MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rhmcomulmpl Structured version   Visualization version   GIF version

Theorem rhmcomulmpl 22387
Description: Show that the ring homomorphism in rhmmpl 22388 preserves multiplication. (Contributed by SN, 8-Feb-2025.)
Hypotheses
Ref Expression
rhmcomulmpl.p 𝑃 = (𝐼 mPoly 𝑅)
rhmcomulmpl.q 𝑄 = (𝐼 mPoly 𝑆)
rhmcomulmpl.b 𝐵 = (Base‘𝑃)
rhmcomulmpl.c 𝐶 = (Base‘𝑄)
rhmcomulmpl.1 · = (.r𝑃)
rhmcomulmpl.2 = (.r𝑄)
rhmcomulmpl.h (𝜑𝐻 ∈ (𝑅 RingHom 𝑆))
rhmcomulmpl.f (𝜑𝐹𝐵)
rhmcomulmpl.g (𝜑𝐺𝐵)
Assertion
Ref Expression
rhmcomulmpl (𝜑 → (𝐻 ∘ (𝐹 · 𝐺)) = ((𝐻𝐹) (𝐻𝐺)))

Proof of Theorem rhmcomulmpl
Dummy variables 𝑑 𝑘 𝑒 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rhmcomulmpl.h . . . . 5 (𝜑𝐻 ∈ (𝑅 RingHom 𝑆))
2 eqid 2736 . . . . . 6 (Base‘𝑅) = (Base‘𝑅)
3 eqid 2736 . . . . . 6 (Base‘𝑆) = (Base‘𝑆)
42, 3rhmf 20486 . . . . 5 (𝐻 ∈ (𝑅 RingHom 𝑆) → 𝐻:(Base‘𝑅)⟶(Base‘𝑆))
51, 4syl 17 . . . 4 (𝜑𝐻:(Base‘𝑅)⟶(Base‘𝑆))
6 eqid 2736 . . . . 5 {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
7 rhmrcl1 20477 . . . . . 6 (𝐻 ∈ (𝑅 RingHom 𝑆) → 𝑅 ∈ Ring)
81, 7syl 17 . . . . 5 (𝜑𝑅 ∈ Ring)
9 rhmcomulmpl.p . . . . . 6 𝑃 = (𝐼 mPoly 𝑅)
10 rhmcomulmpl.b . . . . . 6 𝐵 = (Base‘𝑃)
11 rhmcomulmpl.f . . . . . 6 (𝜑𝐹𝐵)
129, 2, 10, 6, 11mplelf 22019 . . . . 5 (𝜑𝐹:{𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}⟶(Base‘𝑅))
13 rhmcomulmpl.g . . . . . 6 (𝜑𝐺𝐵)
149, 2, 10, 6, 13mplelf 22019 . . . . 5 (𝜑𝐺:{𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}⟶(Base‘𝑅))
156, 8, 12, 14rhmpsrlem2 21962 . . . 4 ((𝜑𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) → (𝑅 Σg (𝑑 ∈ {𝑒 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑒r𝑘} ↦ ((𝐹𝑑)(.r𝑅)(𝐺‘(𝑘f𝑑))))) ∈ (Base‘𝑅))
165, 15cofmpt 7151 . . 3 (𝜑 → (𝐻 ∘ (𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ (𝑅 Σg (𝑑 ∈ {𝑒 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑒r𝑘} ↦ ((𝐹𝑑)(.r𝑅)(𝐺‘(𝑘f𝑑))))))) = (𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ (𝐻‘(𝑅 Σg (𝑑 ∈ {𝑒 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑒r𝑘} ↦ ((𝐹𝑑)(.r𝑅)(𝐺‘(𝑘f𝑑))))))))
17 eqid 2736 . . . . . 6 (0g𝑅) = (0g𝑅)
188ringcmnd 20282 . . . . . . 7 (𝜑𝑅 ∈ CMnd)
1918adantr 480 . . . . . 6 ((𝜑𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) → 𝑅 ∈ CMnd)
20 rhmrcl2 20478 . . . . . . . . . 10 (𝐻 ∈ (𝑅 RingHom 𝑆) → 𝑆 ∈ Ring)
211, 20syl 17 . . . . . . . . 9 (𝜑𝑆 ∈ Ring)
2221ringgrpd 20240 . . . . . . . 8 (𝜑𝑆 ∈ Grp)
2322grpmndd 18965 . . . . . . 7 (𝜑𝑆 ∈ Mnd)
2423adantr 480 . . . . . 6 ((𝜑𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) → 𝑆 ∈ Mnd)
25 ovex 7465 . . . . . . . . 9 (ℕ0m 𝐼) ∈ V
2625rabex 5338 . . . . . . . 8 {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∈ V
2726rabex 5338 . . . . . . 7 {𝑒 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑒r𝑘} ∈ V
2827a1i 11 . . . . . 6 ((𝜑𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) → {𝑒 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑒r𝑘} ∈ V)
29 rhmghm 20485 . . . . . . . 8 (𝐻 ∈ (𝑅 RingHom 𝑆) → 𝐻 ∈ (𝑅 GrpHom 𝑆))
30 ghmmhm 19245 . . . . . . . 8 (𝐻 ∈ (𝑅 GrpHom 𝑆) → 𝐻 ∈ (𝑅 MndHom 𝑆))
311, 29, 303syl 18 . . . . . . 7 (𝜑𝐻 ∈ (𝑅 MndHom 𝑆))
3231adantr 480 . . . . . 6 ((𝜑𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) → 𝐻 ∈ (𝑅 MndHom 𝑆))
33 eqid 2736 . . . . . . 7 (.r𝑅) = (.r𝑅)
348ad2antrr 726 . . . . . . 7 (((𝜑𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑑 ∈ {𝑒 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑒r𝑘}) → 𝑅 ∈ Ring)
35 elrabi 3686 . . . . . . . . 9 (𝑑 ∈ {𝑒 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑒r𝑘} → 𝑑 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin})
3612ffvelcdmda 7103 . . . . . . . . 9 ((𝜑𝑑 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) → (𝐹𝑑) ∈ (Base‘𝑅))
3735, 36sylan2 593 . . . . . . . 8 ((𝜑𝑑 ∈ {𝑒 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑒r𝑘}) → (𝐹𝑑) ∈ (Base‘𝑅))
3837adantlr 715 . . . . . . 7 (((𝜑𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑑 ∈ {𝑒 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑒r𝑘}) → (𝐹𝑑) ∈ (Base‘𝑅))
3914ad2antrr 726 . . . . . . . 8 (((𝜑𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑑 ∈ {𝑒 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑒r𝑘}) → 𝐺:{𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}⟶(Base‘𝑅))
40 eqid 2736 . . . . . . . . . . 11 {𝑒 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑒r𝑘} = {𝑒 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑒r𝑘}
416, 40psrbagconcl 21948 . . . . . . . . . 10 ((𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∧ 𝑑 ∈ {𝑒 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑒r𝑘}) → (𝑘f𝑑) ∈ {𝑒 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑒r𝑘})
42 elrabi 3686 . . . . . . . . . 10 ((𝑘f𝑑) ∈ {𝑒 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑒r𝑘} → (𝑘f𝑑) ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin})
4341, 42syl 17 . . . . . . . . 9 ((𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∧ 𝑑 ∈ {𝑒 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑒r𝑘}) → (𝑘f𝑑) ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin})
4443adantll 714 . . . . . . . 8 (((𝜑𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑑 ∈ {𝑒 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑒r𝑘}) → (𝑘f𝑑) ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin})
4539, 44ffvelcdmd 7104 . . . . . . 7 (((𝜑𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑑 ∈ {𝑒 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑒r𝑘}) → (𝐺‘(𝑘f𝑑)) ∈ (Base‘𝑅))
462, 33, 34, 38, 45ringcld 20258 . . . . . 6 (((𝜑𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑑 ∈ {𝑒 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑒r𝑘}) → ((𝐹𝑑)(.r𝑅)(𝐺‘(𝑘f𝑑))) ∈ (Base‘𝑅))
476, 8, 12, 14rhmpsrlem1 21961 . . . . . 6 ((𝜑𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) → (𝑑 ∈ {𝑒 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑒r𝑘} ↦ ((𝐹𝑑)(.r𝑅)(𝐺‘(𝑘f𝑑)))) finSupp (0g𝑅))
482, 17, 19, 24, 28, 32, 46, 47gsummptmhm 19959 . . . . 5 ((𝜑𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) → (𝑆 Σg (𝑑 ∈ {𝑒 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑒r𝑘} ↦ (𝐻‘((𝐹𝑑)(.r𝑅)(𝐺‘(𝑘f𝑑)))))) = (𝐻‘(𝑅 Σg (𝑑 ∈ {𝑒 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑒r𝑘} ↦ ((𝐹𝑑)(.r𝑅)(𝐺‘(𝑘f𝑑)))))))
491ad2antrr 726 . . . . . . . . 9 (((𝜑𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑑 ∈ {𝑒 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑒r𝑘}) → 𝐻 ∈ (𝑅 RingHom 𝑆))
50 eqid 2736 . . . . . . . . . 10 (.r𝑆) = (.r𝑆)
512, 33, 50rhmmul 20487 . . . . . . . . 9 ((𝐻 ∈ (𝑅 RingHom 𝑆) ∧ (𝐹𝑑) ∈ (Base‘𝑅) ∧ (𝐺‘(𝑘f𝑑)) ∈ (Base‘𝑅)) → (𝐻‘((𝐹𝑑)(.r𝑅)(𝐺‘(𝑘f𝑑)))) = ((𝐻‘(𝐹𝑑))(.r𝑆)(𝐻‘(𝐺‘(𝑘f𝑑)))))
5249, 38, 45, 51syl3anc 1372 . . . . . . . 8 (((𝜑𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑑 ∈ {𝑒 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑒r𝑘}) → (𝐻‘((𝐹𝑑)(.r𝑅)(𝐺‘(𝑘f𝑑)))) = ((𝐻‘(𝐹𝑑))(.r𝑆)(𝐻‘(𝐺‘(𝑘f𝑑)))))
5312ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑑 ∈ {𝑒 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑒r𝑘}) → 𝐹:{𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}⟶(Base‘𝑅))
5435adantl 481 . . . . . . . . . 10 (((𝜑𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑑 ∈ {𝑒 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑒r𝑘}) → 𝑑 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin})
5553, 54fvco3d 7008 . . . . . . . . 9 (((𝜑𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑑 ∈ {𝑒 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑒r𝑘}) → ((𝐻𝐹)‘𝑑) = (𝐻‘(𝐹𝑑)))
5639, 44fvco3d 7008 . . . . . . . . 9 (((𝜑𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑑 ∈ {𝑒 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑒r𝑘}) → ((𝐻𝐺)‘(𝑘f𝑑)) = (𝐻‘(𝐺‘(𝑘f𝑑))))
5755, 56oveq12d 7450 . . . . . . . 8 (((𝜑𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑑 ∈ {𝑒 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑒r𝑘}) → (((𝐻𝐹)‘𝑑)(.r𝑆)((𝐻𝐺)‘(𝑘f𝑑))) = ((𝐻‘(𝐹𝑑))(.r𝑆)(𝐻‘(𝐺‘(𝑘f𝑑)))))
5852, 57eqtr4d 2779 . . . . . . 7 (((𝜑𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑑 ∈ {𝑒 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑒r𝑘}) → (𝐻‘((𝐹𝑑)(.r𝑅)(𝐺‘(𝑘f𝑑)))) = (((𝐻𝐹)‘𝑑)(.r𝑆)((𝐻𝐺)‘(𝑘f𝑑))))
5958mpteq2dva 5241 . . . . . 6 ((𝜑𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) → (𝑑 ∈ {𝑒 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑒r𝑘} ↦ (𝐻‘((𝐹𝑑)(.r𝑅)(𝐺‘(𝑘f𝑑))))) = (𝑑 ∈ {𝑒 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑒r𝑘} ↦ (((𝐻𝐹)‘𝑑)(.r𝑆)((𝐻𝐺)‘(𝑘f𝑑)))))
6059oveq2d 7448 . . . . 5 ((𝜑𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) → (𝑆 Σg (𝑑 ∈ {𝑒 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑒r𝑘} ↦ (𝐻‘((𝐹𝑑)(.r𝑅)(𝐺‘(𝑘f𝑑)))))) = (𝑆 Σg (𝑑 ∈ {𝑒 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑒r𝑘} ↦ (((𝐻𝐹)‘𝑑)(.r𝑆)((𝐻𝐺)‘(𝑘f𝑑))))))
6148, 60eqtr3d 2778 . . . 4 ((𝜑𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) → (𝐻‘(𝑅 Σg (𝑑 ∈ {𝑒 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑒r𝑘} ↦ ((𝐹𝑑)(.r𝑅)(𝐺‘(𝑘f𝑑)))))) = (𝑆 Σg (𝑑 ∈ {𝑒 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑒r𝑘} ↦ (((𝐻𝐹)‘𝑑)(.r𝑆)((𝐻𝐺)‘(𝑘f𝑑))))))
6261mpteq2dva 5241 . . 3 (𝜑 → (𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ (𝐻‘(𝑅 Σg (𝑑 ∈ {𝑒 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑒r𝑘} ↦ ((𝐹𝑑)(.r𝑅)(𝐺‘(𝑘f𝑑))))))) = (𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ (𝑆 Σg (𝑑 ∈ {𝑒 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑒r𝑘} ↦ (((𝐻𝐹)‘𝑑)(.r𝑆)((𝐻𝐺)‘(𝑘f𝑑)))))))
6316, 62eqtrd 2776 . 2 (𝜑 → (𝐻 ∘ (𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ (𝑅 Σg (𝑑 ∈ {𝑒 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑒r𝑘} ↦ ((𝐹𝑑)(.r𝑅)(𝐺‘(𝑘f𝑑))))))) = (𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ (𝑆 Σg (𝑑 ∈ {𝑒 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑒r𝑘} ↦ (((𝐻𝐹)‘𝑑)(.r𝑆)((𝐻𝐺)‘(𝑘f𝑑)))))))
64 rhmcomulmpl.1 . . . 4 · = (.r𝑃)
659, 10, 33, 64, 6, 11, 13mplmul 22032 . . 3 (𝜑 → (𝐹 · 𝐺) = (𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ (𝑅 Σg (𝑑 ∈ {𝑒 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑒r𝑘} ↦ ((𝐹𝑑)(.r𝑅)(𝐺‘(𝑘f𝑑)))))))
6665coeq2d 5872 . 2 (𝜑 → (𝐻 ∘ (𝐹 · 𝐺)) = (𝐻 ∘ (𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ (𝑅 Σg (𝑑 ∈ {𝑒 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑒r𝑘} ↦ ((𝐹𝑑)(.r𝑅)(𝐺‘(𝑘f𝑑))))))))
67 rhmcomulmpl.q . . 3 𝑄 = (𝐼 mPoly 𝑆)
68 rhmcomulmpl.c . . 3 𝐶 = (Base‘𝑄)
69 rhmcomulmpl.2 . . 3 = (.r𝑄)
709, 67, 10, 68, 31, 11mhmcompl 22385 . . 3 (𝜑 → (𝐻𝐹) ∈ 𝐶)
719, 67, 10, 68, 31, 13mhmcompl 22385 . . 3 (𝜑 → (𝐻𝐺) ∈ 𝐶)
7267, 68, 50, 69, 6, 70, 71mplmul 22032 . 2 (𝜑 → ((𝐻𝐹) (𝐻𝐺)) = (𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ (𝑆 Σg (𝑑 ∈ {𝑒 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑒r𝑘} ↦ (((𝐻𝐹)‘𝑑)(.r𝑆)((𝐻𝐺)‘(𝑘f𝑑)))))))
7363, 66, 723eqtr4d 2786 1 (𝜑 → (𝐻 ∘ (𝐹 · 𝐺)) = ((𝐻𝐹) (𝐻𝐺)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2107  {crab 3435  Vcvv 3479   class class class wbr 5142  cmpt 5224  ccnv 5683  cima 5687  ccom 5688  wf 6556  cfv 6560  (class class class)co 7432  f cof 7696  r cofr 7697  m cmap 8867  Fincfn 8986  cle 11297  cmin 11493  cn 12267  0cn0 12528  Basecbs 17248  .rcmulr 17299  0gc0g 17485   Σg cgsu 17486  Mndcmnd 18748   MndHom cmhm 18795   GrpHom cghm 19231  CMndccmn 19799  Ringcrg 20231   RingHom crh 20470   mPoly cmpl 21927
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-cnex 11212  ax-resscn 11213  ax-1cn 11214  ax-icn 11215  ax-addcl 11216  ax-addrcl 11217  ax-mulcl 11218  ax-mulrcl 11219  ax-mulcom 11220  ax-addass 11221  ax-mulass 11222  ax-distr 11223  ax-i2m1 11224  ax-1ne0 11225  ax-1rid 11226  ax-rnegex 11227  ax-rrecex 11228  ax-cnre 11229  ax-pre-lttri 11230  ax-pre-lttrn 11231  ax-pre-ltadd 11232  ax-pre-mulgt0 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-tp 4630  df-op 4632  df-uni 4907  df-int 4946  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-se 5637  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-isom 6569  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-of 7698  df-ofr 7699  df-om 7889  df-1st 8015  df-2nd 8016  df-supp 8187  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-rdg 8451  df-1o 8507  df-er 8746  df-map 8869  df-pm 8870  df-ixp 8939  df-en 8987  df-dom 8988  df-sdom 8989  df-fin 8990  df-fsupp 9403  df-oi 9551  df-card 9980  df-pnf 11298  df-mnf 11299  df-xr 11300  df-ltxr 11301  df-le 11302  df-sub 11495  df-neg 11496  df-nn 12268  df-2 12330  df-3 12331  df-4 12332  df-5 12333  df-6 12334  df-7 12335  df-8 12336  df-9 12337  df-n0 12529  df-z 12616  df-uz 12880  df-fz 13549  df-fzo 13696  df-seq 14044  df-hash 14371  df-struct 17185  df-sets 17202  df-slot 17220  df-ndx 17232  df-base 17249  df-ress 17276  df-plusg 17311  df-mulr 17312  df-sca 17314  df-vsca 17315  df-tset 17317  df-0g 17487  df-gsum 17488  df-mgm 18654  df-sgrp 18733  df-mnd 18749  df-mhm 18797  df-grp 18955  df-minusg 18956  df-ghm 19232  df-cntz 19336  df-cmn 19801  df-abl 19802  df-mgp 20139  df-ur 20180  df-ring 20233  df-rhm 20473  df-psr 21930  df-mpl 21932
This theorem is referenced by:  rhmmpl  22388  selvmul  42604
  Copyright terms: Public domain W3C validator