MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rhmcomulmpl Structured version   Visualization version   GIF version

Theorem rhmcomulmpl 22402
Description: Show that the ring homomorphism in rhmmpl 22403 preserves multiplication. (Contributed by SN, 8-Feb-2025.)
Hypotheses
Ref Expression
rhmcomulmpl.p 𝑃 = (𝐼 mPoly 𝑅)
rhmcomulmpl.q 𝑄 = (𝐼 mPoly 𝑆)
rhmcomulmpl.b 𝐵 = (Base‘𝑃)
rhmcomulmpl.c 𝐶 = (Base‘𝑄)
rhmcomulmpl.1 · = (.r𝑃)
rhmcomulmpl.2 = (.r𝑄)
rhmcomulmpl.h (𝜑𝐻 ∈ (𝑅 RingHom 𝑆))
rhmcomulmpl.f (𝜑𝐹𝐵)
rhmcomulmpl.g (𝜑𝐺𝐵)
Assertion
Ref Expression
rhmcomulmpl (𝜑 → (𝐻 ∘ (𝐹 · 𝐺)) = ((𝐻𝐹) (𝐻𝐺)))

Proof of Theorem rhmcomulmpl
Dummy variables 𝑑 𝑘 𝑒 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rhmcomulmpl.h . . . . 5 (𝜑𝐻 ∈ (𝑅 RingHom 𝑆))
2 eqid 2735 . . . . . 6 (Base‘𝑅) = (Base‘𝑅)
3 eqid 2735 . . . . . 6 (Base‘𝑆) = (Base‘𝑆)
42, 3rhmf 20502 . . . . 5 (𝐻 ∈ (𝑅 RingHom 𝑆) → 𝐻:(Base‘𝑅)⟶(Base‘𝑆))
51, 4syl 17 . . . 4 (𝜑𝐻:(Base‘𝑅)⟶(Base‘𝑆))
6 eqid 2735 . . . . 5 {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
7 rhmrcl1 20493 . . . . . 6 (𝐻 ∈ (𝑅 RingHom 𝑆) → 𝑅 ∈ Ring)
81, 7syl 17 . . . . 5 (𝜑𝑅 ∈ Ring)
9 rhmcomulmpl.p . . . . . 6 𝑃 = (𝐼 mPoly 𝑅)
10 rhmcomulmpl.b . . . . . 6 𝐵 = (Base‘𝑃)
11 rhmcomulmpl.f . . . . . 6 (𝜑𝐹𝐵)
129, 2, 10, 6, 11mplelf 22036 . . . . 5 (𝜑𝐹:{𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}⟶(Base‘𝑅))
13 rhmcomulmpl.g . . . . . 6 (𝜑𝐺𝐵)
149, 2, 10, 6, 13mplelf 22036 . . . . 5 (𝜑𝐺:{𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}⟶(Base‘𝑅))
156, 8, 12, 14rhmpsrlem2 21979 . . . 4 ((𝜑𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) → (𝑅 Σg (𝑑 ∈ {𝑒 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑒r𝑘} ↦ ((𝐹𝑑)(.r𝑅)(𝐺‘(𝑘f𝑑))))) ∈ (Base‘𝑅))
165, 15cofmpt 7152 . . 3 (𝜑 → (𝐻 ∘ (𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ (𝑅 Σg (𝑑 ∈ {𝑒 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑒r𝑘} ↦ ((𝐹𝑑)(.r𝑅)(𝐺‘(𝑘f𝑑))))))) = (𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ (𝐻‘(𝑅 Σg (𝑑 ∈ {𝑒 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑒r𝑘} ↦ ((𝐹𝑑)(.r𝑅)(𝐺‘(𝑘f𝑑))))))))
17 eqid 2735 . . . . . 6 (0g𝑅) = (0g𝑅)
188ringcmnd 20298 . . . . . . 7 (𝜑𝑅 ∈ CMnd)
1918adantr 480 . . . . . 6 ((𝜑𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) → 𝑅 ∈ CMnd)
20 rhmrcl2 20494 . . . . . . . . . 10 (𝐻 ∈ (𝑅 RingHom 𝑆) → 𝑆 ∈ Ring)
211, 20syl 17 . . . . . . . . 9 (𝜑𝑆 ∈ Ring)
2221ringgrpd 20260 . . . . . . . 8 (𝜑𝑆 ∈ Grp)
2322grpmndd 18977 . . . . . . 7 (𝜑𝑆 ∈ Mnd)
2423adantr 480 . . . . . 6 ((𝜑𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) → 𝑆 ∈ Mnd)
25 ovex 7464 . . . . . . . . 9 (ℕ0m 𝐼) ∈ V
2625rabex 5345 . . . . . . . 8 {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∈ V
2726rabex 5345 . . . . . . 7 {𝑒 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑒r𝑘} ∈ V
2827a1i 11 . . . . . 6 ((𝜑𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) → {𝑒 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑒r𝑘} ∈ V)
29 rhmghm 20501 . . . . . . . 8 (𝐻 ∈ (𝑅 RingHom 𝑆) → 𝐻 ∈ (𝑅 GrpHom 𝑆))
30 ghmmhm 19257 . . . . . . . 8 (𝐻 ∈ (𝑅 GrpHom 𝑆) → 𝐻 ∈ (𝑅 MndHom 𝑆))
311, 29, 303syl 18 . . . . . . 7 (𝜑𝐻 ∈ (𝑅 MndHom 𝑆))
3231adantr 480 . . . . . 6 ((𝜑𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) → 𝐻 ∈ (𝑅 MndHom 𝑆))
33 eqid 2735 . . . . . . 7 (.r𝑅) = (.r𝑅)
348ad2antrr 726 . . . . . . 7 (((𝜑𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑑 ∈ {𝑒 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑒r𝑘}) → 𝑅 ∈ Ring)
35 elrabi 3690 . . . . . . . . 9 (𝑑 ∈ {𝑒 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑒r𝑘} → 𝑑 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin})
3612ffvelcdmda 7104 . . . . . . . . 9 ((𝜑𝑑 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) → (𝐹𝑑) ∈ (Base‘𝑅))
3735, 36sylan2 593 . . . . . . . 8 ((𝜑𝑑 ∈ {𝑒 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑒r𝑘}) → (𝐹𝑑) ∈ (Base‘𝑅))
3837adantlr 715 . . . . . . 7 (((𝜑𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑑 ∈ {𝑒 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑒r𝑘}) → (𝐹𝑑) ∈ (Base‘𝑅))
3914ad2antrr 726 . . . . . . . 8 (((𝜑𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑑 ∈ {𝑒 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑒r𝑘}) → 𝐺:{𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}⟶(Base‘𝑅))
40 eqid 2735 . . . . . . . . . . 11 {𝑒 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑒r𝑘} = {𝑒 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑒r𝑘}
416, 40psrbagconcl 21965 . . . . . . . . . 10 ((𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∧ 𝑑 ∈ {𝑒 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑒r𝑘}) → (𝑘f𝑑) ∈ {𝑒 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑒r𝑘})
42 elrabi 3690 . . . . . . . . . 10 ((𝑘f𝑑) ∈ {𝑒 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑒r𝑘} → (𝑘f𝑑) ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin})
4341, 42syl 17 . . . . . . . . 9 ((𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∧ 𝑑 ∈ {𝑒 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑒r𝑘}) → (𝑘f𝑑) ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin})
4443adantll 714 . . . . . . . 8 (((𝜑𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑑 ∈ {𝑒 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑒r𝑘}) → (𝑘f𝑑) ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin})
4539, 44ffvelcdmd 7105 . . . . . . 7 (((𝜑𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑑 ∈ {𝑒 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑒r𝑘}) → (𝐺‘(𝑘f𝑑)) ∈ (Base‘𝑅))
462, 33, 34, 38, 45ringcld 20277 . . . . . 6 (((𝜑𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑑 ∈ {𝑒 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑒r𝑘}) → ((𝐹𝑑)(.r𝑅)(𝐺‘(𝑘f𝑑))) ∈ (Base‘𝑅))
476, 8, 12, 14rhmpsrlem1 21978 . . . . . 6 ((𝜑𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) → (𝑑 ∈ {𝑒 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑒r𝑘} ↦ ((𝐹𝑑)(.r𝑅)(𝐺‘(𝑘f𝑑)))) finSupp (0g𝑅))
482, 17, 19, 24, 28, 32, 46, 47gsummptmhm 19973 . . . . 5 ((𝜑𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) → (𝑆 Σg (𝑑 ∈ {𝑒 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑒r𝑘} ↦ (𝐻‘((𝐹𝑑)(.r𝑅)(𝐺‘(𝑘f𝑑)))))) = (𝐻‘(𝑅 Σg (𝑑 ∈ {𝑒 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑒r𝑘} ↦ ((𝐹𝑑)(.r𝑅)(𝐺‘(𝑘f𝑑)))))))
491ad2antrr 726 . . . . . . . . 9 (((𝜑𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑑 ∈ {𝑒 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑒r𝑘}) → 𝐻 ∈ (𝑅 RingHom 𝑆))
50 eqid 2735 . . . . . . . . . 10 (.r𝑆) = (.r𝑆)
512, 33, 50rhmmul 20503 . . . . . . . . 9 ((𝐻 ∈ (𝑅 RingHom 𝑆) ∧ (𝐹𝑑) ∈ (Base‘𝑅) ∧ (𝐺‘(𝑘f𝑑)) ∈ (Base‘𝑅)) → (𝐻‘((𝐹𝑑)(.r𝑅)(𝐺‘(𝑘f𝑑)))) = ((𝐻‘(𝐹𝑑))(.r𝑆)(𝐻‘(𝐺‘(𝑘f𝑑)))))
5249, 38, 45, 51syl3anc 1370 . . . . . . . 8 (((𝜑𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑑 ∈ {𝑒 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑒r𝑘}) → (𝐻‘((𝐹𝑑)(.r𝑅)(𝐺‘(𝑘f𝑑)))) = ((𝐻‘(𝐹𝑑))(.r𝑆)(𝐻‘(𝐺‘(𝑘f𝑑)))))
5312ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑑 ∈ {𝑒 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑒r𝑘}) → 𝐹:{𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}⟶(Base‘𝑅))
5435adantl 481 . . . . . . . . . 10 (((𝜑𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑑 ∈ {𝑒 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑒r𝑘}) → 𝑑 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin})
5553, 54fvco3d 7009 . . . . . . . . 9 (((𝜑𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑑 ∈ {𝑒 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑒r𝑘}) → ((𝐻𝐹)‘𝑑) = (𝐻‘(𝐹𝑑)))
5639, 44fvco3d 7009 . . . . . . . . 9 (((𝜑𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑑 ∈ {𝑒 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑒r𝑘}) → ((𝐻𝐺)‘(𝑘f𝑑)) = (𝐻‘(𝐺‘(𝑘f𝑑))))
5755, 56oveq12d 7449 . . . . . . . 8 (((𝜑𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑑 ∈ {𝑒 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑒r𝑘}) → (((𝐻𝐹)‘𝑑)(.r𝑆)((𝐻𝐺)‘(𝑘f𝑑))) = ((𝐻‘(𝐹𝑑))(.r𝑆)(𝐻‘(𝐺‘(𝑘f𝑑)))))
5852, 57eqtr4d 2778 . . . . . . 7 (((𝜑𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑑 ∈ {𝑒 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑒r𝑘}) → (𝐻‘((𝐹𝑑)(.r𝑅)(𝐺‘(𝑘f𝑑)))) = (((𝐻𝐹)‘𝑑)(.r𝑆)((𝐻𝐺)‘(𝑘f𝑑))))
5958mpteq2dva 5248 . . . . . 6 ((𝜑𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) → (𝑑 ∈ {𝑒 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑒r𝑘} ↦ (𝐻‘((𝐹𝑑)(.r𝑅)(𝐺‘(𝑘f𝑑))))) = (𝑑 ∈ {𝑒 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑒r𝑘} ↦ (((𝐻𝐹)‘𝑑)(.r𝑆)((𝐻𝐺)‘(𝑘f𝑑)))))
6059oveq2d 7447 . . . . 5 ((𝜑𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) → (𝑆 Σg (𝑑 ∈ {𝑒 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑒r𝑘} ↦ (𝐻‘((𝐹𝑑)(.r𝑅)(𝐺‘(𝑘f𝑑)))))) = (𝑆 Σg (𝑑 ∈ {𝑒 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑒r𝑘} ↦ (((𝐻𝐹)‘𝑑)(.r𝑆)((𝐻𝐺)‘(𝑘f𝑑))))))
6148, 60eqtr3d 2777 . . . 4 ((𝜑𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) → (𝐻‘(𝑅 Σg (𝑑 ∈ {𝑒 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑒r𝑘} ↦ ((𝐹𝑑)(.r𝑅)(𝐺‘(𝑘f𝑑)))))) = (𝑆 Σg (𝑑 ∈ {𝑒 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑒r𝑘} ↦ (((𝐻𝐹)‘𝑑)(.r𝑆)((𝐻𝐺)‘(𝑘f𝑑))))))
6261mpteq2dva 5248 . . 3 (𝜑 → (𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ (𝐻‘(𝑅 Σg (𝑑 ∈ {𝑒 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑒r𝑘} ↦ ((𝐹𝑑)(.r𝑅)(𝐺‘(𝑘f𝑑))))))) = (𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ (𝑆 Σg (𝑑 ∈ {𝑒 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑒r𝑘} ↦ (((𝐻𝐹)‘𝑑)(.r𝑆)((𝐻𝐺)‘(𝑘f𝑑)))))))
6316, 62eqtrd 2775 . 2 (𝜑 → (𝐻 ∘ (𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ (𝑅 Σg (𝑑 ∈ {𝑒 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑒r𝑘} ↦ ((𝐹𝑑)(.r𝑅)(𝐺‘(𝑘f𝑑))))))) = (𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ (𝑆 Σg (𝑑 ∈ {𝑒 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑒r𝑘} ↦ (((𝐻𝐹)‘𝑑)(.r𝑆)((𝐻𝐺)‘(𝑘f𝑑)))))))
64 rhmcomulmpl.1 . . . 4 · = (.r𝑃)
659, 10, 33, 64, 6, 11, 13mplmul 22049 . . 3 (𝜑 → (𝐹 · 𝐺) = (𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ (𝑅 Σg (𝑑 ∈ {𝑒 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑒r𝑘} ↦ ((𝐹𝑑)(.r𝑅)(𝐺‘(𝑘f𝑑)))))))
6665coeq2d 5876 . 2 (𝜑 → (𝐻 ∘ (𝐹 · 𝐺)) = (𝐻 ∘ (𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ (𝑅 Σg (𝑑 ∈ {𝑒 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑒r𝑘} ↦ ((𝐹𝑑)(.r𝑅)(𝐺‘(𝑘f𝑑))))))))
67 rhmcomulmpl.q . . 3 𝑄 = (𝐼 mPoly 𝑆)
68 rhmcomulmpl.c . . 3 𝐶 = (Base‘𝑄)
69 rhmcomulmpl.2 . . 3 = (.r𝑄)
709, 67, 10, 68, 31, 11mhmcompl 22400 . . 3 (𝜑 → (𝐻𝐹) ∈ 𝐶)
719, 67, 10, 68, 31, 13mhmcompl 22400 . . 3 (𝜑 → (𝐻𝐺) ∈ 𝐶)
7267, 68, 50, 69, 6, 70, 71mplmul 22049 . 2 (𝜑 → ((𝐻𝐹) (𝐻𝐺)) = (𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ (𝑆 Σg (𝑑 ∈ {𝑒 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑒r𝑘} ↦ (((𝐻𝐹)‘𝑑)(.r𝑆)((𝐻𝐺)‘(𝑘f𝑑)))))))
7363, 66, 723eqtr4d 2785 1 (𝜑 → (𝐻 ∘ (𝐹 · 𝐺)) = ((𝐻𝐹) (𝐻𝐺)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2106  {crab 3433  Vcvv 3478   class class class wbr 5148  cmpt 5231  ccnv 5688  cima 5692  ccom 5693  wf 6559  cfv 6563  (class class class)co 7431  f cof 7695  r cofr 7696  m cmap 8865  Fincfn 8984  cle 11294  cmin 11490  cn 12264  0cn0 12524  Basecbs 17245  .rcmulr 17299  0gc0g 17486   Σg cgsu 17487  Mndcmnd 18760   MndHom cmhm 18807   GrpHom cghm 19243  CMndccmn 19813  Ringcrg 20251   RingHom crh 20486   mPoly cmpl 21944
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-isom 6572  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-ofr 7698  df-om 7888  df-1st 8013  df-2nd 8014  df-supp 8185  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-er 8744  df-map 8867  df-pm 8868  df-ixp 8937  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-fsupp 9400  df-oi 9548  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-n0 12525  df-z 12612  df-uz 12877  df-fz 13545  df-fzo 13692  df-seq 14040  df-hash 14367  df-struct 17181  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-ress 17275  df-plusg 17311  df-mulr 17312  df-sca 17314  df-vsca 17315  df-tset 17317  df-0g 17488  df-gsum 17489  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-mhm 18809  df-grp 18967  df-minusg 18968  df-ghm 19244  df-cntz 19348  df-cmn 19815  df-abl 19816  df-mgp 20153  df-ur 20200  df-ring 20253  df-rhm 20489  df-psr 21947  df-mpl 21949
This theorem is referenced by:  rhmmpl  22403  selvmul  42576
  Copyright terms: Public domain W3C validator