| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lssvnegcl | Structured version Visualization version GIF version | ||
| Description: Closure of negative vectors in a subspace. (Contributed by Stefan O'Rear, 11-Dec-2014.) |
| Ref | Expression |
|---|---|
| lssvnegcl.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
| lssvnegcl.n | ⊢ 𝑁 = (invg‘𝑊) |
| Ref | Expression |
|---|---|
| lssvnegcl | ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ∧ 𝑋 ∈ 𝑈) → (𝑁‘𝑋) ∈ 𝑈) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2731 | . . . . 5 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
| 2 | lssvnegcl.s | . . . . 5 ⊢ 𝑆 = (LSubSp‘𝑊) | |
| 3 | 1, 2 | lssel 20870 | . . . 4 ⊢ ((𝑈 ∈ 𝑆 ∧ 𝑋 ∈ 𝑈) → 𝑋 ∈ (Base‘𝑊)) |
| 4 | lssvnegcl.n | . . . . 5 ⊢ 𝑁 = (invg‘𝑊) | |
| 5 | eqid 2731 | . . . . 5 ⊢ (Scalar‘𝑊) = (Scalar‘𝑊) | |
| 6 | eqid 2731 | . . . . 5 ⊢ ( ·𝑠 ‘𝑊) = ( ·𝑠 ‘𝑊) | |
| 7 | eqid 2731 | . . . . 5 ⊢ (1r‘(Scalar‘𝑊)) = (1r‘(Scalar‘𝑊)) | |
| 8 | eqid 2731 | . . . . 5 ⊢ (invg‘(Scalar‘𝑊)) = (invg‘(Scalar‘𝑊)) | |
| 9 | 1, 4, 5, 6, 7, 8 | lmodvneg1 20838 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ (Base‘𝑊)) → (((invg‘(Scalar‘𝑊))‘(1r‘(Scalar‘𝑊)))( ·𝑠 ‘𝑊)𝑋) = (𝑁‘𝑋)) |
| 10 | 3, 9 | sylan2 593 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ (𝑈 ∈ 𝑆 ∧ 𝑋 ∈ 𝑈)) → (((invg‘(Scalar‘𝑊))‘(1r‘(Scalar‘𝑊)))( ·𝑠 ‘𝑊)𝑋) = (𝑁‘𝑋)) |
| 11 | 10 | 3impb 1114 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ∧ 𝑋 ∈ 𝑈) → (((invg‘(Scalar‘𝑊))‘(1r‘(Scalar‘𝑊)))( ·𝑠 ‘𝑊)𝑋) = (𝑁‘𝑋)) |
| 12 | simp1 1136 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ∧ 𝑋 ∈ 𝑈) → 𝑊 ∈ LMod) | |
| 13 | simp2 1137 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ∧ 𝑋 ∈ 𝑈) → 𝑈 ∈ 𝑆) | |
| 14 | eqid 2731 | . . . 4 ⊢ (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊)) | |
| 15 | 5 | lmodring 20801 | . . . . . 6 ⊢ (𝑊 ∈ LMod → (Scalar‘𝑊) ∈ Ring) |
| 16 | 15 | 3ad2ant1 1133 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ∧ 𝑋 ∈ 𝑈) → (Scalar‘𝑊) ∈ Ring) |
| 17 | 16 | ringgrpd 20160 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ∧ 𝑋 ∈ 𝑈) → (Scalar‘𝑊) ∈ Grp) |
| 18 | 14, 7 | ringidcl 20183 | . . . . 5 ⊢ ((Scalar‘𝑊) ∈ Ring → (1r‘(Scalar‘𝑊)) ∈ (Base‘(Scalar‘𝑊))) |
| 19 | 16, 18 | syl 17 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ∧ 𝑋 ∈ 𝑈) → (1r‘(Scalar‘𝑊)) ∈ (Base‘(Scalar‘𝑊))) |
| 20 | 14, 8, 17, 19 | grpinvcld 18901 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ∧ 𝑋 ∈ 𝑈) → ((invg‘(Scalar‘𝑊))‘(1r‘(Scalar‘𝑊))) ∈ (Base‘(Scalar‘𝑊))) |
| 21 | simp3 1138 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ∧ 𝑋 ∈ 𝑈) → 𝑋 ∈ 𝑈) | |
| 22 | 5, 6, 14, 2 | lssvscl 20888 | . . 3 ⊢ (((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) ∧ (((invg‘(Scalar‘𝑊))‘(1r‘(Scalar‘𝑊))) ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑋 ∈ 𝑈)) → (((invg‘(Scalar‘𝑊))‘(1r‘(Scalar‘𝑊)))( ·𝑠 ‘𝑊)𝑋) ∈ 𝑈) |
| 23 | 12, 13, 20, 21, 22 | syl22anc 838 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ∧ 𝑋 ∈ 𝑈) → (((invg‘(Scalar‘𝑊))‘(1r‘(Scalar‘𝑊)))( ·𝑠 ‘𝑊)𝑋) ∈ 𝑈) |
| 24 | 11, 23 | eqeltrrd 2832 | 1 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ∧ 𝑋 ∈ 𝑈) → (𝑁‘𝑋) ∈ 𝑈) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ‘cfv 6481 (class class class)co 7346 Basecbs 17120 Scalarcsca 17164 ·𝑠 cvsca 17165 invgcminusg 18847 1rcur 20099 Ringcrg 20151 LModclmod 20793 LSubSpclss 20864 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-2 12188 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-plusg 17174 df-0g 17345 df-mgm 18548 df-sgrp 18627 df-mnd 18643 df-grp 18849 df-minusg 18850 df-sbg 18851 df-mgp 20059 df-ur 20100 df-ring 20153 df-lmod 20795 df-lss 20865 |
| This theorem is referenced by: lsssubg 20890 lidlnegcl 21159 mapdpglem14 41783 baerlem3lem1 41805 baerlem5amN 41814 baerlem5bmN 41815 baerlem5abmN 41816 |
| Copyright terms: Public domain | W3C validator |