Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  znfermltl Structured version   Visualization version   GIF version

Theorem znfermltl 32524
Description: Fermat's little theorem in ℤ/n. (Contributed by Thierry Arnoux, 24-Jul-2024.)
Hypotheses
Ref Expression
znfermltl.z 𝑍 = (ℤ/nℤ‘𝑃)
znfermltl.b 𝐵 = (Base‘𝑍)
znfermltl.p = (.g‘(mulGrp‘𝑍))
Assertion
Ref Expression
znfermltl ((𝑃 ∈ ℙ ∧ 𝐴𝐵) → (𝑃 𝐴) = 𝐴)

Proof of Theorem znfermltl
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 prmnn 16613 . . . . . . . . 9 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
21nnnn0d 12534 . . . . . . . 8 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ0)
32ad3antrrr 728 . . . . . . 7 ((((𝑃 ∈ ℙ ∧ 𝐴𝐵) ∧ 𝑎 ∈ ℤ) ∧ 𝐴 = ((ℤRHom‘𝑍)‘𝑎)) → 𝑃 ∈ ℕ0)
4 simplr 767 . . . . . . 7 ((((𝑃 ∈ ℙ ∧ 𝐴𝐵) ∧ 𝑎 ∈ ℤ) ∧ 𝐴 = ((ℤRHom‘𝑍)‘𝑎)) → 𝑎 ∈ ℤ)
5 eqid 2732 . . . . . . . 8 ((mulGrp‘ℂfld) ↾s ℤ) = ((mulGrp‘ℂfld) ↾s ℤ)
6 zsscn 12568 . . . . . . . . 9 ℤ ⊆ ℂ
7 eqid 2732 . . . . . . . . . 10 (mulGrp‘ℂfld) = (mulGrp‘ℂfld)
8 cnfldbas 20954 . . . . . . . . . 10 ℂ = (Base‘ℂfld)
97, 8mgpbas 19995 . . . . . . . . 9 ℂ = (Base‘(mulGrp‘ℂfld))
106, 9sseqtri 4018 . . . . . . . 8 ℤ ⊆ (Base‘(mulGrp‘ℂfld))
11 eqid 2732 . . . . . . . 8 (.g‘(mulGrp‘ℂfld)) = (.g‘(mulGrp‘ℂfld))
12 eqid 2732 . . . . . . . 8 (invg‘(mulGrp‘ℂfld)) = (invg‘(mulGrp‘ℂfld))
13 cnring 20973 . . . . . . . . . 10 fld ∈ Ring
147ringmgp 20064 . . . . . . . . . 10 (ℂfld ∈ Ring → (mulGrp‘ℂfld) ∈ Mnd)
1513, 14ax-mp 5 . . . . . . . . 9 (mulGrp‘ℂfld) ∈ Mnd
16 cnfld1 20976 . . . . . . . . . . 11 1 = (1r‘ℂfld)
177, 16ringidval 20008 . . . . . . . . . 10 1 = (0g‘(mulGrp‘ℂfld))
18 1z 12594 . . . . . . . . . 10 1 ∈ ℤ
1917, 18eqeltrri 2830 . . . . . . . . 9 (0g‘(mulGrp‘ℂfld)) ∈ ℤ
20 eqid 2732 . . . . . . . . . 10 (0g‘(mulGrp‘ℂfld)) = (0g‘(mulGrp‘ℂfld))
215, 9, 20ress0g 18655 . . . . . . . . 9 (((mulGrp‘ℂfld) ∈ Mnd ∧ (0g‘(mulGrp‘ℂfld)) ∈ ℤ ∧ ℤ ⊆ ℂ) → (0g‘(mulGrp‘ℂfld)) = (0g‘((mulGrp‘ℂfld) ↾s ℤ)))
2215, 19, 6, 21mp3an 1461 . . . . . . . 8 (0g‘(mulGrp‘ℂfld)) = (0g‘((mulGrp‘ℂfld) ↾s ℤ))
235, 10, 11, 12, 22ressmulgnn0 32223 . . . . . . 7 ((𝑃 ∈ ℕ0𝑎 ∈ ℤ) → (𝑃(.g‘((mulGrp‘ℂfld) ↾s ℤ))𝑎) = (𝑃(.g‘(mulGrp‘ℂfld))𝑎))
243, 4, 23syl2anc 584 . . . . . 6 ((((𝑃 ∈ ℙ ∧ 𝐴𝐵) ∧ 𝑎 ∈ ℤ) ∧ 𝐴 = ((ℤRHom‘𝑍)‘𝑎)) → (𝑃(.g‘((mulGrp‘ℂfld) ↾s ℤ))𝑎) = (𝑃(.g‘(mulGrp‘ℂfld))𝑎))
254zcnd 12669 . . . . . . 7 ((((𝑃 ∈ ℙ ∧ 𝐴𝐵) ∧ 𝑎 ∈ ℤ) ∧ 𝐴 = ((ℤRHom‘𝑍)‘𝑎)) → 𝑎 ∈ ℂ)
26 cnfldexp 20984 . . . . . . 7 ((𝑎 ∈ ℂ ∧ 𝑃 ∈ ℕ0) → (𝑃(.g‘(mulGrp‘ℂfld))𝑎) = (𝑎𝑃))
2725, 3, 26syl2anc 584 . . . . . 6 ((((𝑃 ∈ ℙ ∧ 𝐴𝐵) ∧ 𝑎 ∈ ℤ) ∧ 𝐴 = ((ℤRHom‘𝑍)‘𝑎)) → (𝑃(.g‘(mulGrp‘ℂfld))𝑎) = (𝑎𝑃))
2824, 27eqtrd 2772 . . . . 5 ((((𝑃 ∈ ℙ ∧ 𝐴𝐵) ∧ 𝑎 ∈ ℤ) ∧ 𝐴 = ((ℤRHom‘𝑍)‘𝑎)) → (𝑃(.g‘((mulGrp‘ℂfld) ↾s ℤ))𝑎) = (𝑎𝑃))
2928fveq2d 6895 . . . 4 ((((𝑃 ∈ ℙ ∧ 𝐴𝐵) ∧ 𝑎 ∈ ℤ) ∧ 𝐴 = ((ℤRHom‘𝑍)‘𝑎)) → ((ℤRHom‘𝑍)‘(𝑃(.g‘((mulGrp‘ℂfld) ↾s ℤ))𝑎)) = ((ℤRHom‘𝑍)‘(𝑎𝑃)))
30 nnnn0 12481 . . . . . . 7 (𝑃 ∈ ℕ → 𝑃 ∈ ℕ0)
31 znfermltl.z . . . . . . . . . 10 𝑍 = (ℤ/nℤ‘𝑃)
3231zncrng 21106 . . . . . . . . 9 (𝑃 ∈ ℕ0𝑍 ∈ CRing)
3332crngringd 20071 . . . . . . . 8 (𝑃 ∈ ℕ0𝑍 ∈ Ring)
34 eqid 2732 . . . . . . . . 9 (ℤRHom‘𝑍) = (ℤRHom‘𝑍)
3534zrhrhm 21067 . . . . . . . 8 (𝑍 ∈ Ring → (ℤRHom‘𝑍) ∈ (ℤring RingHom 𝑍))
3633, 35syl 17 . . . . . . 7 (𝑃 ∈ ℕ0 → (ℤRHom‘𝑍) ∈ (ℤring RingHom 𝑍))
37 zringmpg 21047 . . . . . . . 8 ((mulGrp‘ℂfld) ↾s ℤ) = (mulGrp‘ℤring)
38 eqid 2732 . . . . . . . 8 (mulGrp‘𝑍) = (mulGrp‘𝑍)
3937, 38rhmmhm 20262 . . . . . . 7 ((ℤRHom‘𝑍) ∈ (ℤring RingHom 𝑍) → (ℤRHom‘𝑍) ∈ (((mulGrp‘ℂfld) ↾s ℤ) MndHom (mulGrp‘𝑍)))
401, 30, 36, 394syl 19 . . . . . 6 (𝑃 ∈ ℙ → (ℤRHom‘𝑍) ∈ (((mulGrp‘ℂfld) ↾s ℤ) MndHom (mulGrp‘𝑍)))
4140ad3antrrr 728 . . . . 5 ((((𝑃 ∈ ℙ ∧ 𝐴𝐵) ∧ 𝑎 ∈ ℤ) ∧ 𝐴 = ((ℤRHom‘𝑍)‘𝑎)) → (ℤRHom‘𝑍) ∈ (((mulGrp‘ℂfld) ↾s ℤ) MndHom (mulGrp‘𝑍)))
425, 9ressbas2 17184 . . . . . . 7 (ℤ ⊆ ℂ → ℤ = (Base‘((mulGrp‘ℂfld) ↾s ℤ)))
436, 42ax-mp 5 . . . . . 6 ℤ = (Base‘((mulGrp‘ℂfld) ↾s ℤ))
44 eqid 2732 . . . . . 6 (.g‘((mulGrp‘ℂfld) ↾s ℤ)) = (.g‘((mulGrp‘ℂfld) ↾s ℤ))
45 znfermltl.p . . . . . 6 = (.g‘(mulGrp‘𝑍))
4643, 44, 45mhmmulg 18997 . . . . 5 (((ℤRHom‘𝑍) ∈ (((mulGrp‘ℂfld) ↾s ℤ) MndHom (mulGrp‘𝑍)) ∧ 𝑃 ∈ ℕ0𝑎 ∈ ℤ) → ((ℤRHom‘𝑍)‘(𝑃(.g‘((mulGrp‘ℂfld) ↾s ℤ))𝑎)) = (𝑃 ((ℤRHom‘𝑍)‘𝑎)))
4741, 3, 4, 46syl3anc 1371 . . . 4 ((((𝑃 ∈ ℙ ∧ 𝐴𝐵) ∧ 𝑎 ∈ ℤ) ∧ 𝐴 = ((ℤRHom‘𝑍)‘𝑎)) → ((ℤRHom‘𝑍)‘(𝑃(.g‘((mulGrp‘ℂfld) ↾s ℤ))𝑎)) = (𝑃 ((ℤRHom‘𝑍)‘𝑎)))
48 simpr 485 . . . . . . . . . 10 ((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℤ) → 𝑎 ∈ ℤ)
491adantr 481 . . . . . . . . . . 11 ((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℤ) → 𝑃 ∈ ℕ)
5049nnnn0d 12534 . . . . . . . . . 10 ((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℤ) → 𝑃 ∈ ℕ0)
51 zexpcl 14044 . . . . . . . . . 10 ((𝑎 ∈ ℤ ∧ 𝑃 ∈ ℕ0) → (𝑎𝑃) ∈ ℤ)
5248, 50, 51syl2anc 584 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℤ) → (𝑎𝑃) ∈ ℤ)
53 eqid 2732 . . . . . . . . . 10 (-g‘ℤring) = (-g‘ℤring)
5453zringsubgval 21046 . . . . . . . . 9 (((𝑎𝑃) ∈ ℤ ∧ 𝑎 ∈ ℤ) → ((𝑎𝑃) − 𝑎) = ((𝑎𝑃)(-g‘ℤring)𝑎))
5552, 48, 54syl2anc 584 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℤ) → ((𝑎𝑃) − 𝑎) = ((𝑎𝑃)(-g‘ℤring)𝑎))
5655fveq2d 6895 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℤ) → ((ℤRHom‘𝑍)‘((𝑎𝑃) − 𝑎)) = ((ℤRHom‘𝑍)‘((𝑎𝑃)(-g‘ℤring)𝑎)))
5752zred 12668 . . . . . . . . . . 11 ((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℤ) → (𝑎𝑃) ∈ ℝ)
58 zre 12564 . . . . . . . . . . . 12 (𝑎 ∈ ℤ → 𝑎 ∈ ℝ)
5958adantl 482 . . . . . . . . . . 11 ((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℤ) → 𝑎 ∈ ℝ)
6049nnrpd 13016 . . . . . . . . . . 11 ((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℤ) → 𝑃 ∈ ℝ+)
61 fermltl 16719 . . . . . . . . . . 11 ((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℤ) → ((𝑎𝑃) mod 𝑃) = (𝑎 mod 𝑃))
62 eqidd 2733 . . . . . . . . . . 11 ((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℤ) → (𝑎 mod 𝑃) = (𝑎 mod 𝑃))
6357, 59, 59, 59, 60, 61, 62modsub12d 13895 . . . . . . . . . 10 ((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℤ) → (((𝑎𝑃) − 𝑎) mod 𝑃) = ((𝑎𝑎) mod 𝑃))
64 zcn 12565 . . . . . . . . . . . . 13 (𝑎 ∈ ℤ → 𝑎 ∈ ℂ)
6564subidd 11561 . . . . . . . . . . . 12 (𝑎 ∈ ℤ → (𝑎𝑎) = 0)
6665adantl 482 . . . . . . . . . . 11 ((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℤ) → (𝑎𝑎) = 0)
6766oveq1d 7426 . . . . . . . . . 10 ((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℤ) → ((𝑎𝑎) mod 𝑃) = (0 mod 𝑃))
68 0mod 13869 . . . . . . . . . . 11 (𝑃 ∈ ℝ+ → (0 mod 𝑃) = 0)
6960, 68syl 17 . . . . . . . . . 10 ((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℤ) → (0 mod 𝑃) = 0)
7063, 67, 693eqtrd 2776 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℤ) → (((𝑎𝑃) − 𝑎) mod 𝑃) = 0)
7152, 48zsubcld 12673 . . . . . . . . . 10 ((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℤ) → ((𝑎𝑃) − 𝑎) ∈ ℤ)
72 dvdsval3 16203 . . . . . . . . . 10 ((𝑃 ∈ ℕ ∧ ((𝑎𝑃) − 𝑎) ∈ ℤ) → (𝑃 ∥ ((𝑎𝑃) − 𝑎) ↔ (((𝑎𝑃) − 𝑎) mod 𝑃) = 0))
7349, 71, 72syl2anc 584 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℤ) → (𝑃 ∥ ((𝑎𝑃) − 𝑎) ↔ (((𝑎𝑃) − 𝑎) mod 𝑃) = 0))
7470, 73mpbird 256 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℤ) → 𝑃 ∥ ((𝑎𝑃) − 𝑎))
75 eqid 2732 . . . . . . . . . 10 (0g𝑍) = (0g𝑍)
7631, 34, 75zndvds0 21112 . . . . . . . . 9 ((𝑃 ∈ ℕ0 ∧ ((𝑎𝑃) − 𝑎) ∈ ℤ) → (((ℤRHom‘𝑍)‘((𝑎𝑃) − 𝑎)) = (0g𝑍) ↔ 𝑃 ∥ ((𝑎𝑃) − 𝑎)))
7750, 71, 76syl2anc 584 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℤ) → (((ℤRHom‘𝑍)‘((𝑎𝑃) − 𝑎)) = (0g𝑍) ↔ 𝑃 ∥ ((𝑎𝑃) − 𝑎)))
7874, 77mpbird 256 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℤ) → ((ℤRHom‘𝑍)‘((𝑎𝑃) − 𝑎)) = (0g𝑍))
79 rhmghm 20266 . . . . . . . . 9 ((ℤRHom‘𝑍) ∈ (ℤring RingHom 𝑍) → (ℤRHom‘𝑍) ∈ (ℤring GrpHom 𝑍))
8050, 36, 793syl 18 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℤ) → (ℤRHom‘𝑍) ∈ (ℤring GrpHom 𝑍))
81 zringbas 21029 . . . . . . . . 9 ℤ = (Base‘ℤring)
82 eqid 2732 . . . . . . . . 9 (-g𝑍) = (-g𝑍)
8381, 53, 82ghmsub 19102 . . . . . . . 8 (((ℤRHom‘𝑍) ∈ (ℤring GrpHom 𝑍) ∧ (𝑎𝑃) ∈ ℤ ∧ 𝑎 ∈ ℤ) → ((ℤRHom‘𝑍)‘((𝑎𝑃)(-g‘ℤring)𝑎)) = (((ℤRHom‘𝑍)‘(𝑎𝑃))(-g𝑍)((ℤRHom‘𝑍)‘𝑎)))
8480, 52, 48, 83syl3anc 1371 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℤ) → ((ℤRHom‘𝑍)‘((𝑎𝑃)(-g‘ℤring)𝑎)) = (((ℤRHom‘𝑍)‘(𝑎𝑃))(-g𝑍)((ℤRHom‘𝑍)‘𝑎)))
8556, 78, 843eqtr3rd 2781 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℤ) → (((ℤRHom‘𝑍)‘(𝑎𝑃))(-g𝑍)((ℤRHom‘𝑍)‘𝑎)) = (0g𝑍))
861, 30, 333syl 18 . . . . . . . . 9 (𝑃 ∈ ℙ → 𝑍 ∈ Ring)
8786ringgrpd 20067 . . . . . . . 8 (𝑃 ∈ ℙ → 𝑍 ∈ Grp)
8887adantr 481 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℤ) → 𝑍 ∈ Grp)
89 eqid 2732 . . . . . . . . . 10 (Base‘𝑍) = (Base‘𝑍)
9081, 89rhmf 20267 . . . . . . . . 9 ((ℤRHom‘𝑍) ∈ (ℤring RingHom 𝑍) → (ℤRHom‘𝑍):ℤ⟶(Base‘𝑍))
9150, 36, 903syl 18 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℤ) → (ℤRHom‘𝑍):ℤ⟶(Base‘𝑍))
9291, 52ffvelcdmd 7087 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℤ) → ((ℤRHom‘𝑍)‘(𝑎𝑃)) ∈ (Base‘𝑍))
9391, 48ffvelcdmd 7087 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℤ) → ((ℤRHom‘𝑍)‘𝑎) ∈ (Base‘𝑍))
9489, 75, 82grpsubeq0 18911 . . . . . . 7 ((𝑍 ∈ Grp ∧ ((ℤRHom‘𝑍)‘(𝑎𝑃)) ∈ (Base‘𝑍) ∧ ((ℤRHom‘𝑍)‘𝑎) ∈ (Base‘𝑍)) → ((((ℤRHom‘𝑍)‘(𝑎𝑃))(-g𝑍)((ℤRHom‘𝑍)‘𝑎)) = (0g𝑍) ↔ ((ℤRHom‘𝑍)‘(𝑎𝑃)) = ((ℤRHom‘𝑍)‘𝑎)))
9588, 92, 93, 94syl3anc 1371 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℤ) → ((((ℤRHom‘𝑍)‘(𝑎𝑃))(-g𝑍)((ℤRHom‘𝑍)‘𝑎)) = (0g𝑍) ↔ ((ℤRHom‘𝑍)‘(𝑎𝑃)) = ((ℤRHom‘𝑍)‘𝑎)))
9685, 95mpbid 231 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℤ) → ((ℤRHom‘𝑍)‘(𝑎𝑃)) = ((ℤRHom‘𝑍)‘𝑎))
9796ad4ant13 749 . . . 4 ((((𝑃 ∈ ℙ ∧ 𝐴𝐵) ∧ 𝑎 ∈ ℤ) ∧ 𝐴 = ((ℤRHom‘𝑍)‘𝑎)) → ((ℤRHom‘𝑍)‘(𝑎𝑃)) = ((ℤRHom‘𝑍)‘𝑎))
9829, 47, 973eqtr3d 2780 . . 3 ((((𝑃 ∈ ℙ ∧ 𝐴𝐵) ∧ 𝑎 ∈ ℤ) ∧ 𝐴 = ((ℤRHom‘𝑍)‘𝑎)) → (𝑃 ((ℤRHom‘𝑍)‘𝑎)) = ((ℤRHom‘𝑍)‘𝑎))
99 oveq2 7419 . . . 4 (𝐴 = ((ℤRHom‘𝑍)‘𝑎) → (𝑃 𝐴) = (𝑃 ((ℤRHom‘𝑍)‘𝑎)))
10099adantl 482 . . 3 ((((𝑃 ∈ ℙ ∧ 𝐴𝐵) ∧ 𝑎 ∈ ℤ) ∧ 𝐴 = ((ℤRHom‘𝑍)‘𝑎)) → (𝑃 𝐴) = (𝑃 ((ℤRHom‘𝑍)‘𝑎)))
101 simpr 485 . . 3 ((((𝑃 ∈ ℙ ∧ 𝐴𝐵) ∧ 𝑎 ∈ ℤ) ∧ 𝐴 = ((ℤRHom‘𝑍)‘𝑎)) → 𝐴 = ((ℤRHom‘𝑍)‘𝑎))
10298, 100, 1013eqtr4d 2782 . 2 ((((𝑃 ∈ ℙ ∧ 𝐴𝐵) ∧ 𝑎 ∈ ℤ) ∧ 𝐴 = ((ℤRHom‘𝑍)‘𝑎)) → (𝑃 𝐴) = 𝐴)
103 znfermltl.b . . . . 5 𝐵 = (Base‘𝑍)
10431, 103, 34znzrhfo 21109 . . . 4 (𝑃 ∈ ℕ0 → (ℤRHom‘𝑍):ℤ–onto𝐵)
1051, 30, 1043syl 18 . . 3 (𝑃 ∈ ℙ → (ℤRHom‘𝑍):ℤ–onto𝐵)
106 foelrn 7108 . . 3 (((ℤRHom‘𝑍):ℤ–onto𝐵𝐴𝐵) → ∃𝑎 ∈ ℤ 𝐴 = ((ℤRHom‘𝑍)‘𝑎))
107105, 106sylan 580 . 2 ((𝑃 ∈ ℙ ∧ 𝐴𝐵) → ∃𝑎 ∈ ℤ 𝐴 = ((ℤRHom‘𝑍)‘𝑎))
108102, 107r19.29a 3162 1 ((𝑃 ∈ ℙ ∧ 𝐴𝐵) → (𝑃 𝐴) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  wrex 3070  wss 3948   class class class wbr 5148  wf 6539  ontowfo 6541  cfv 6543  (class class class)co 7411  cc 11110  cr 11111  0cc0 11112  1c1 11113  cmin 11446  cn 12214  0cn0 12474  cz 12560  +crp 12976   mod cmo 13836  cexp 14029  cdvds 16199  cprime 16610  Basecbs 17146  s cress 17175  0gc0g 17387  Mndcmnd 18627   MndHom cmhm 18671  Grpcgrp 18821  invgcminusg 18822  -gcsg 18823  .gcmg 18952   GrpHom cghm 19091  mulGrpcmgp 19989  Ringcrg 20058   RingHom crh 20252  fldccnfld 20950  ringczring 21023  ℤRHomczrh 21055  ℤ/nczn 21058
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7727  ax-cnex 11168  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188  ax-pre-mulgt0 11189  ax-pre-sup 11190  ax-addf 11191  ax-mulf 11192
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-tp 4633  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7367  df-ov 7414  df-oprab 7415  df-mpo 7416  df-om 7858  df-1st 7977  df-2nd 7978  df-tpos 8213  df-frecs 8268  df-wrecs 8299  df-recs 8373  df-rdg 8412  df-1o 8468  df-2o 8469  df-oadd 8472  df-er 8705  df-ec 8707  df-qs 8711  df-map 8824  df-en 8942  df-dom 8943  df-sdom 8944  df-fin 8945  df-sup 9439  df-inf 9440  df-dju 9898  df-card 9936  df-pnf 11252  df-mnf 11253  df-xr 11254  df-ltxr 11255  df-le 11256  df-sub 11448  df-neg 11449  df-div 11874  df-nn 12215  df-2 12277  df-3 12278  df-4 12279  df-5 12280  df-6 12281  df-7 12282  df-8 12283  df-9 12284  df-n0 12475  df-xnn0 12547  df-z 12561  df-dec 12680  df-uz 12825  df-rp 12977  df-fz 13487  df-fzo 13630  df-fl 13759  df-mod 13837  df-seq 13969  df-exp 14030  df-hash 14293  df-cj 15048  df-re 15049  df-im 15050  df-sqrt 15184  df-abs 15185  df-dvds 16200  df-gcd 16438  df-prm 16611  df-phi 16701  df-struct 17082  df-sets 17099  df-slot 17117  df-ndx 17129  df-base 17147  df-ress 17176  df-plusg 17212  df-mulr 17213  df-starv 17214  df-sca 17215  df-vsca 17216  df-ip 17217  df-tset 17218  df-ple 17219  df-ds 17221  df-unif 17222  df-0g 17389  df-imas 17456  df-qus 17457  df-mgm 18563  df-sgrp 18612  df-mnd 18628  df-mhm 18673  df-grp 18824  df-minusg 18825  df-sbg 18826  df-mulg 18953  df-subg 19005  df-nsg 19006  df-eqg 19007  df-ghm 19092  df-cmn 19652  df-abl 19653  df-mgp 19990  df-ur 20007  df-ring 20060  df-cring 20061  df-oppr 20154  df-dvdsr 20175  df-unit 20176  df-invr 20206  df-dvr 20219  df-rnghom 20255  df-subrg 20321  df-drng 20363  df-lmod 20477  df-lss 20548  df-lsp 20588  df-sra 20791  df-rgmod 20792  df-lidl 20793  df-rsp 20794  df-2idl 20863  df-cnfld 20951  df-zring 21024  df-zrh 21059  df-zn 21062
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator