MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rhmcomulmpl Structured version   Visualization version   GIF version

Theorem rhmcomulmpl 22298
Description: Show that the ring homomorphism in rhmmpl 22299 preserves multiplication. (Contributed by SN, 8-Feb-2025.)
Hypotheses
Ref Expression
rhmcomulmpl.p 𝑃 = (𝐼 mPoly 𝑅)
rhmcomulmpl.q 𝑄 = (𝐼 mPoly 𝑆)
rhmcomulmpl.b 𝐵 = (Base‘𝑃)
rhmcomulmpl.c 𝐶 = (Base‘𝑄)
rhmcomulmpl.1 · = (.r𝑃)
rhmcomulmpl.2 = (.r𝑄)
rhmcomulmpl.h (𝜑𝐻 ∈ (𝑅 RingHom 𝑆))
rhmcomulmpl.f (𝜑𝐹𝐵)
rhmcomulmpl.g (𝜑𝐺𝐵)
Assertion
Ref Expression
rhmcomulmpl (𝜑 → (𝐻 ∘ (𝐹 · 𝐺)) = ((𝐻𝐹) (𝐻𝐺)))

Proof of Theorem rhmcomulmpl
Dummy variables 𝑑 𝑘 𝑒 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rhmcomulmpl.h . . . . 5 (𝜑𝐻 ∈ (𝑅 RingHom 𝑆))
2 eqid 2733 . . . . . 6 (Base‘𝑅) = (Base‘𝑅)
3 eqid 2733 . . . . . 6 (Base‘𝑆) = (Base‘𝑆)
42, 3rhmf 20404 . . . . 5 (𝐻 ∈ (𝑅 RingHom 𝑆) → 𝐻:(Base‘𝑅)⟶(Base‘𝑆))
51, 4syl 17 . . . 4 (𝜑𝐻:(Base‘𝑅)⟶(Base‘𝑆))
6 eqid 2733 . . . . 5 {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
7 rhmrcl1 20396 . . . . . 6 (𝐻 ∈ (𝑅 RingHom 𝑆) → 𝑅 ∈ Ring)
81, 7syl 17 . . . . 5 (𝜑𝑅 ∈ Ring)
9 rhmcomulmpl.p . . . . . 6 𝑃 = (𝐼 mPoly 𝑅)
10 rhmcomulmpl.b . . . . . 6 𝐵 = (Base‘𝑃)
11 rhmcomulmpl.f . . . . . 6 (𝜑𝐹𝐵)
129, 2, 10, 6, 11mplelf 21936 . . . . 5 (𝜑𝐹:{𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}⟶(Base‘𝑅))
13 rhmcomulmpl.g . . . . . 6 (𝜑𝐺𝐵)
149, 2, 10, 6, 13mplelf 21936 . . . . 5 (𝜑𝐺:{𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}⟶(Base‘𝑅))
156, 8, 12, 14rhmpsrlem2 21880 . . . 4 ((𝜑𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) → (𝑅 Σg (𝑑 ∈ {𝑒 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑒r𝑘} ↦ ((𝐹𝑑)(.r𝑅)(𝐺‘(𝑘f𝑑))))) ∈ (Base‘𝑅))
165, 15cofmpt 7071 . . 3 (𝜑 → (𝐻 ∘ (𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ (𝑅 Σg (𝑑 ∈ {𝑒 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑒r𝑘} ↦ ((𝐹𝑑)(.r𝑅)(𝐺‘(𝑘f𝑑))))))) = (𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ (𝐻‘(𝑅 Σg (𝑑 ∈ {𝑒 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑒r𝑘} ↦ ((𝐹𝑑)(.r𝑅)(𝐺‘(𝑘f𝑑))))))))
17 eqid 2733 . . . . . 6 (0g𝑅) = (0g𝑅)
188ringcmnd 20204 . . . . . . 7 (𝜑𝑅 ∈ CMnd)
1918adantr 480 . . . . . 6 ((𝜑𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) → 𝑅 ∈ CMnd)
20 rhmrcl2 20397 . . . . . . . . . 10 (𝐻 ∈ (𝑅 RingHom 𝑆) → 𝑆 ∈ Ring)
211, 20syl 17 . . . . . . . . 9 (𝜑𝑆 ∈ Ring)
2221ringgrpd 20162 . . . . . . . 8 (𝜑𝑆 ∈ Grp)
2322grpmndd 18861 . . . . . . 7 (𝜑𝑆 ∈ Mnd)
2423adantr 480 . . . . . 6 ((𝜑𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) → 𝑆 ∈ Mnd)
25 ovex 7385 . . . . . . . . 9 (ℕ0m 𝐼) ∈ V
2625rabex 5279 . . . . . . . 8 {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∈ V
2726rabex 5279 . . . . . . 7 {𝑒 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑒r𝑘} ∈ V
2827a1i 11 . . . . . 6 ((𝜑𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) → {𝑒 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑒r𝑘} ∈ V)
29 rhmghm 20403 . . . . . . . 8 (𝐻 ∈ (𝑅 RingHom 𝑆) → 𝐻 ∈ (𝑅 GrpHom 𝑆))
30 ghmmhm 19140 . . . . . . . 8 (𝐻 ∈ (𝑅 GrpHom 𝑆) → 𝐻 ∈ (𝑅 MndHom 𝑆))
311, 29, 303syl 18 . . . . . . 7 (𝜑𝐻 ∈ (𝑅 MndHom 𝑆))
3231adantr 480 . . . . . 6 ((𝜑𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) → 𝐻 ∈ (𝑅 MndHom 𝑆))
33 eqid 2733 . . . . . . 7 (.r𝑅) = (.r𝑅)
348ad2antrr 726 . . . . . . 7 (((𝜑𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑑 ∈ {𝑒 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑒r𝑘}) → 𝑅 ∈ Ring)
35 elrabi 3639 . . . . . . . . 9 (𝑑 ∈ {𝑒 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑒r𝑘} → 𝑑 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin})
3612ffvelcdmda 7023 . . . . . . . . 9 ((𝜑𝑑 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) → (𝐹𝑑) ∈ (Base‘𝑅))
3735, 36sylan2 593 . . . . . . . 8 ((𝜑𝑑 ∈ {𝑒 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑒r𝑘}) → (𝐹𝑑) ∈ (Base‘𝑅))
3837adantlr 715 . . . . . . 7 (((𝜑𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑑 ∈ {𝑒 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑒r𝑘}) → (𝐹𝑑) ∈ (Base‘𝑅))
3914ad2antrr 726 . . . . . . . 8 (((𝜑𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑑 ∈ {𝑒 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑒r𝑘}) → 𝐺:{𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}⟶(Base‘𝑅))
40 eqid 2733 . . . . . . . . . . 11 {𝑒 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑒r𝑘} = {𝑒 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑒r𝑘}
416, 40psrbagconcl 21866 . . . . . . . . . 10 ((𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∧ 𝑑 ∈ {𝑒 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑒r𝑘}) → (𝑘f𝑑) ∈ {𝑒 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑒r𝑘})
42 elrabi 3639 . . . . . . . . . 10 ((𝑘f𝑑) ∈ {𝑒 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑒r𝑘} → (𝑘f𝑑) ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin})
4341, 42syl 17 . . . . . . . . 9 ((𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∧ 𝑑 ∈ {𝑒 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑒r𝑘}) → (𝑘f𝑑) ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin})
4443adantll 714 . . . . . . . 8 (((𝜑𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑑 ∈ {𝑒 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑒r𝑘}) → (𝑘f𝑑) ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin})
4539, 44ffvelcdmd 7024 . . . . . . 7 (((𝜑𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑑 ∈ {𝑒 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑒r𝑘}) → (𝐺‘(𝑘f𝑑)) ∈ (Base‘𝑅))
462, 33, 34, 38, 45ringcld 20180 . . . . . 6 (((𝜑𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑑 ∈ {𝑒 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑒r𝑘}) → ((𝐹𝑑)(.r𝑅)(𝐺‘(𝑘f𝑑))) ∈ (Base‘𝑅))
476, 8, 12, 14rhmpsrlem1 21879 . . . . . 6 ((𝜑𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) → (𝑑 ∈ {𝑒 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑒r𝑘} ↦ ((𝐹𝑑)(.r𝑅)(𝐺‘(𝑘f𝑑)))) finSupp (0g𝑅))
482, 17, 19, 24, 28, 32, 46, 47gsummptmhm 19854 . . . . 5 ((𝜑𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) → (𝑆 Σg (𝑑 ∈ {𝑒 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑒r𝑘} ↦ (𝐻‘((𝐹𝑑)(.r𝑅)(𝐺‘(𝑘f𝑑)))))) = (𝐻‘(𝑅 Σg (𝑑 ∈ {𝑒 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑒r𝑘} ↦ ((𝐹𝑑)(.r𝑅)(𝐺‘(𝑘f𝑑)))))))
491ad2antrr 726 . . . . . . . . 9 (((𝜑𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑑 ∈ {𝑒 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑒r𝑘}) → 𝐻 ∈ (𝑅 RingHom 𝑆))
50 eqid 2733 . . . . . . . . . 10 (.r𝑆) = (.r𝑆)
512, 33, 50rhmmul 20405 . . . . . . . . 9 ((𝐻 ∈ (𝑅 RingHom 𝑆) ∧ (𝐹𝑑) ∈ (Base‘𝑅) ∧ (𝐺‘(𝑘f𝑑)) ∈ (Base‘𝑅)) → (𝐻‘((𝐹𝑑)(.r𝑅)(𝐺‘(𝑘f𝑑)))) = ((𝐻‘(𝐹𝑑))(.r𝑆)(𝐻‘(𝐺‘(𝑘f𝑑)))))
5249, 38, 45, 51syl3anc 1373 . . . . . . . 8 (((𝜑𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑑 ∈ {𝑒 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑒r𝑘}) → (𝐻‘((𝐹𝑑)(.r𝑅)(𝐺‘(𝑘f𝑑)))) = ((𝐻‘(𝐹𝑑))(.r𝑆)(𝐻‘(𝐺‘(𝑘f𝑑)))))
5312ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑑 ∈ {𝑒 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑒r𝑘}) → 𝐹:{𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}⟶(Base‘𝑅))
5435adantl 481 . . . . . . . . . 10 (((𝜑𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑑 ∈ {𝑒 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑒r𝑘}) → 𝑑 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin})
5553, 54fvco3d 6928 . . . . . . . . 9 (((𝜑𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑑 ∈ {𝑒 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑒r𝑘}) → ((𝐻𝐹)‘𝑑) = (𝐻‘(𝐹𝑑)))
5639, 44fvco3d 6928 . . . . . . . . 9 (((𝜑𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑑 ∈ {𝑒 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑒r𝑘}) → ((𝐻𝐺)‘(𝑘f𝑑)) = (𝐻‘(𝐺‘(𝑘f𝑑))))
5755, 56oveq12d 7370 . . . . . . . 8 (((𝜑𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑑 ∈ {𝑒 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑒r𝑘}) → (((𝐻𝐹)‘𝑑)(.r𝑆)((𝐻𝐺)‘(𝑘f𝑑))) = ((𝐻‘(𝐹𝑑))(.r𝑆)(𝐻‘(𝐺‘(𝑘f𝑑)))))
5852, 57eqtr4d 2771 . . . . . . 7 (((𝜑𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑑 ∈ {𝑒 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑒r𝑘}) → (𝐻‘((𝐹𝑑)(.r𝑅)(𝐺‘(𝑘f𝑑)))) = (((𝐻𝐹)‘𝑑)(.r𝑆)((𝐻𝐺)‘(𝑘f𝑑))))
5958mpteq2dva 5186 . . . . . 6 ((𝜑𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) → (𝑑 ∈ {𝑒 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑒r𝑘} ↦ (𝐻‘((𝐹𝑑)(.r𝑅)(𝐺‘(𝑘f𝑑))))) = (𝑑 ∈ {𝑒 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑒r𝑘} ↦ (((𝐻𝐹)‘𝑑)(.r𝑆)((𝐻𝐺)‘(𝑘f𝑑)))))
6059oveq2d 7368 . . . . 5 ((𝜑𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) → (𝑆 Σg (𝑑 ∈ {𝑒 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑒r𝑘} ↦ (𝐻‘((𝐹𝑑)(.r𝑅)(𝐺‘(𝑘f𝑑)))))) = (𝑆 Σg (𝑑 ∈ {𝑒 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑒r𝑘} ↦ (((𝐻𝐹)‘𝑑)(.r𝑆)((𝐻𝐺)‘(𝑘f𝑑))))))
6148, 60eqtr3d 2770 . . . 4 ((𝜑𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) → (𝐻‘(𝑅 Σg (𝑑 ∈ {𝑒 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑒r𝑘} ↦ ((𝐹𝑑)(.r𝑅)(𝐺‘(𝑘f𝑑)))))) = (𝑆 Σg (𝑑 ∈ {𝑒 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑒r𝑘} ↦ (((𝐻𝐹)‘𝑑)(.r𝑆)((𝐻𝐺)‘(𝑘f𝑑))))))
6261mpteq2dva 5186 . . 3 (𝜑 → (𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ (𝐻‘(𝑅 Σg (𝑑 ∈ {𝑒 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑒r𝑘} ↦ ((𝐹𝑑)(.r𝑅)(𝐺‘(𝑘f𝑑))))))) = (𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ (𝑆 Σg (𝑑 ∈ {𝑒 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑒r𝑘} ↦ (((𝐻𝐹)‘𝑑)(.r𝑆)((𝐻𝐺)‘(𝑘f𝑑)))))))
6316, 62eqtrd 2768 . 2 (𝜑 → (𝐻 ∘ (𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ (𝑅 Σg (𝑑 ∈ {𝑒 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑒r𝑘} ↦ ((𝐹𝑑)(.r𝑅)(𝐺‘(𝑘f𝑑))))))) = (𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ (𝑆 Σg (𝑑 ∈ {𝑒 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑒r𝑘} ↦ (((𝐻𝐹)‘𝑑)(.r𝑆)((𝐻𝐺)‘(𝑘f𝑑)))))))
64 rhmcomulmpl.1 . . . 4 · = (.r𝑃)
659, 10, 33, 64, 6, 11, 13mplmul 21949 . . 3 (𝜑 → (𝐹 · 𝐺) = (𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ (𝑅 Σg (𝑑 ∈ {𝑒 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑒r𝑘} ↦ ((𝐹𝑑)(.r𝑅)(𝐺‘(𝑘f𝑑)))))))
6665coeq2d 5806 . 2 (𝜑 → (𝐻 ∘ (𝐹 · 𝐺)) = (𝐻 ∘ (𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ (𝑅 Σg (𝑑 ∈ {𝑒 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑒r𝑘} ↦ ((𝐹𝑑)(.r𝑅)(𝐺‘(𝑘f𝑑))))))))
67 rhmcomulmpl.q . . 3 𝑄 = (𝐼 mPoly 𝑆)
68 rhmcomulmpl.c . . 3 𝐶 = (Base‘𝑄)
69 rhmcomulmpl.2 . . 3 = (.r𝑄)
709, 67, 10, 68, 31, 11mhmcompl 22296 . . 3 (𝜑 → (𝐻𝐹) ∈ 𝐶)
719, 67, 10, 68, 31, 13mhmcompl 22296 . . 3 (𝜑 → (𝐻𝐺) ∈ 𝐶)
7267, 68, 50, 69, 6, 70, 71mplmul 21949 . 2 (𝜑 → ((𝐻𝐹) (𝐻𝐺)) = (𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ (𝑆 Σg (𝑑 ∈ {𝑒 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑒r𝑘} ↦ (((𝐻𝐹)‘𝑑)(.r𝑆)((𝐻𝐺)‘(𝑘f𝑑)))))))
7363, 66, 723eqtr4d 2778 1 (𝜑 → (𝐻 ∘ (𝐹 · 𝐺)) = ((𝐻𝐹) (𝐻𝐺)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113  {crab 3396  Vcvv 3437   class class class wbr 5093  cmpt 5174  ccnv 5618  cima 5622  ccom 5623  wf 6482  cfv 6486  (class class class)co 7352  f cof 7614  r cofr 7615  m cmap 8756  Fincfn 8875  cle 11154  cmin 11351  cn 12132  0cn0 12388  Basecbs 17122  .rcmulr 17164  0gc0g 17345   Σg cgsu 17346  Mndcmnd 18644   MndHom cmhm 18691   GrpHom cghm 19126  CMndccmn 19694  Ringcrg 20153   RingHom crh 20389   mPoly cmpl 21845
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-tp 4580  df-op 4582  df-uni 4859  df-int 4898  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-of 7616  df-ofr 7617  df-om 7803  df-1st 7927  df-2nd 7928  df-supp 8097  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-1o 8391  df-er 8628  df-map 8758  df-pm 8759  df-ixp 8828  df-en 8876  df-dom 8877  df-sdom 8878  df-fin 8879  df-fsupp 9253  df-oi 9403  df-card 9839  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-nn 12133  df-2 12195  df-3 12196  df-4 12197  df-5 12198  df-6 12199  df-7 12200  df-8 12201  df-9 12202  df-n0 12389  df-z 12476  df-uz 12739  df-fz 13410  df-fzo 13557  df-seq 13911  df-hash 14240  df-struct 17060  df-sets 17077  df-slot 17095  df-ndx 17107  df-base 17123  df-ress 17144  df-plusg 17176  df-mulr 17177  df-sca 17179  df-vsca 17180  df-tset 17182  df-0g 17347  df-gsum 17348  df-mgm 18550  df-sgrp 18629  df-mnd 18645  df-mhm 18693  df-grp 18851  df-minusg 18852  df-ghm 19127  df-cntz 19231  df-cmn 19696  df-abl 19697  df-mgp 20061  df-ur 20102  df-ring 20155  df-rhm 20392  df-psr 21848  df-mpl 21850
This theorem is referenced by:  rhmmpl  22299  selvmul  42707
  Copyright terms: Public domain W3C validator