MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rhmcomulmpl Structured version   Visualization version   GIF version

Theorem rhmcomulmpl 22285
Description: Show that the ring homomorphism in rhmmpl 22286 preserves multiplication. (Contributed by SN, 8-Feb-2025.)
Hypotheses
Ref Expression
rhmcomulmpl.p 𝑃 = (𝐼 mPoly 𝑅)
rhmcomulmpl.q 𝑄 = (𝐼 mPoly 𝑆)
rhmcomulmpl.b 𝐵 = (Base‘𝑃)
rhmcomulmpl.c 𝐶 = (Base‘𝑄)
rhmcomulmpl.1 · = (.r𝑃)
rhmcomulmpl.2 = (.r𝑄)
rhmcomulmpl.h (𝜑𝐻 ∈ (𝑅 RingHom 𝑆))
rhmcomulmpl.f (𝜑𝐹𝐵)
rhmcomulmpl.g (𝜑𝐺𝐵)
Assertion
Ref Expression
rhmcomulmpl (𝜑 → (𝐻 ∘ (𝐹 · 𝐺)) = ((𝐻𝐹) (𝐻𝐺)))

Proof of Theorem rhmcomulmpl
Dummy variables 𝑑 𝑘 𝑒 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rhmcomulmpl.h . . . . 5 (𝜑𝐻 ∈ (𝑅 RingHom 𝑆))
2 eqid 2729 . . . . . 6 (Base‘𝑅) = (Base‘𝑅)
3 eqid 2729 . . . . . 6 (Base‘𝑆) = (Base‘𝑆)
42, 3rhmf 20388 . . . . 5 (𝐻 ∈ (𝑅 RingHom 𝑆) → 𝐻:(Base‘𝑅)⟶(Base‘𝑆))
51, 4syl 17 . . . 4 (𝜑𝐻:(Base‘𝑅)⟶(Base‘𝑆))
6 eqid 2729 . . . . 5 {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
7 rhmrcl1 20379 . . . . . 6 (𝐻 ∈ (𝑅 RingHom 𝑆) → 𝑅 ∈ Ring)
81, 7syl 17 . . . . 5 (𝜑𝑅 ∈ Ring)
9 rhmcomulmpl.p . . . . . 6 𝑃 = (𝐼 mPoly 𝑅)
10 rhmcomulmpl.b . . . . . 6 𝐵 = (Base‘𝑃)
11 rhmcomulmpl.f . . . . . 6 (𝜑𝐹𝐵)
129, 2, 10, 6, 11mplelf 21923 . . . . 5 (𝜑𝐹:{𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}⟶(Base‘𝑅))
13 rhmcomulmpl.g . . . . . 6 (𝜑𝐺𝐵)
149, 2, 10, 6, 13mplelf 21923 . . . . 5 (𝜑𝐺:{𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}⟶(Base‘𝑅))
156, 8, 12, 14rhmpsrlem2 21866 . . . 4 ((𝜑𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) → (𝑅 Σg (𝑑 ∈ {𝑒 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑒r𝑘} ↦ ((𝐹𝑑)(.r𝑅)(𝐺‘(𝑘f𝑑))))) ∈ (Base‘𝑅))
165, 15cofmpt 7070 . . 3 (𝜑 → (𝐻 ∘ (𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ (𝑅 Σg (𝑑 ∈ {𝑒 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑒r𝑘} ↦ ((𝐹𝑑)(.r𝑅)(𝐺‘(𝑘f𝑑))))))) = (𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ (𝐻‘(𝑅 Σg (𝑑 ∈ {𝑒 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑒r𝑘} ↦ ((𝐹𝑑)(.r𝑅)(𝐺‘(𝑘f𝑑))))))))
17 eqid 2729 . . . . . 6 (0g𝑅) = (0g𝑅)
188ringcmnd 20187 . . . . . . 7 (𝜑𝑅 ∈ CMnd)
1918adantr 480 . . . . . 6 ((𝜑𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) → 𝑅 ∈ CMnd)
20 rhmrcl2 20380 . . . . . . . . . 10 (𝐻 ∈ (𝑅 RingHom 𝑆) → 𝑆 ∈ Ring)
211, 20syl 17 . . . . . . . . 9 (𝜑𝑆 ∈ Ring)
2221ringgrpd 20145 . . . . . . . 8 (𝜑𝑆 ∈ Grp)
2322grpmndd 18843 . . . . . . 7 (𝜑𝑆 ∈ Mnd)
2423adantr 480 . . . . . 6 ((𝜑𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) → 𝑆 ∈ Mnd)
25 ovex 7386 . . . . . . . . 9 (ℕ0m 𝐼) ∈ V
2625rabex 5281 . . . . . . . 8 {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∈ V
2726rabex 5281 . . . . . . 7 {𝑒 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑒r𝑘} ∈ V
2827a1i 11 . . . . . 6 ((𝜑𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) → {𝑒 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑒r𝑘} ∈ V)
29 rhmghm 20387 . . . . . . . 8 (𝐻 ∈ (𝑅 RingHom 𝑆) → 𝐻 ∈ (𝑅 GrpHom 𝑆))
30 ghmmhm 19123 . . . . . . . 8 (𝐻 ∈ (𝑅 GrpHom 𝑆) → 𝐻 ∈ (𝑅 MndHom 𝑆))
311, 29, 303syl 18 . . . . . . 7 (𝜑𝐻 ∈ (𝑅 MndHom 𝑆))
3231adantr 480 . . . . . 6 ((𝜑𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) → 𝐻 ∈ (𝑅 MndHom 𝑆))
33 eqid 2729 . . . . . . 7 (.r𝑅) = (.r𝑅)
348ad2antrr 726 . . . . . . 7 (((𝜑𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑑 ∈ {𝑒 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑒r𝑘}) → 𝑅 ∈ Ring)
35 elrabi 3645 . . . . . . . . 9 (𝑑 ∈ {𝑒 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑒r𝑘} → 𝑑 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin})
3612ffvelcdmda 7022 . . . . . . . . 9 ((𝜑𝑑 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) → (𝐹𝑑) ∈ (Base‘𝑅))
3735, 36sylan2 593 . . . . . . . 8 ((𝜑𝑑 ∈ {𝑒 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑒r𝑘}) → (𝐹𝑑) ∈ (Base‘𝑅))
3837adantlr 715 . . . . . . 7 (((𝜑𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑑 ∈ {𝑒 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑒r𝑘}) → (𝐹𝑑) ∈ (Base‘𝑅))
3914ad2antrr 726 . . . . . . . 8 (((𝜑𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑑 ∈ {𝑒 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑒r𝑘}) → 𝐺:{𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}⟶(Base‘𝑅))
40 eqid 2729 . . . . . . . . . . 11 {𝑒 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑒r𝑘} = {𝑒 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑒r𝑘}
416, 40psrbagconcl 21852 . . . . . . . . . 10 ((𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∧ 𝑑 ∈ {𝑒 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑒r𝑘}) → (𝑘f𝑑) ∈ {𝑒 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑒r𝑘})
42 elrabi 3645 . . . . . . . . . 10 ((𝑘f𝑑) ∈ {𝑒 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑒r𝑘} → (𝑘f𝑑) ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin})
4341, 42syl 17 . . . . . . . . 9 ((𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∧ 𝑑 ∈ {𝑒 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑒r𝑘}) → (𝑘f𝑑) ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin})
4443adantll 714 . . . . . . . 8 (((𝜑𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑑 ∈ {𝑒 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑒r𝑘}) → (𝑘f𝑑) ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin})
4539, 44ffvelcdmd 7023 . . . . . . 7 (((𝜑𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑑 ∈ {𝑒 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑒r𝑘}) → (𝐺‘(𝑘f𝑑)) ∈ (Base‘𝑅))
462, 33, 34, 38, 45ringcld 20163 . . . . . 6 (((𝜑𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑑 ∈ {𝑒 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑒r𝑘}) → ((𝐹𝑑)(.r𝑅)(𝐺‘(𝑘f𝑑))) ∈ (Base‘𝑅))
476, 8, 12, 14rhmpsrlem1 21865 . . . . . 6 ((𝜑𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) → (𝑑 ∈ {𝑒 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑒r𝑘} ↦ ((𝐹𝑑)(.r𝑅)(𝐺‘(𝑘f𝑑)))) finSupp (0g𝑅))
482, 17, 19, 24, 28, 32, 46, 47gsummptmhm 19837 . . . . 5 ((𝜑𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) → (𝑆 Σg (𝑑 ∈ {𝑒 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑒r𝑘} ↦ (𝐻‘((𝐹𝑑)(.r𝑅)(𝐺‘(𝑘f𝑑)))))) = (𝐻‘(𝑅 Σg (𝑑 ∈ {𝑒 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑒r𝑘} ↦ ((𝐹𝑑)(.r𝑅)(𝐺‘(𝑘f𝑑)))))))
491ad2antrr 726 . . . . . . . . 9 (((𝜑𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑑 ∈ {𝑒 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑒r𝑘}) → 𝐻 ∈ (𝑅 RingHom 𝑆))
50 eqid 2729 . . . . . . . . . 10 (.r𝑆) = (.r𝑆)
512, 33, 50rhmmul 20389 . . . . . . . . 9 ((𝐻 ∈ (𝑅 RingHom 𝑆) ∧ (𝐹𝑑) ∈ (Base‘𝑅) ∧ (𝐺‘(𝑘f𝑑)) ∈ (Base‘𝑅)) → (𝐻‘((𝐹𝑑)(.r𝑅)(𝐺‘(𝑘f𝑑)))) = ((𝐻‘(𝐹𝑑))(.r𝑆)(𝐻‘(𝐺‘(𝑘f𝑑)))))
5249, 38, 45, 51syl3anc 1373 . . . . . . . 8 (((𝜑𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑑 ∈ {𝑒 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑒r𝑘}) → (𝐻‘((𝐹𝑑)(.r𝑅)(𝐺‘(𝑘f𝑑)))) = ((𝐻‘(𝐹𝑑))(.r𝑆)(𝐻‘(𝐺‘(𝑘f𝑑)))))
5312ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑑 ∈ {𝑒 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑒r𝑘}) → 𝐹:{𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}⟶(Base‘𝑅))
5435adantl 481 . . . . . . . . . 10 (((𝜑𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑑 ∈ {𝑒 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑒r𝑘}) → 𝑑 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin})
5553, 54fvco3d 6927 . . . . . . . . 9 (((𝜑𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑑 ∈ {𝑒 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑒r𝑘}) → ((𝐻𝐹)‘𝑑) = (𝐻‘(𝐹𝑑)))
5639, 44fvco3d 6927 . . . . . . . . 9 (((𝜑𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑑 ∈ {𝑒 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑒r𝑘}) → ((𝐻𝐺)‘(𝑘f𝑑)) = (𝐻‘(𝐺‘(𝑘f𝑑))))
5755, 56oveq12d 7371 . . . . . . . 8 (((𝜑𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑑 ∈ {𝑒 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑒r𝑘}) → (((𝐻𝐹)‘𝑑)(.r𝑆)((𝐻𝐺)‘(𝑘f𝑑))) = ((𝐻‘(𝐹𝑑))(.r𝑆)(𝐻‘(𝐺‘(𝑘f𝑑)))))
5852, 57eqtr4d 2767 . . . . . . 7 (((𝜑𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑑 ∈ {𝑒 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑒r𝑘}) → (𝐻‘((𝐹𝑑)(.r𝑅)(𝐺‘(𝑘f𝑑)))) = (((𝐻𝐹)‘𝑑)(.r𝑆)((𝐻𝐺)‘(𝑘f𝑑))))
5958mpteq2dva 5188 . . . . . 6 ((𝜑𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) → (𝑑 ∈ {𝑒 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑒r𝑘} ↦ (𝐻‘((𝐹𝑑)(.r𝑅)(𝐺‘(𝑘f𝑑))))) = (𝑑 ∈ {𝑒 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑒r𝑘} ↦ (((𝐻𝐹)‘𝑑)(.r𝑆)((𝐻𝐺)‘(𝑘f𝑑)))))
6059oveq2d 7369 . . . . 5 ((𝜑𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) → (𝑆 Σg (𝑑 ∈ {𝑒 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑒r𝑘} ↦ (𝐻‘((𝐹𝑑)(.r𝑅)(𝐺‘(𝑘f𝑑)))))) = (𝑆 Σg (𝑑 ∈ {𝑒 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑒r𝑘} ↦ (((𝐻𝐹)‘𝑑)(.r𝑆)((𝐻𝐺)‘(𝑘f𝑑))))))
6148, 60eqtr3d 2766 . . . 4 ((𝜑𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) → (𝐻‘(𝑅 Σg (𝑑 ∈ {𝑒 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑒r𝑘} ↦ ((𝐹𝑑)(.r𝑅)(𝐺‘(𝑘f𝑑)))))) = (𝑆 Σg (𝑑 ∈ {𝑒 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑒r𝑘} ↦ (((𝐻𝐹)‘𝑑)(.r𝑆)((𝐻𝐺)‘(𝑘f𝑑))))))
6261mpteq2dva 5188 . . 3 (𝜑 → (𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ (𝐻‘(𝑅 Σg (𝑑 ∈ {𝑒 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑒r𝑘} ↦ ((𝐹𝑑)(.r𝑅)(𝐺‘(𝑘f𝑑))))))) = (𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ (𝑆 Σg (𝑑 ∈ {𝑒 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑒r𝑘} ↦ (((𝐻𝐹)‘𝑑)(.r𝑆)((𝐻𝐺)‘(𝑘f𝑑)))))))
6316, 62eqtrd 2764 . 2 (𝜑 → (𝐻 ∘ (𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ (𝑅 Σg (𝑑 ∈ {𝑒 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑒r𝑘} ↦ ((𝐹𝑑)(.r𝑅)(𝐺‘(𝑘f𝑑))))))) = (𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ (𝑆 Σg (𝑑 ∈ {𝑒 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑒r𝑘} ↦ (((𝐻𝐹)‘𝑑)(.r𝑆)((𝐻𝐺)‘(𝑘f𝑑)))))))
64 rhmcomulmpl.1 . . . 4 · = (.r𝑃)
659, 10, 33, 64, 6, 11, 13mplmul 21936 . . 3 (𝜑 → (𝐹 · 𝐺) = (𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ (𝑅 Σg (𝑑 ∈ {𝑒 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑒r𝑘} ↦ ((𝐹𝑑)(.r𝑅)(𝐺‘(𝑘f𝑑)))))))
6665coeq2d 5809 . 2 (𝜑 → (𝐻 ∘ (𝐹 · 𝐺)) = (𝐻 ∘ (𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ (𝑅 Σg (𝑑 ∈ {𝑒 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑒r𝑘} ↦ ((𝐹𝑑)(.r𝑅)(𝐺‘(𝑘f𝑑))))))))
67 rhmcomulmpl.q . . 3 𝑄 = (𝐼 mPoly 𝑆)
68 rhmcomulmpl.c . . 3 𝐶 = (Base‘𝑄)
69 rhmcomulmpl.2 . . 3 = (.r𝑄)
709, 67, 10, 68, 31, 11mhmcompl 22283 . . 3 (𝜑 → (𝐻𝐹) ∈ 𝐶)
719, 67, 10, 68, 31, 13mhmcompl 22283 . . 3 (𝜑 → (𝐻𝐺) ∈ 𝐶)
7267, 68, 50, 69, 6, 70, 71mplmul 21936 . 2 (𝜑 → ((𝐻𝐹) (𝐻𝐺)) = (𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ (𝑆 Σg (𝑑 ∈ {𝑒 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑒r𝑘} ↦ (((𝐻𝐹)‘𝑑)(.r𝑆)((𝐻𝐺)‘(𝑘f𝑑)))))))
7363, 66, 723eqtr4d 2774 1 (𝜑 → (𝐻 ∘ (𝐹 · 𝐺)) = ((𝐻𝐹) (𝐻𝐺)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  {crab 3396  Vcvv 3438   class class class wbr 5095  cmpt 5176  ccnv 5622  cima 5626  ccom 5627  wf 6482  cfv 6486  (class class class)co 7353  f cof 7615  r cofr 7616  m cmap 8760  Fincfn 8879  cle 11169  cmin 11365  cn 12146  0cn0 12402  Basecbs 17138  .rcmulr 17180  0gc0g 17361   Σg cgsu 17362  Mndcmnd 18626   MndHom cmhm 18673   GrpHom cghm 19109  CMndccmn 19677  Ringcrg 20136   RingHom crh 20372   mPoly cmpl 21831
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-tp 4584  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-se 5577  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-of 7617  df-ofr 7618  df-om 7807  df-1st 7931  df-2nd 7932  df-supp 8101  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-er 8632  df-map 8762  df-pm 8763  df-ixp 8832  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-fsupp 9271  df-oi 9421  df-card 9854  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-nn 12147  df-2 12209  df-3 12210  df-4 12211  df-5 12212  df-6 12213  df-7 12214  df-8 12215  df-9 12216  df-n0 12403  df-z 12490  df-uz 12754  df-fz 13429  df-fzo 13576  df-seq 13927  df-hash 14256  df-struct 17076  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17139  df-ress 17160  df-plusg 17192  df-mulr 17193  df-sca 17195  df-vsca 17196  df-tset 17198  df-0g 17363  df-gsum 17364  df-mgm 18532  df-sgrp 18611  df-mnd 18627  df-mhm 18675  df-grp 18833  df-minusg 18834  df-ghm 19110  df-cntz 19214  df-cmn 19679  df-abl 19680  df-mgp 20044  df-ur 20085  df-ring 20138  df-rhm 20375  df-psr 21834  df-mpl 21836
This theorem is referenced by:  rhmmpl  22286  selvmul  42562
  Copyright terms: Public domain W3C validator