Step | Hyp | Ref
| Expression |
1 | | r1padd1.1 |
. . . . . 6
⊢ (𝜑 → (𝐴𝐸𝐷) = (𝐵𝐸𝐷)) |
2 | | r1padd1.a |
. . . . . . 7
⊢ (𝜑 → 𝐴 ∈ 𝑈) |
3 | | r1padd1.d |
. . . . . . . 8
⊢ (𝜑 → 𝐷 ∈ 𝑁) |
4 | | r1padd1.p |
. . . . . . . . 9
⊢ 𝑃 = (Poly1‘𝑅) |
5 | | r1padd1.u |
. . . . . . . . 9
⊢ 𝑈 = (Base‘𝑃) |
6 | | r1padd1.n |
. . . . . . . . 9
⊢ 𝑁 =
(Unic1p‘𝑅) |
7 | 4, 5, 6 | uc1pcl 25896 |
. . . . . . . 8
⊢ (𝐷 ∈ 𝑁 → 𝐷 ∈ 𝑈) |
8 | 3, 7 | syl 17 |
. . . . . . 7
⊢ (𝜑 → 𝐷 ∈ 𝑈) |
9 | | r1padd1.e |
. . . . . . . 8
⊢ 𝐸 = (rem1p‘𝑅) |
10 | | eqid 2730 |
. . . . . . . 8
⊢
(quot1p‘𝑅) = (quot1p‘𝑅) |
11 | | eqid 2730 |
. . . . . . . 8
⊢
(.r‘𝑃) = (.r‘𝑃) |
12 | | eqid 2730 |
. . . . . . . 8
⊢
(-g‘𝑃) = (-g‘𝑃) |
13 | 9, 4, 5, 10, 11, 12 | r1pval 25909 |
. . . . . . 7
⊢ ((𝐴 ∈ 𝑈 ∧ 𝐷 ∈ 𝑈) → (𝐴𝐸𝐷) = (𝐴(-g‘𝑃)((𝐴(quot1p‘𝑅)𝐷)(.r‘𝑃)𝐷))) |
14 | 2, 8, 13 | syl2anc 582 |
. . . . . 6
⊢ (𝜑 → (𝐴𝐸𝐷) = (𝐴(-g‘𝑃)((𝐴(quot1p‘𝑅)𝐷)(.r‘𝑃)𝐷))) |
15 | | r1padd1.b |
. . . . . . 7
⊢ (𝜑 → 𝐵 ∈ 𝑈) |
16 | 9, 4, 5, 10, 11, 12 | r1pval 25909 |
. . . . . . 7
⊢ ((𝐵 ∈ 𝑈 ∧ 𝐷 ∈ 𝑈) → (𝐵𝐸𝐷) = (𝐵(-g‘𝑃)((𝐵(quot1p‘𝑅)𝐷)(.r‘𝑃)𝐷))) |
17 | 15, 8, 16 | syl2anc 582 |
. . . . . 6
⊢ (𝜑 → (𝐵𝐸𝐷) = (𝐵(-g‘𝑃)((𝐵(quot1p‘𝑅)𝐷)(.r‘𝑃)𝐷))) |
18 | 1, 14, 17 | 3eqtr3d 2778 |
. . . . 5
⊢ (𝜑 → (𝐴(-g‘𝑃)((𝐴(quot1p‘𝑅)𝐷)(.r‘𝑃)𝐷)) = (𝐵(-g‘𝑃)((𝐵(quot1p‘𝑅)𝐷)(.r‘𝑃)𝐷))) |
19 | 18 | oveq1d 7426 |
. . . 4
⊢ (𝜑 → ((𝐴(-g‘𝑃)((𝐴(quot1p‘𝑅)𝐷)(.r‘𝑃)𝐷)) + 𝐶) = ((𝐵(-g‘𝑃)((𝐵(quot1p‘𝑅)𝐷)(.r‘𝑃)𝐷)) + 𝐶)) |
20 | | eqid 2730 |
. . . . . . 7
⊢
(invg‘𝑃) = (invg‘𝑃) |
21 | | r1padd1.r |
. . . . . . . 8
⊢ (𝜑 → 𝑅 ∈ Ring) |
22 | 4 | ply1ring 21990 |
. . . . . . . 8
⊢ (𝑅 ∈ Ring → 𝑃 ∈ Ring) |
23 | 21, 22 | syl 17 |
. . . . . . 7
⊢ (𝜑 → 𝑃 ∈ Ring) |
24 | 10, 4, 5, 6 | q1pcl 25908 |
. . . . . . . 8
⊢ ((𝑅 ∈ Ring ∧ 𝐴 ∈ 𝑈 ∧ 𝐷 ∈ 𝑁) → (𝐴(quot1p‘𝑅)𝐷) ∈ 𝑈) |
25 | 21, 2, 3, 24 | syl3anc 1369 |
. . . . . . 7
⊢ (𝜑 → (𝐴(quot1p‘𝑅)𝐷) ∈ 𝑈) |
26 | 5, 11, 20, 23, 25, 8 | ringmneg1 20192 |
. . . . . 6
⊢ (𝜑 →
(((invg‘𝑃)‘(𝐴(quot1p‘𝑅)𝐷))(.r‘𝑃)𝐷) = ((invg‘𝑃)‘((𝐴(quot1p‘𝑅)𝐷)(.r‘𝑃)𝐷))) |
27 | 26 | oveq2d 7427 |
. . . . 5
⊢ (𝜑 → ((𝐴 + 𝐶) +
(((invg‘𝑃)‘(𝐴(quot1p‘𝑅)𝐷))(.r‘𝑃)𝐷)) = ((𝐴 + 𝐶) +
((invg‘𝑃)‘((𝐴(quot1p‘𝑅)𝐷)(.r‘𝑃)𝐷)))) |
28 | | r1padd1.2 |
. . . . . . 7
⊢ + =
(+g‘𝑃) |
29 | 23 | ringgrpd 20136 |
. . . . . . 7
⊢ (𝜑 → 𝑃 ∈ Grp) |
30 | | r1padd1.c |
. . . . . . 7
⊢ (𝜑 → 𝐶 ∈ 𝑈) |
31 | 5, 28, 29, 2, 30 | grpcld 18869 |
. . . . . 6
⊢ (𝜑 → (𝐴 + 𝐶) ∈ 𝑈) |
32 | 5, 11, 23, 25, 8 | ringcld 20151 |
. . . . . 6
⊢ (𝜑 → ((𝐴(quot1p‘𝑅)𝐷)(.r‘𝑃)𝐷) ∈ 𝑈) |
33 | 5, 28, 20, 12 | grpsubval 18906 |
. . . . . 6
⊢ (((𝐴 + 𝐶) ∈ 𝑈 ∧ ((𝐴(quot1p‘𝑅)𝐷)(.r‘𝑃)𝐷) ∈ 𝑈) → ((𝐴 + 𝐶)(-g‘𝑃)((𝐴(quot1p‘𝑅)𝐷)(.r‘𝑃)𝐷)) = ((𝐴 + 𝐶) +
((invg‘𝑃)‘((𝐴(quot1p‘𝑅)𝐷)(.r‘𝑃)𝐷)))) |
34 | 31, 32, 33 | syl2anc 582 |
. . . . 5
⊢ (𝜑 → ((𝐴 + 𝐶)(-g‘𝑃)((𝐴(quot1p‘𝑅)𝐷)(.r‘𝑃)𝐷)) = ((𝐴 + 𝐶) +
((invg‘𝑃)‘((𝐴(quot1p‘𝑅)𝐷)(.r‘𝑃)𝐷)))) |
35 | 23 | ringabld 20171 |
. . . . . 6
⊢ (𝜑 → 𝑃 ∈ Abel) |
36 | 5, 28, 12 | abladdsub 19721 |
. . . . . 6
⊢ ((𝑃 ∈ Abel ∧ (𝐴 ∈ 𝑈 ∧ 𝐶 ∈ 𝑈 ∧ ((𝐴(quot1p‘𝑅)𝐷)(.r‘𝑃)𝐷) ∈ 𝑈)) → ((𝐴 + 𝐶)(-g‘𝑃)((𝐴(quot1p‘𝑅)𝐷)(.r‘𝑃)𝐷)) = ((𝐴(-g‘𝑃)((𝐴(quot1p‘𝑅)𝐷)(.r‘𝑃)𝐷)) + 𝐶)) |
37 | 35, 2, 30, 32, 36 | syl13anc 1370 |
. . . . 5
⊢ (𝜑 → ((𝐴 + 𝐶)(-g‘𝑃)((𝐴(quot1p‘𝑅)𝐷)(.r‘𝑃)𝐷)) = ((𝐴(-g‘𝑃)((𝐴(quot1p‘𝑅)𝐷)(.r‘𝑃)𝐷)) + 𝐶)) |
38 | 27, 34, 37 | 3eqtr2d 2776 |
. . . 4
⊢ (𝜑 → ((𝐴 + 𝐶) +
(((invg‘𝑃)‘(𝐴(quot1p‘𝑅)𝐷))(.r‘𝑃)𝐷)) = ((𝐴(-g‘𝑃)((𝐴(quot1p‘𝑅)𝐷)(.r‘𝑃)𝐷)) + 𝐶)) |
39 | 10, 4, 5, 6 | q1pcl 25908 |
. . . . . . . 8
⊢ ((𝑅 ∈ Ring ∧ 𝐵 ∈ 𝑈 ∧ 𝐷 ∈ 𝑁) → (𝐵(quot1p‘𝑅)𝐷) ∈ 𝑈) |
40 | 21, 15, 3, 39 | syl3anc 1369 |
. . . . . . 7
⊢ (𝜑 → (𝐵(quot1p‘𝑅)𝐷) ∈ 𝑈) |
41 | 5, 11, 20, 23, 40, 8 | ringmneg1 20192 |
. . . . . 6
⊢ (𝜑 →
(((invg‘𝑃)‘(𝐵(quot1p‘𝑅)𝐷))(.r‘𝑃)𝐷) = ((invg‘𝑃)‘((𝐵(quot1p‘𝑅)𝐷)(.r‘𝑃)𝐷))) |
42 | 41 | oveq2d 7427 |
. . . . 5
⊢ (𝜑 → ((𝐵 + 𝐶) +
(((invg‘𝑃)‘(𝐵(quot1p‘𝑅)𝐷))(.r‘𝑃)𝐷)) = ((𝐵 + 𝐶) +
((invg‘𝑃)‘((𝐵(quot1p‘𝑅)𝐷)(.r‘𝑃)𝐷)))) |
43 | 5, 28, 29, 15, 30 | grpcld 18869 |
. . . . . 6
⊢ (𝜑 → (𝐵 + 𝐶) ∈ 𝑈) |
44 | 5, 11, 23, 40, 8 | ringcld 20151 |
. . . . . 6
⊢ (𝜑 → ((𝐵(quot1p‘𝑅)𝐷)(.r‘𝑃)𝐷) ∈ 𝑈) |
45 | 5, 28, 20, 12 | grpsubval 18906 |
. . . . . 6
⊢ (((𝐵 + 𝐶) ∈ 𝑈 ∧ ((𝐵(quot1p‘𝑅)𝐷)(.r‘𝑃)𝐷) ∈ 𝑈) → ((𝐵 + 𝐶)(-g‘𝑃)((𝐵(quot1p‘𝑅)𝐷)(.r‘𝑃)𝐷)) = ((𝐵 + 𝐶) +
((invg‘𝑃)‘((𝐵(quot1p‘𝑅)𝐷)(.r‘𝑃)𝐷)))) |
46 | 43, 44, 45 | syl2anc 582 |
. . . . 5
⊢ (𝜑 → ((𝐵 + 𝐶)(-g‘𝑃)((𝐵(quot1p‘𝑅)𝐷)(.r‘𝑃)𝐷)) = ((𝐵 + 𝐶) +
((invg‘𝑃)‘((𝐵(quot1p‘𝑅)𝐷)(.r‘𝑃)𝐷)))) |
47 | 5, 28, 12 | abladdsub 19721 |
. . . . . 6
⊢ ((𝑃 ∈ Abel ∧ (𝐵 ∈ 𝑈 ∧ 𝐶 ∈ 𝑈 ∧ ((𝐵(quot1p‘𝑅)𝐷)(.r‘𝑃)𝐷) ∈ 𝑈)) → ((𝐵 + 𝐶)(-g‘𝑃)((𝐵(quot1p‘𝑅)𝐷)(.r‘𝑃)𝐷)) = ((𝐵(-g‘𝑃)((𝐵(quot1p‘𝑅)𝐷)(.r‘𝑃)𝐷)) + 𝐶)) |
48 | 35, 15, 30, 44, 47 | syl13anc 1370 |
. . . . 5
⊢ (𝜑 → ((𝐵 + 𝐶)(-g‘𝑃)((𝐵(quot1p‘𝑅)𝐷)(.r‘𝑃)𝐷)) = ((𝐵(-g‘𝑃)((𝐵(quot1p‘𝑅)𝐷)(.r‘𝑃)𝐷)) + 𝐶)) |
49 | 42, 46, 48 | 3eqtr2d 2776 |
. . . 4
⊢ (𝜑 → ((𝐵 + 𝐶) +
(((invg‘𝑃)‘(𝐵(quot1p‘𝑅)𝐷))(.r‘𝑃)𝐷)) = ((𝐵(-g‘𝑃)((𝐵(quot1p‘𝑅)𝐷)(.r‘𝑃)𝐷)) + 𝐶)) |
50 | 19, 38, 49 | 3eqtr4d 2780 |
. . 3
⊢ (𝜑 → ((𝐴 + 𝐶) +
(((invg‘𝑃)‘(𝐴(quot1p‘𝑅)𝐷))(.r‘𝑃)𝐷)) = ((𝐵 + 𝐶) +
(((invg‘𝑃)‘(𝐵(quot1p‘𝑅)𝐷))(.r‘𝑃)𝐷))) |
51 | 50 | oveq1d 7426 |
. 2
⊢ (𝜑 → (((𝐴 + 𝐶) +
(((invg‘𝑃)‘(𝐴(quot1p‘𝑅)𝐷))(.r‘𝑃)𝐷))𝐸𝐷) = (((𝐵 + 𝐶) +
(((invg‘𝑃)‘(𝐵(quot1p‘𝑅)𝐷))(.r‘𝑃)𝐷))𝐸𝐷)) |
52 | 5, 20, 29, 25 | grpinvcld 18909 |
. . 3
⊢ (𝜑 →
((invg‘𝑃)‘(𝐴(quot1p‘𝑅)𝐷)) ∈ 𝑈) |
53 | 4, 5, 6, 9, 28, 11, 21, 31, 3, 52 | r1pcyc 32952 |
. 2
⊢ (𝜑 → (((𝐴 + 𝐶) +
(((invg‘𝑃)‘(𝐴(quot1p‘𝑅)𝐷))(.r‘𝑃)𝐷))𝐸𝐷) = ((𝐴 + 𝐶)𝐸𝐷)) |
54 | 5, 20, 29, 40 | grpinvcld 18909 |
. . 3
⊢ (𝜑 →
((invg‘𝑃)‘(𝐵(quot1p‘𝑅)𝐷)) ∈ 𝑈) |
55 | 4, 5, 6, 9, 28, 11, 21, 43, 3, 54 | r1pcyc 32952 |
. 2
⊢ (𝜑 → (((𝐵 + 𝐶) +
(((invg‘𝑃)‘(𝐵(quot1p‘𝑅)𝐷))(.r‘𝑃)𝐷))𝐸𝐷) = ((𝐵 + 𝐶)𝐸𝐷)) |
56 | 51, 53, 55 | 3eqtr3d 2778 |
1
⊢ (𝜑 → ((𝐴 + 𝐶)𝐸𝐷) = ((𝐵 + 𝐶)𝐸𝐷)) |