Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  r1padd1 Structured version   Visualization version   GIF version

Theorem r1padd1 33593
Description: Addition property of the polynomial remainder operation, similar to modadd1 13959. (Contributed by Thierry Arnoux, 2-Apr-2025.)
Hypotheses
Ref Expression
r1padd1.p 𝑃 = (Poly1𝑅)
r1padd1.u 𝑈 = (Base‘𝑃)
r1padd1.n 𝑁 = (Unic1p𝑅)
r1padd1.e 𝐸 = (rem1p𝑅)
r1padd1.r (𝜑𝑅 ∈ Ring)
r1padd1.a (𝜑𝐴𝑈)
r1padd1.d (𝜑𝐷𝑁)
r1padd1.1 (𝜑 → (𝐴𝐸𝐷) = (𝐵𝐸𝐷))
r1padd1.2 + = (+g𝑃)
r1padd1.b (𝜑𝐵𝑈)
r1padd1.c (𝜑𝐶𝑈)
Assertion
Ref Expression
r1padd1 (𝜑 → ((𝐴 + 𝐶)𝐸𝐷) = ((𝐵 + 𝐶)𝐸𝐷))

Proof of Theorem r1padd1
StepHypRef Expression
1 r1padd1.1 . . . . . 6 (𝜑 → (𝐴𝐸𝐷) = (𝐵𝐸𝐷))
2 r1padd1.a . . . . . . 7 (𝜑𝐴𝑈)
3 r1padd1.d . . . . . . . 8 (𝜑𝐷𝑁)
4 r1padd1.p . . . . . . . . 9 𝑃 = (Poly1𝑅)
5 r1padd1.u . . . . . . . . 9 𝑈 = (Base‘𝑃)
6 r1padd1.n . . . . . . . . 9 𝑁 = (Unic1p𝑅)
74, 5, 6uc1pcl 26203 . . . . . . . 8 (𝐷𝑁𝐷𝑈)
83, 7syl 17 . . . . . . 7 (𝜑𝐷𝑈)
9 r1padd1.e . . . . . . . 8 𝐸 = (rem1p𝑅)
10 eqid 2740 . . . . . . . 8 (quot1p𝑅) = (quot1p𝑅)
11 eqid 2740 . . . . . . . 8 (.r𝑃) = (.r𝑃)
12 eqid 2740 . . . . . . . 8 (-g𝑃) = (-g𝑃)
139, 4, 5, 10, 11, 12r1pval 26217 . . . . . . 7 ((𝐴𝑈𝐷𝑈) → (𝐴𝐸𝐷) = (𝐴(-g𝑃)((𝐴(quot1p𝑅)𝐷)(.r𝑃)𝐷)))
142, 8, 13syl2anc 583 . . . . . 6 (𝜑 → (𝐴𝐸𝐷) = (𝐴(-g𝑃)((𝐴(quot1p𝑅)𝐷)(.r𝑃)𝐷)))
15 r1padd1.b . . . . . . 7 (𝜑𝐵𝑈)
169, 4, 5, 10, 11, 12r1pval 26217 . . . . . . 7 ((𝐵𝑈𝐷𝑈) → (𝐵𝐸𝐷) = (𝐵(-g𝑃)((𝐵(quot1p𝑅)𝐷)(.r𝑃)𝐷)))
1715, 8, 16syl2anc 583 . . . . . 6 (𝜑 → (𝐵𝐸𝐷) = (𝐵(-g𝑃)((𝐵(quot1p𝑅)𝐷)(.r𝑃)𝐷)))
181, 14, 173eqtr3d 2788 . . . . 5 (𝜑 → (𝐴(-g𝑃)((𝐴(quot1p𝑅)𝐷)(.r𝑃)𝐷)) = (𝐵(-g𝑃)((𝐵(quot1p𝑅)𝐷)(.r𝑃)𝐷)))
1918oveq1d 7463 . . . 4 (𝜑 → ((𝐴(-g𝑃)((𝐴(quot1p𝑅)𝐷)(.r𝑃)𝐷)) + 𝐶) = ((𝐵(-g𝑃)((𝐵(quot1p𝑅)𝐷)(.r𝑃)𝐷)) + 𝐶))
20 eqid 2740 . . . . . . 7 (invg𝑃) = (invg𝑃)
21 r1padd1.r . . . . . . . 8 (𝜑𝑅 ∈ Ring)
224ply1ring 22270 . . . . . . . 8 (𝑅 ∈ Ring → 𝑃 ∈ Ring)
2321, 22syl 17 . . . . . . 7 (𝜑𝑃 ∈ Ring)
2410, 4, 5, 6q1pcl 26216 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝐴𝑈𝐷𝑁) → (𝐴(quot1p𝑅)𝐷) ∈ 𝑈)
2521, 2, 3, 24syl3anc 1371 . . . . . . 7 (𝜑 → (𝐴(quot1p𝑅)𝐷) ∈ 𝑈)
265, 11, 20, 23, 25, 8ringmneg1 20327 . . . . . 6 (𝜑 → (((invg𝑃)‘(𝐴(quot1p𝑅)𝐷))(.r𝑃)𝐷) = ((invg𝑃)‘((𝐴(quot1p𝑅)𝐷)(.r𝑃)𝐷)))
2726oveq2d 7464 . . . . 5 (𝜑 → ((𝐴 + 𝐶) + (((invg𝑃)‘(𝐴(quot1p𝑅)𝐷))(.r𝑃)𝐷)) = ((𝐴 + 𝐶) + ((invg𝑃)‘((𝐴(quot1p𝑅)𝐷)(.r𝑃)𝐷))))
28 r1padd1.2 . . . . . . 7 + = (+g𝑃)
2923ringgrpd 20269 . . . . . . 7 (𝜑𝑃 ∈ Grp)
30 r1padd1.c . . . . . . 7 (𝜑𝐶𝑈)
315, 28, 29, 2, 30grpcld 18987 . . . . . 6 (𝜑 → (𝐴 + 𝐶) ∈ 𝑈)
325, 11, 23, 25, 8ringcld 20286 . . . . . 6 (𝜑 → ((𝐴(quot1p𝑅)𝐷)(.r𝑃)𝐷) ∈ 𝑈)
335, 28, 20, 12grpsubval 19025 . . . . . 6 (((𝐴 + 𝐶) ∈ 𝑈 ∧ ((𝐴(quot1p𝑅)𝐷)(.r𝑃)𝐷) ∈ 𝑈) → ((𝐴 + 𝐶)(-g𝑃)((𝐴(quot1p𝑅)𝐷)(.r𝑃)𝐷)) = ((𝐴 + 𝐶) + ((invg𝑃)‘((𝐴(quot1p𝑅)𝐷)(.r𝑃)𝐷))))
3431, 32, 33syl2anc 583 . . . . 5 (𝜑 → ((𝐴 + 𝐶)(-g𝑃)((𝐴(quot1p𝑅)𝐷)(.r𝑃)𝐷)) = ((𝐴 + 𝐶) + ((invg𝑃)‘((𝐴(quot1p𝑅)𝐷)(.r𝑃)𝐷))))
3523ringabld 20306 . . . . . 6 (𝜑𝑃 ∈ Abel)
365, 28, 12abladdsub 19854 . . . . . 6 ((𝑃 ∈ Abel ∧ (𝐴𝑈𝐶𝑈 ∧ ((𝐴(quot1p𝑅)𝐷)(.r𝑃)𝐷) ∈ 𝑈)) → ((𝐴 + 𝐶)(-g𝑃)((𝐴(quot1p𝑅)𝐷)(.r𝑃)𝐷)) = ((𝐴(-g𝑃)((𝐴(quot1p𝑅)𝐷)(.r𝑃)𝐷)) + 𝐶))
3735, 2, 30, 32, 36syl13anc 1372 . . . . 5 (𝜑 → ((𝐴 + 𝐶)(-g𝑃)((𝐴(quot1p𝑅)𝐷)(.r𝑃)𝐷)) = ((𝐴(-g𝑃)((𝐴(quot1p𝑅)𝐷)(.r𝑃)𝐷)) + 𝐶))
3827, 34, 373eqtr2d 2786 . . . 4 (𝜑 → ((𝐴 + 𝐶) + (((invg𝑃)‘(𝐴(quot1p𝑅)𝐷))(.r𝑃)𝐷)) = ((𝐴(-g𝑃)((𝐴(quot1p𝑅)𝐷)(.r𝑃)𝐷)) + 𝐶))
3910, 4, 5, 6q1pcl 26216 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝐵𝑈𝐷𝑁) → (𝐵(quot1p𝑅)𝐷) ∈ 𝑈)
4021, 15, 3, 39syl3anc 1371 . . . . . . 7 (𝜑 → (𝐵(quot1p𝑅)𝐷) ∈ 𝑈)
415, 11, 20, 23, 40, 8ringmneg1 20327 . . . . . 6 (𝜑 → (((invg𝑃)‘(𝐵(quot1p𝑅)𝐷))(.r𝑃)𝐷) = ((invg𝑃)‘((𝐵(quot1p𝑅)𝐷)(.r𝑃)𝐷)))
4241oveq2d 7464 . . . . 5 (𝜑 → ((𝐵 + 𝐶) + (((invg𝑃)‘(𝐵(quot1p𝑅)𝐷))(.r𝑃)𝐷)) = ((𝐵 + 𝐶) + ((invg𝑃)‘((𝐵(quot1p𝑅)𝐷)(.r𝑃)𝐷))))
435, 28, 29, 15, 30grpcld 18987 . . . . . 6 (𝜑 → (𝐵 + 𝐶) ∈ 𝑈)
445, 11, 23, 40, 8ringcld 20286 . . . . . 6 (𝜑 → ((𝐵(quot1p𝑅)𝐷)(.r𝑃)𝐷) ∈ 𝑈)
455, 28, 20, 12grpsubval 19025 . . . . . 6 (((𝐵 + 𝐶) ∈ 𝑈 ∧ ((𝐵(quot1p𝑅)𝐷)(.r𝑃)𝐷) ∈ 𝑈) → ((𝐵 + 𝐶)(-g𝑃)((𝐵(quot1p𝑅)𝐷)(.r𝑃)𝐷)) = ((𝐵 + 𝐶) + ((invg𝑃)‘((𝐵(quot1p𝑅)𝐷)(.r𝑃)𝐷))))
4643, 44, 45syl2anc 583 . . . . 5 (𝜑 → ((𝐵 + 𝐶)(-g𝑃)((𝐵(quot1p𝑅)𝐷)(.r𝑃)𝐷)) = ((𝐵 + 𝐶) + ((invg𝑃)‘((𝐵(quot1p𝑅)𝐷)(.r𝑃)𝐷))))
475, 28, 12abladdsub 19854 . . . . . 6 ((𝑃 ∈ Abel ∧ (𝐵𝑈𝐶𝑈 ∧ ((𝐵(quot1p𝑅)𝐷)(.r𝑃)𝐷) ∈ 𝑈)) → ((𝐵 + 𝐶)(-g𝑃)((𝐵(quot1p𝑅)𝐷)(.r𝑃)𝐷)) = ((𝐵(-g𝑃)((𝐵(quot1p𝑅)𝐷)(.r𝑃)𝐷)) + 𝐶))
4835, 15, 30, 44, 47syl13anc 1372 . . . . 5 (𝜑 → ((𝐵 + 𝐶)(-g𝑃)((𝐵(quot1p𝑅)𝐷)(.r𝑃)𝐷)) = ((𝐵(-g𝑃)((𝐵(quot1p𝑅)𝐷)(.r𝑃)𝐷)) + 𝐶))
4942, 46, 483eqtr2d 2786 . . . 4 (𝜑 → ((𝐵 + 𝐶) + (((invg𝑃)‘(𝐵(quot1p𝑅)𝐷))(.r𝑃)𝐷)) = ((𝐵(-g𝑃)((𝐵(quot1p𝑅)𝐷)(.r𝑃)𝐷)) + 𝐶))
5019, 38, 493eqtr4d 2790 . . 3 (𝜑 → ((𝐴 + 𝐶) + (((invg𝑃)‘(𝐴(quot1p𝑅)𝐷))(.r𝑃)𝐷)) = ((𝐵 + 𝐶) + (((invg𝑃)‘(𝐵(quot1p𝑅)𝐷))(.r𝑃)𝐷)))
5150oveq1d 7463 . 2 (𝜑 → (((𝐴 + 𝐶) + (((invg𝑃)‘(𝐴(quot1p𝑅)𝐷))(.r𝑃)𝐷))𝐸𝐷) = (((𝐵 + 𝐶) + (((invg𝑃)‘(𝐵(quot1p𝑅)𝐷))(.r𝑃)𝐷))𝐸𝐷))
525, 20, 29, 25grpinvcld 19028 . . 3 (𝜑 → ((invg𝑃)‘(𝐴(quot1p𝑅)𝐷)) ∈ 𝑈)
534, 5, 6, 9, 28, 11, 21, 31, 3, 52r1pcyc 33592 . 2 (𝜑 → (((𝐴 + 𝐶) + (((invg𝑃)‘(𝐴(quot1p𝑅)𝐷))(.r𝑃)𝐷))𝐸𝐷) = ((𝐴 + 𝐶)𝐸𝐷))
545, 20, 29, 40grpinvcld 19028 . . 3 (𝜑 → ((invg𝑃)‘(𝐵(quot1p𝑅)𝐷)) ∈ 𝑈)
554, 5, 6, 9, 28, 11, 21, 43, 3, 54r1pcyc 33592 . 2 (𝜑 → (((𝐵 + 𝐶) + (((invg𝑃)‘(𝐵(quot1p𝑅)𝐷))(.r𝑃)𝐷))𝐸𝐷) = ((𝐵 + 𝐶)𝐸𝐷))
5651, 53, 553eqtr3d 2788 1 (𝜑 → ((𝐴 + 𝐶)𝐸𝐷) = ((𝐵 + 𝐶)𝐸𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2108  cfv 6573  (class class class)co 7448  Basecbs 17258  +gcplusg 17311  .rcmulr 17312  invgcminusg 18974  -gcsg 18975  Abelcabl 19823  Ringcrg 20260  Poly1cpl1 22199  Unic1pcuc1p 26186  quot1pcq1p 26187  rem1pcr1p 26188
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262  ax-addf 11263
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-ofr 7715  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-tpos 8267  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-er 8763  df-map 8886  df-pm 8887  df-ixp 8956  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fsupp 9432  df-sup 9511  df-oi 9579  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-fz 13568  df-fzo 13712  df-seq 14053  df-hash 14380  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-starv 17326  df-sca 17327  df-vsca 17328  df-ip 17329  df-tset 17330  df-ple 17331  df-ds 17333  df-unif 17334  df-hom 17335  df-cco 17336  df-0g 17501  df-gsum 17502  df-prds 17507  df-pws 17509  df-mre 17644  df-mrc 17645  df-acs 17647  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-mhm 18818  df-submnd 18819  df-grp 18976  df-minusg 18977  df-sbg 18978  df-mulg 19108  df-subg 19163  df-ghm 19253  df-cntz 19357  df-cmn 19824  df-abl 19825  df-mgp 20162  df-rng 20180  df-ur 20209  df-ring 20262  df-cring 20263  df-oppr 20360  df-dvdsr 20383  df-unit 20384  df-invr 20414  df-subrng 20572  df-subrg 20597  df-rlreg 20716  df-lmod 20882  df-lss 20953  df-cnfld 21388  df-psr 21952  df-mvr 21953  df-mpl 21954  df-opsr 21956  df-psr1 22202  df-vr1 22203  df-ply1 22204  df-coe1 22205  df-mdeg 26114  df-deg1 26115  df-uc1p 26191  df-q1p 26192  df-r1p 26193
This theorem is referenced by:  r1plmhm  33595
  Copyright terms: Public domain W3C validator