 𝑈)
2521, 2, 3, 24syl3anc 1373 . . . . . . 7 (𝜑 → (𝐴(quot1p𝑅)𝐷) ∈ 𝑈)
265, 11, 20, 23, 25, 8ringmneg1 20224 . . . . . 6 (𝜑 → (((invg𝑃)‘(𝐴(quot1p𝑅)𝐷))(.r𝑃)𝐷) = ((invg𝑃)‘((𝐴(quot1p𝑅)𝐷)(.r𝑃)𝐷)))
2726oveq2d 7385 . . . . 5 (𝜑 → ((𝐴 + 𝐶) + (((invg𝑃)‘(𝐴(quot1p𝑅)𝐷))(.r𝑃)𝐷)) = ((𝐴 + 𝐶) + ((invg𝑃)‘((𝐴(quot1p𝑅)𝐷)(.r𝑃)𝐷))))
28 r1padd1.2 . . . . . . 7 + = (+g𝑃)
2923ringgrpd 20162 . . . . . . 7 (𝜑𝑃 ∈ Grp)
30 r1padd1.c . . . . . . 7 (𝜑𝐶𝑈)
315, 28, 29, 2, 30grpcld 18861 . . . . . 6 (𝜑 → (𝐴 + 𝐶) ∈ 𝑈)
325, 11, 23, 25, 8ringcld 20180 . . . . . 6 (𝜑 → ((𝐴(quot1p𝑅)𝐷)(.r𝑃)𝐷) ∈ 𝑈)
335, 28, 20, 12grpsubval 18899 . . . . . 6 (((𝐴 + 𝐶) ∈ 𝑈 ∧ ((𝐴(quot1p𝑅)𝐷)(.r𝑃)𝐷) ∈ 𝑈) → ((𝐴 + 𝐶)(-g𝑃)((𝐴(quot1p𝑅)𝐷)(.r𝑃)𝐷)) = ((𝐴 + 𝐶) + ((invg𝑃)‘((𝐴(quot1p𝑅)𝐷)(.r𝑃)𝐷))))
3431, 32, 33syl2anc 584 . . . . 5 (𝜑 → ((𝐴 + 𝐶)(-g𝑃)((𝐴(quot1p𝑅)𝐷)(.r𝑃)𝐷)) = ((𝐴 + 𝐶) + ((invg𝑃)‘((𝐴(quot1p𝑅)𝐷)(.r𝑃)𝐷))))
3523ringabld 20203 . . . . . 6 (𝜑𝑃 ∈ Abel)
365, 28, 12abladdsub 19726 . . . . . 6 ((𝑃 ∈ Abel ∧ (𝐴𝑈𝐶𝑈 ∧ ((𝐴(quot1p𝑅)𝐷)(.r𝑃)𝐷) ∈ 𝑈)) → ((𝐴 + 𝐶)(-g𝑃)((𝐴(quot1p𝑅)𝐷)(.r𝑃)𝐷)) = ((𝐴(-g𝑃)((𝐴(quot1p𝑅)𝐷)(.r𝑃)𝐷)) + 𝐶))
3735, 2, 30, 32, 36syl13anc 1374 . . . . 5 (𝜑 → ((𝐴 + 𝐶)(-g𝑃)((𝐴(quot1p𝑅)𝐷)(.r𝑃)𝐷)) = ((𝐴(-g𝑃)((𝐴(quot1p𝑅)𝐷)(.r𝑃)𝐷)) + 𝐶))
3827, 34, 373eqtr2d 2770 . . . 4 (𝜑 → ((𝐴 + 𝐶) + (((invg𝑃)‘(𝐴(quot1p𝑅)𝐷))(.r𝑃)𝐷)) = ((𝐴(-g𝑃)((𝐴(quot1p𝑅)𝐷)(.r𝑃)𝐷)) + 𝐶))
3910, 4, 5, 6q1pcl 26095 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝐵𝑈𝐷𝑁) → (𝐵(quot1p𝑅)𝐷) ∈ 𝑈)
4021, 15, 3, 39syl3anc 1373 . . . . . . 7 (𝜑 → (𝐵(quot1p𝑅)𝐷) ∈ 𝑈)
415, 11, 20, 23, 40, 8ringmneg1 20224 . . . . . 6 (𝜑 → (((invg𝑃)‘(𝐵(quot1p𝑅)𝐷))(.r𝑃)𝐷) = ((invg𝑃)‘((𝐵(quot1p𝑅)𝐷)(.r𝑃)𝐷)))
4241oveq2d 7385 . . . . 5 (𝜑 → ((𝐵 + 𝐶) + (((invg𝑃)‘(𝐵(quot1p𝑅)𝐷))(.r𝑃)𝐷)) = ((𝐵 + 𝐶) + ((invg𝑃)‘((𝐵(quot1p𝑅)𝐷)(.r𝑃)𝐷))))
435, 28, 29, 15, 30grpcld 18861 . . . . . 6 (𝜑 → (𝐵 + 𝐶) ∈ 𝑈)
445, 11, 23, 40, 8ringcld 20180 . . . . . 6 (𝜑 → ((𝐵(quot1p𝑅)𝐷)(.r𝑃)𝐷) ∈ 𝑈)
455, 28, 20, 12grpsubval 18899 . . . . . 6 (((𝐵 + 𝐶) ∈ 𝑈 ∧ ((𝐵(quot1p𝑅)𝐷)(.r𝑃)𝐷) ∈ 𝑈) → ((𝐵 + 𝐶)(-g𝑃)((𝐵(quot1p𝑅)𝐷)(.r𝑃)𝐷)) = ((𝐵 + 𝐶) + ((invg𝑃)‘((𝐵(quot1p𝑅)𝐷)(.r𝑃)𝐷))))
4643, 44, 45syl2anc 584 . . . . 5 (𝜑 → ((𝐵 + 𝐶)(-g𝑃)((𝐵(quot1p𝑅)𝐷)(.r𝑃)𝐷)) = ((𝐵 + 𝐶) + ((invg𝑃)‘((𝐵(quot1p𝑅)𝐷)(.r𝑃)𝐷))))
475, 28, 12abladdsub 19726 . . . . . 6 ((𝑃 ∈ Abel ∧ (𝐵𝑈𝐶𝑈 ∧ ((𝐵(quot1p𝑅)𝐷)(.r𝑃)𝐷) ∈ 𝑈)) → ((𝐵 + 𝐶)(-g𝑃)((𝐵(quot1p𝑅)𝐷)(.r𝑃)𝐷)) = ((𝐵(-g𝑃)((𝐵(quot1p𝑅)𝐷)(.r𝑃)𝐷)) + 𝐶))
4835, 15, 30, 44, 47syl13anc 1374 . . . . 5 (𝜑 → ((𝐵 + 𝐶)(-g𝑃)((𝐵(quot1p𝑅)𝐷)(.r𝑃)𝐷)) = ((𝐵(-g𝑃)((𝐵(quot1p𝑅)𝐷)(.r𝑃)𝐷)) + 𝐶))
4942, 46, 483eqtr2d 2770 . . . 4 (𝜑 → ((𝐵 + 𝐶) + (((invg𝑃)‘(𝐵(quot1p𝑅)𝐷))(.r𝑃)𝐷)) = ((𝐵(-g𝑃)((𝐵(quot1p𝑅)𝐷)(.r𝑃)𝐷)) + 𝐶))
5019, 38, 493eqtr4d 2774 . . 3 (𝜑 → ((𝐴 + 𝐶) + (((invg𝑃)‘(𝐴(quot1p𝑅)𝐷))(.r𝑃)𝐷)) = ((𝐵 + 𝐶) + (((invg𝑃)‘(𝐵(quot1p𝑅)𝐷))(.r𝑃)𝐷)))
5150oveq1d 7384 . 2 (𝜑 → (((𝐴 + 𝐶) + (((invg𝑃)‘(𝐴(quot1p𝑅)𝐷))(.r𝑃)𝐷))𝐸𝐷) = (((𝐵 + 𝐶) + (((invg𝑃)‘(𝐵(quot1p𝑅)𝐷))(.r𝑃)𝐷))𝐸𝐷))
525, 20, 29, 25grpinvcld 18902 . . 3 (𝜑 → ((invg𝑃)‘(𝐴(quot1p𝑅)𝐷)) ∈ 𝑈)
534, 5, 6, 9, 28, 11, 21, 31, 3, 52r1pcyc 33565 . 2 (𝜑 → (((𝐴 + 𝐶) + (((invg𝑃)‘(𝐴(quot1p𝑅)𝐷))(.r𝑃)𝐷))𝐸𝐷) = ((𝐴 + 𝐶)𝐸𝐷))
545, 20, 29, 40grpinvcld 18902 . . 3 (𝜑 → ((invg𝑃)‘(𝐵(quot1p𝑅)𝐷)) ∈ 𝑈)
554, 5, 6, 9, 28, 11, 21, 43, 3, 54r1pcyc 33565 . 2 (𝜑 → (((𝐵 + 𝐶) + (((invg𝑃)‘(𝐵(quot1p𝑅)𝐷))(.r𝑃)𝐷))𝐸𝐷) = ((𝐵 + 𝐶)𝐸𝐷))
5651, 53, 553eqtr3d 2772 1 (𝜑 → ((𝐴 + 𝐶)𝐸𝐷) = ((𝐵 + 𝐶)𝐸𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  cfv 6499  (class class class)co 7369  Basecbs 17155  +gcplusg 17196  .rcmulr 17197  invgcminusg 18848  -gcsg 18849  Abelcabl 19695  Ringcrg 20153  Poly1cpl1 22094  Unic1pcuc1p 26065  quot1pcq1p 26066  rem1pcr1p 26067
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122  ax-addf 11123
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-iin 4954  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-of 7633  df-ofr 7634  df-om 7823  df-1st 7947  df-2nd 7948  df-supp 8117  df-tpos 8182  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-er 8648  df-map 8778  df-pm 8779  df-ixp 8848  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-fsupp 9289  df-sup 9369  df-oi 9439  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-z 12506  df-dec 12626  df-uz 12770  df-fz 13445  df-fzo 13592  df-seq 13943  df-hash 14272  df-struct 17093  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-ress 17177  df-plusg 17209  df-mulr 17210  df-starv 17211  df-sca 17212  df-vsca 17213  df-ip 17214  df-tset 17215  df-ple 17216  df-ds 17218  df-unif 17219  df-hom 17220  df-cco 17221  df-0g 17380  df-gsum 17381  df-prds 17386  df-pws 17388  df-mre 17523  df-mrc 17524  df-acs 17526  df-mgm 18549  df-sgrp 18628  df-mnd 18644  df-mhm 18692  df-submnd 18693  df-grp 18850  df-minusg 18851  df-sbg 18852  df-mulg 18982  df-subg 19037  df-ghm 19127  df-cntz 19231  df-cmn 19696  df-abl 19697  df-mgp 20061  df-rng 20073  df-ur 20102  df-ring 20155  df-cring 20156  df-oppr 20257  df-dvdsr 20277  df-unit 20278  df-invr 20308  df-subrng 20466  df-subrg 20490  df-rlreg 20614  df-lmod 20800  df-lss 20870  df-cnfld 21297  df-psr 21851  df-mvr 21852  df-mpl 21853  df-opsr 21855  df-psr1 22097  df-vr1 22098  df-ply1 22099  df-coe1 22100  df-mdeg 25993  df-deg1 25994  df-uc1p 26070  df-q1p 26071  df-r1p 26072
This theorem is referenced by:  r1plmhm  33568
  Copyright terms: Public domain W3C validator