Step | Hyp | Ref
| Expression |
1 | | rhmcomulmpl.h |
. . . . 5
⊢ (𝜑 → 𝐻 ∈ (𝑅 RingHom 𝑆)) |
2 | | eqid 2733 |
. . . . . 6
⊢
(Base‘𝑅) =
(Base‘𝑅) |
3 | | eqid 2733 |
. . . . . 6
⊢
(Base‘𝑆) =
(Base‘𝑆) |
4 | 2, 3 | rhmf 20252 |
. . . . 5
⊢ (𝐻 ∈ (𝑅 RingHom 𝑆) → 𝐻:(Base‘𝑅)⟶(Base‘𝑆)) |
5 | 1, 4 | syl 17 |
. . . 4
⊢ (𝜑 → 𝐻:(Base‘𝑅)⟶(Base‘𝑆)) |
6 | | eqid 2733 |
. . . . 5
⊢ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin} = {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈
Fin} |
7 | | rhmrcl1 20244 |
. . . . . 6
⊢ (𝐻 ∈ (𝑅 RingHom 𝑆) → 𝑅 ∈ Ring) |
8 | 1, 7 | syl 17 |
. . . . 5
⊢ (𝜑 → 𝑅 ∈ Ring) |
9 | | rhmcomulmpl.p |
. . . . . 6
⊢ 𝑃 = (𝐼 mPoly 𝑅) |
10 | | rhmcomulmpl.b |
. . . . . 6
⊢ 𝐵 = (Base‘𝑃) |
11 | | rhmcomulmpl.f |
. . . . . 6
⊢ (𝜑 → 𝐹 ∈ 𝐵) |
12 | 9, 2, 10, 6, 11 | mplelf 21539 |
. . . . 5
⊢ (𝜑 → 𝐹:{𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈
Fin}⟶(Base‘𝑅)) |
13 | | rhmcomulmpl.g |
. . . . . 6
⊢ (𝜑 → 𝐺 ∈ 𝐵) |
14 | 9, 2, 10, 6, 13 | mplelf 21539 |
. . . . 5
⊢ (𝜑 → 𝐺:{𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈
Fin}⟶(Base‘𝑅)) |
15 | 6, 8, 12, 14 | rhmmpllem2 41072 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin}) → (𝑅 Σg
(𝑑 ∈ {𝑒 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin} ∣ 𝑒 ∘r ≤ 𝑘} ↦ ((𝐹‘𝑑)(.r‘𝑅)(𝐺‘(𝑘 ∘f − 𝑑))))) ∈ (Base‘𝑅)) |
16 | 5, 15 | cofmpt 7125 |
. . 3
⊢ (𝜑 → (𝐻 ∘ (𝑘 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin} ↦ (𝑅 Σg
(𝑑 ∈ {𝑒 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin} ∣ 𝑒 ∘r ≤ 𝑘} ↦ ((𝐹‘𝑑)(.r‘𝑅)(𝐺‘(𝑘 ∘f − 𝑑))))))) = (𝑘 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin} ↦ (𝐻‘(𝑅 Σg (𝑑 ∈ {𝑒 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin} ∣ 𝑒 ∘r ≤ 𝑘} ↦ ((𝐹‘𝑑)(.r‘𝑅)(𝐺‘(𝑘 ∘f − 𝑑)))))))) |
17 | | eqid 2733 |
. . . . . 6
⊢
(0g‘𝑅) = (0g‘𝑅) |
18 | 8 | ringcmnd 20091 |
. . . . . . 7
⊢ (𝜑 → 𝑅 ∈ CMnd) |
19 | 18 | adantr 482 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin}) → 𝑅 ∈ CMnd) |
20 | | rhmrcl2 20245 |
. . . . . . . . . 10
⊢ (𝐻 ∈ (𝑅 RingHom 𝑆) → 𝑆 ∈ Ring) |
21 | 1, 20 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → 𝑆 ∈ Ring) |
22 | 21 | ringgrpd 20056 |
. . . . . . . 8
⊢ (𝜑 → 𝑆 ∈ Grp) |
23 | 22 | grpmndd 18828 |
. . . . . . 7
⊢ (𝜑 → 𝑆 ∈ Mnd) |
24 | 23 | adantr 482 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin}) → 𝑆 ∈ Mnd) |
25 | | ovex 7437 |
. . . . . . . . 9
⊢
(ℕ0 ↑m 𝐼) ∈ V |
26 | 25 | rabex 5331 |
. . . . . . . 8
⊢ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin} ∈
V |
27 | 26 | rabex 5331 |
. . . . . . 7
⊢ {𝑒 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin} ∣ 𝑒 ∘r ≤ 𝑘} ∈ V |
28 | 27 | a1i 11 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin}) → {𝑒 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin} ∣ 𝑒 ∘r ≤ 𝑘} ∈ V) |
29 | | rhmghm 20251 |
. . . . . . . 8
⊢ (𝐻 ∈ (𝑅 RingHom 𝑆) → 𝐻 ∈ (𝑅 GrpHom 𝑆)) |
30 | | ghmmhm 19096 |
. . . . . . . 8
⊢ (𝐻 ∈ (𝑅 GrpHom 𝑆) → 𝐻 ∈ (𝑅 MndHom 𝑆)) |
31 | 1, 29, 30 | 3syl 18 |
. . . . . . 7
⊢ (𝜑 → 𝐻 ∈ (𝑅 MndHom 𝑆)) |
32 | 31 | adantr 482 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin}) → 𝐻 ∈ (𝑅 MndHom 𝑆)) |
33 | | eqid 2733 |
. . . . . . 7
⊢
(.r‘𝑅) = (.r‘𝑅) |
34 | 8 | ad2antrr 725 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin}) ∧ 𝑑 ∈ {𝑒 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin} ∣ 𝑒 ∘r ≤ 𝑘}) → 𝑅 ∈ Ring) |
35 | 12 | ad2antrr 725 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin}) ∧ 𝑑 ∈ {𝑒 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin} ∣ 𝑒 ∘r ≤ 𝑘}) → 𝐹:{𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈
Fin}⟶(Base‘𝑅)) |
36 | | breq1 5150 |
. . . . . . . . . . . 12
⊢ (𝑒 = 𝑑 → (𝑒 ∘r ≤ 𝑘 ↔ 𝑑 ∘r ≤ 𝑘)) |
37 | 36 | elrab 3682 |
. . . . . . . . . . 11
⊢ (𝑑 ∈ {𝑒 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin} ∣ 𝑒 ∘r ≤ 𝑘} ↔ (𝑑 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin} ∧ 𝑑 ∘r ≤ 𝑘)) |
38 | 37 | biimpi 215 |
. . . . . . . . . 10
⊢ (𝑑 ∈ {𝑒 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin} ∣ 𝑒 ∘r ≤ 𝑘} → (𝑑 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin} ∧ 𝑑 ∘r ≤ 𝑘)) |
39 | 38 | adantl 483 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin}) ∧ 𝑑 ∈ {𝑒 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin} ∣ 𝑒 ∘r ≤ 𝑘}) → (𝑑 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin} ∧ 𝑑 ∘r ≤ 𝑘)) |
40 | 39 | simpld 496 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin}) ∧ 𝑑 ∈ {𝑒 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin} ∣ 𝑒 ∘r ≤ 𝑘}) → 𝑑 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈
Fin}) |
41 | 35, 40 | ffvelcdmd 7083 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin}) ∧ 𝑑 ∈ {𝑒 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin} ∣ 𝑒 ∘r ≤ 𝑘}) → (𝐹‘𝑑) ∈ (Base‘𝑅)) |
42 | 14 | ad2antrr 725 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin}) ∧ 𝑑 ∈ {𝑒 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin} ∣ 𝑒 ∘r ≤ 𝑘}) → 𝐺:{𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈
Fin}⟶(Base‘𝑅)) |
43 | | simplr 768 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin}) ∧ 𝑑 ∈ {𝑒 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin} ∣ 𝑒 ∘r ≤ 𝑘}) → 𝑘 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈
Fin}) |
44 | 6 | psrbagf 21453 |
. . . . . . . . . . 11
⊢ (𝑑 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin} → 𝑑:𝐼⟶ℕ0) |
45 | 40, 44 | syl 17 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin}) ∧ 𝑑 ∈ {𝑒 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin} ∣ 𝑒 ∘r ≤ 𝑘}) → 𝑑:𝐼⟶ℕ0) |
46 | 39 | simprd 497 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin}) ∧ 𝑑 ∈ {𝑒 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin} ∣ 𝑒 ∘r ≤ 𝑘}) → 𝑑 ∘r ≤ 𝑘) |
47 | 6 | psrbagcon 21465 |
. . . . . . . . . 10
⊢ ((𝑘 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin} ∧ 𝑑:𝐼⟶ℕ0 ∧ 𝑑 ∘r ≤ 𝑘) → ((𝑘 ∘f − 𝑑) ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin} ∧ (𝑘 ∘f −
𝑑) ∘r ≤
𝑘)) |
48 | 43, 45, 46, 47 | syl3anc 1372 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin}) ∧ 𝑑 ∈ {𝑒 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin} ∣ 𝑒 ∘r ≤ 𝑘}) → ((𝑘 ∘f − 𝑑) ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin} ∧ (𝑘 ∘f −
𝑑) ∘r ≤
𝑘)) |
49 | 48 | simpld 496 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin}) ∧ 𝑑 ∈ {𝑒 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin} ∣ 𝑒 ∘r ≤ 𝑘}) → (𝑘 ∘f − 𝑑) ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈
Fin}) |
50 | 42, 49 | ffvelcdmd 7083 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin}) ∧ 𝑑 ∈ {𝑒 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin} ∣ 𝑒 ∘r ≤ 𝑘}) → (𝐺‘(𝑘 ∘f − 𝑑)) ∈ (Base‘𝑅)) |
51 | 2, 33, 34, 41, 50 | ringcld 20070 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin}) ∧ 𝑑 ∈ {𝑒 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin} ∣ 𝑒 ∘r ≤ 𝑘}) → ((𝐹‘𝑑)(.r‘𝑅)(𝐺‘(𝑘 ∘f − 𝑑))) ∈ (Base‘𝑅)) |
52 | 6, 8, 12, 14 | rhmmpllem1 41071 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin}) → (𝑑 ∈ {𝑒 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin} ∣ 𝑒 ∘r ≤ 𝑘} ↦ ((𝐹‘𝑑)(.r‘𝑅)(𝐺‘(𝑘 ∘f − 𝑑)))) finSupp
(0g‘𝑅)) |
53 | 2, 17, 19, 24, 28, 32, 51, 52 | gsummptmhm 19800 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin}) → (𝑆 Σg
(𝑑 ∈ {𝑒 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin} ∣ 𝑒 ∘r ≤ 𝑘} ↦ (𝐻‘((𝐹‘𝑑)(.r‘𝑅)(𝐺‘(𝑘 ∘f − 𝑑)))))) = (𝐻‘(𝑅 Σg (𝑑 ∈ {𝑒 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin} ∣ 𝑒 ∘r ≤ 𝑘} ↦ ((𝐹‘𝑑)(.r‘𝑅)(𝐺‘(𝑘 ∘f − 𝑑))))))) |
54 | 1 | ad2antrr 725 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin}) ∧ 𝑑 ∈ {𝑒 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin} ∣ 𝑒 ∘r ≤ 𝑘}) → 𝐻 ∈ (𝑅 RingHom 𝑆)) |
55 | | eqid 2733 |
. . . . . . . . . 10
⊢
(.r‘𝑆) = (.r‘𝑆) |
56 | 2, 33, 55 | rhmmul 20253 |
. . . . . . . . 9
⊢ ((𝐻 ∈ (𝑅 RingHom 𝑆) ∧ (𝐹‘𝑑) ∈ (Base‘𝑅) ∧ (𝐺‘(𝑘 ∘f − 𝑑)) ∈ (Base‘𝑅)) → (𝐻‘((𝐹‘𝑑)(.r‘𝑅)(𝐺‘(𝑘 ∘f − 𝑑)))) = ((𝐻‘(𝐹‘𝑑))(.r‘𝑆)(𝐻‘(𝐺‘(𝑘 ∘f − 𝑑))))) |
57 | 54, 41, 50, 56 | syl3anc 1372 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin}) ∧ 𝑑 ∈ {𝑒 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin} ∣ 𝑒 ∘r ≤ 𝑘}) → (𝐻‘((𝐹‘𝑑)(.r‘𝑅)(𝐺‘(𝑘 ∘f − 𝑑)))) = ((𝐻‘(𝐹‘𝑑))(.r‘𝑆)(𝐻‘(𝐺‘(𝑘 ∘f − 𝑑))))) |
58 | 35, 40 | fvco3d 6987 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin}) ∧ 𝑑 ∈ {𝑒 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin} ∣ 𝑒 ∘r ≤ 𝑘}) → ((𝐻 ∘ 𝐹)‘𝑑) = (𝐻‘(𝐹‘𝑑))) |
59 | 42, 49 | fvco3d 6987 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin}) ∧ 𝑑 ∈ {𝑒 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin} ∣ 𝑒 ∘r ≤ 𝑘}) → ((𝐻 ∘ 𝐺)‘(𝑘 ∘f − 𝑑)) = (𝐻‘(𝐺‘(𝑘 ∘f − 𝑑)))) |
60 | 58, 59 | oveq12d 7422 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin}) ∧ 𝑑 ∈ {𝑒 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin} ∣ 𝑒 ∘r ≤ 𝑘}) → (((𝐻 ∘ 𝐹)‘𝑑)(.r‘𝑆)((𝐻 ∘ 𝐺)‘(𝑘 ∘f − 𝑑))) = ((𝐻‘(𝐹‘𝑑))(.r‘𝑆)(𝐻‘(𝐺‘(𝑘 ∘f − 𝑑))))) |
61 | 57, 60 | eqtr4d 2776 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin}) ∧ 𝑑 ∈ {𝑒 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin} ∣ 𝑒 ∘r ≤ 𝑘}) → (𝐻‘((𝐹‘𝑑)(.r‘𝑅)(𝐺‘(𝑘 ∘f − 𝑑)))) = (((𝐻 ∘ 𝐹)‘𝑑)(.r‘𝑆)((𝐻 ∘ 𝐺)‘(𝑘 ∘f − 𝑑)))) |
62 | 61 | mpteq2dva 5247 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin}) → (𝑑 ∈ {𝑒 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin} ∣ 𝑒 ∘r ≤ 𝑘} ↦ (𝐻‘((𝐹‘𝑑)(.r‘𝑅)(𝐺‘(𝑘 ∘f − 𝑑))))) = (𝑑 ∈ {𝑒 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin} ∣ 𝑒 ∘r ≤ 𝑘} ↦ (((𝐻 ∘ 𝐹)‘𝑑)(.r‘𝑆)((𝐻 ∘ 𝐺)‘(𝑘 ∘f − 𝑑))))) |
63 | 62 | oveq2d 7420 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin}) → (𝑆 Σg
(𝑑 ∈ {𝑒 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin} ∣ 𝑒 ∘r ≤ 𝑘} ↦ (𝐻‘((𝐹‘𝑑)(.r‘𝑅)(𝐺‘(𝑘 ∘f − 𝑑)))))) = (𝑆 Σg (𝑑 ∈ {𝑒 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin} ∣ 𝑒 ∘r ≤ 𝑘} ↦ (((𝐻 ∘ 𝐹)‘𝑑)(.r‘𝑆)((𝐻 ∘ 𝐺)‘(𝑘 ∘f − 𝑑)))))) |
64 | 53, 63 | eqtr3d 2775 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin}) → (𝐻‘(𝑅 Σg (𝑑 ∈ {𝑒 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin} ∣ 𝑒 ∘r ≤ 𝑘} ↦ ((𝐹‘𝑑)(.r‘𝑅)(𝐺‘(𝑘 ∘f − 𝑑)))))) = (𝑆 Σg (𝑑 ∈ {𝑒 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin} ∣ 𝑒 ∘r ≤ 𝑘} ↦ (((𝐻 ∘ 𝐹)‘𝑑)(.r‘𝑆)((𝐻 ∘ 𝐺)‘(𝑘 ∘f − 𝑑)))))) |
65 | 64 | mpteq2dva 5247 |
. . 3
⊢ (𝜑 → (𝑘 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin} ↦ (𝐻‘(𝑅 Σg (𝑑 ∈ {𝑒 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin} ∣ 𝑒 ∘r ≤ 𝑘} ↦ ((𝐹‘𝑑)(.r‘𝑅)(𝐺‘(𝑘 ∘f − 𝑑))))))) = (𝑘 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin} ↦ (𝑆 Σg
(𝑑 ∈ {𝑒 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin} ∣ 𝑒 ∘r ≤ 𝑘} ↦ (((𝐻 ∘ 𝐹)‘𝑑)(.r‘𝑆)((𝐻 ∘ 𝐺)‘(𝑘 ∘f − 𝑑))))))) |
66 | 16, 65 | eqtrd 2773 |
. 2
⊢ (𝜑 → (𝐻 ∘ (𝑘 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin} ↦ (𝑅 Σg
(𝑑 ∈ {𝑒 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin} ∣ 𝑒 ∘r ≤ 𝑘} ↦ ((𝐹‘𝑑)(.r‘𝑅)(𝐺‘(𝑘 ∘f − 𝑑))))))) = (𝑘 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin} ↦ (𝑆 Σg
(𝑑 ∈ {𝑒 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin} ∣ 𝑒 ∘r ≤ 𝑘} ↦ (((𝐻 ∘ 𝐹)‘𝑑)(.r‘𝑆)((𝐻 ∘ 𝐺)‘(𝑘 ∘f − 𝑑))))))) |
67 | | rhmcomulmpl.1 |
. . . 4
⊢ · =
(.r‘𝑃) |
68 | 9, 10, 33, 67, 6, 11, 13 | mplmul 21552 |
. . 3
⊢ (𝜑 → (𝐹 · 𝐺) = (𝑘 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin} ↦ (𝑅 Σg
(𝑑 ∈ {𝑒 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin} ∣ 𝑒 ∘r ≤ 𝑘} ↦ ((𝐹‘𝑑)(.r‘𝑅)(𝐺‘(𝑘 ∘f − 𝑑))))))) |
69 | 68 | coeq2d 5860 |
. 2
⊢ (𝜑 → (𝐻 ∘ (𝐹 · 𝐺)) = (𝐻 ∘ (𝑘 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin} ↦ (𝑅 Σg
(𝑑 ∈ {𝑒 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin} ∣ 𝑒 ∘r ≤ 𝑘} ↦ ((𝐹‘𝑑)(.r‘𝑅)(𝐺‘(𝑘 ∘f − 𝑑)))))))) |
70 | | rhmcomulmpl.q |
. . 3
⊢ 𝑄 = (𝐼 mPoly 𝑆) |
71 | | rhmcomulmpl.c |
. . 3
⊢ 𝐶 = (Base‘𝑄) |
72 | | rhmcomulmpl.2 |
. . 3
⊢ ∙ =
(.r‘𝑄) |
73 | | rhmcomulmpl.i |
. . . 4
⊢ (𝜑 → 𝐼 ∈ 𝑉) |
74 | 9, 70, 10, 71, 73, 31, 11 | mhmcompl 41070 |
. . 3
⊢ (𝜑 → (𝐻 ∘ 𝐹) ∈ 𝐶) |
75 | 9, 70, 10, 71, 73, 31, 13 | mhmcompl 41070 |
. . 3
⊢ (𝜑 → (𝐻 ∘ 𝐺) ∈ 𝐶) |
76 | 70, 71, 55, 72, 6, 74, 75 | mplmul 21552 |
. 2
⊢ (𝜑 → ((𝐻 ∘ 𝐹) ∙ (𝐻 ∘ 𝐺)) = (𝑘 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin} ↦ (𝑆 Σg
(𝑑 ∈ {𝑒 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin} ∣ 𝑒 ∘r ≤ 𝑘} ↦ (((𝐻 ∘ 𝐹)‘𝑑)(.r‘𝑆)((𝐻 ∘ 𝐺)‘(𝑘 ∘f − 𝑑))))))) |
77 | 66, 69, 76 | 3eqtr4d 2783 |
1
⊢ (𝜑 → (𝐻 ∘ (𝐹 · 𝐺)) = ((𝐻 ∘ 𝐹) ∙ (𝐻 ∘ 𝐺))) |