Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  znfermltl Structured version   Visualization version   GIF version

Theorem znfermltl 33386
Description: Fermat's little theorem in ℤ/n. (Contributed by Thierry Arnoux, 24-Jul-2024.)
Hypotheses
Ref Expression
znfermltl.z 𝑍 = (ℤ/nℤ‘𝑃)
znfermltl.b 𝐵 = (Base‘𝑍)
znfermltl.p = (.g‘(mulGrp‘𝑍))
Assertion
Ref Expression
znfermltl ((𝑃 ∈ ℙ ∧ 𝐴𝐵) → (𝑃 𝐴) = 𝐴)

Proof of Theorem znfermltl
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 prmnn 16698 . . . . . . . . 9 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
21nnnn0d 12567 . . . . . . . 8 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ0)
32ad3antrrr 730 . . . . . . 7 ((((𝑃 ∈ ℙ ∧ 𝐴𝐵) ∧ 𝑎 ∈ ℤ) ∧ 𝐴 = ((ℤRHom‘𝑍)‘𝑎)) → 𝑃 ∈ ℕ0)
4 simplr 768 . . . . . . 7 ((((𝑃 ∈ ℙ ∧ 𝐴𝐵) ∧ 𝑎 ∈ ℤ) ∧ 𝐴 = ((ℤRHom‘𝑍)‘𝑎)) → 𝑎 ∈ ℤ)
5 eqid 2736 . . . . . . . 8 ((mulGrp‘ℂfld) ↾s ℤ) = ((mulGrp‘ℂfld) ↾s ℤ)
6 zsscn 12601 . . . . . . . . 9 ℤ ⊆ ℂ
7 eqid 2736 . . . . . . . . . 10 (mulGrp‘ℂfld) = (mulGrp‘ℂfld)
8 cnfldbas 21324 . . . . . . . . . 10 ℂ = (Base‘ℂfld)
97, 8mgpbas 20110 . . . . . . . . 9 ℂ = (Base‘(mulGrp‘ℂfld))
106, 9sseqtri 4012 . . . . . . . 8 ℤ ⊆ (Base‘(mulGrp‘ℂfld))
11 eqid 2736 . . . . . . . 8 (.g‘(mulGrp‘ℂfld)) = (.g‘(mulGrp‘ℂfld))
12 eqid 2736 . . . . . . . 8 (invg‘(mulGrp‘ℂfld)) = (invg‘(mulGrp‘ℂfld))
13 cnring 21358 . . . . . . . . . 10 fld ∈ Ring
147ringmgp 20204 . . . . . . . . . 10 (ℂfld ∈ Ring → (mulGrp‘ℂfld) ∈ Mnd)
1513, 14ax-mp 5 . . . . . . . . 9 (mulGrp‘ℂfld) ∈ Mnd
16 cnfld1 21361 . . . . . . . . . . 11 1 = (1r‘ℂfld)
177, 16ringidval 20148 . . . . . . . . . 10 1 = (0g‘(mulGrp‘ℂfld))
18 1z 12627 . . . . . . . . . 10 1 ∈ ℤ
1917, 18eqeltrri 2832 . . . . . . . . 9 (0g‘(mulGrp‘ℂfld)) ∈ ℤ
20 eqid 2736 . . . . . . . . . 10 (0g‘(mulGrp‘ℂfld)) = (0g‘(mulGrp‘ℂfld))
215, 9, 20ress0g 18745 . . . . . . . . 9 (((mulGrp‘ℂfld) ∈ Mnd ∧ (0g‘(mulGrp‘ℂfld)) ∈ ℤ ∧ ℤ ⊆ ℂ) → (0g‘(mulGrp‘ℂfld)) = (0g‘((mulGrp‘ℂfld) ↾s ℤ)))
2215, 19, 6, 21mp3an 1463 . . . . . . . 8 (0g‘(mulGrp‘ℂfld)) = (0g‘((mulGrp‘ℂfld) ↾s ℤ))
235, 10, 11, 12, 22ressmulgnn0 19065 . . . . . . 7 ((𝑃 ∈ ℕ0𝑎 ∈ ℤ) → (𝑃(.g‘((mulGrp‘ℂfld) ↾s ℤ))𝑎) = (𝑃(.g‘(mulGrp‘ℂfld))𝑎))
243, 4, 23syl2anc 584 . . . . . 6 ((((𝑃 ∈ ℙ ∧ 𝐴𝐵) ∧ 𝑎 ∈ ℤ) ∧ 𝐴 = ((ℤRHom‘𝑍)‘𝑎)) → (𝑃(.g‘((mulGrp‘ℂfld) ↾s ℤ))𝑎) = (𝑃(.g‘(mulGrp‘ℂfld))𝑎))
254zcnd 12703 . . . . . . 7 ((((𝑃 ∈ ℙ ∧ 𝐴𝐵) ∧ 𝑎 ∈ ℤ) ∧ 𝐴 = ((ℤRHom‘𝑍)‘𝑎)) → 𝑎 ∈ ℂ)
26 cnfldexp 21372 . . . . . . 7 ((𝑎 ∈ ℂ ∧ 𝑃 ∈ ℕ0) → (𝑃(.g‘(mulGrp‘ℂfld))𝑎) = (𝑎𝑃))
2725, 3, 26syl2anc 584 . . . . . 6 ((((𝑃 ∈ ℙ ∧ 𝐴𝐵) ∧ 𝑎 ∈ ℤ) ∧ 𝐴 = ((ℤRHom‘𝑍)‘𝑎)) → (𝑃(.g‘(mulGrp‘ℂfld))𝑎) = (𝑎𝑃))
2824, 27eqtrd 2771 . . . . 5 ((((𝑃 ∈ ℙ ∧ 𝐴𝐵) ∧ 𝑎 ∈ ℤ) ∧ 𝐴 = ((ℤRHom‘𝑍)‘𝑎)) → (𝑃(.g‘((mulGrp‘ℂfld) ↾s ℤ))𝑎) = (𝑎𝑃))
2928fveq2d 6885 . . . 4 ((((𝑃 ∈ ℙ ∧ 𝐴𝐵) ∧ 𝑎 ∈ ℤ) ∧ 𝐴 = ((ℤRHom‘𝑍)‘𝑎)) → ((ℤRHom‘𝑍)‘(𝑃(.g‘((mulGrp‘ℂfld) ↾s ℤ))𝑎)) = ((ℤRHom‘𝑍)‘(𝑎𝑃)))
30 nnnn0 12513 . . . . . . 7 (𝑃 ∈ ℕ → 𝑃 ∈ ℕ0)
31 znfermltl.z . . . . . . . . . 10 𝑍 = (ℤ/nℤ‘𝑃)
3231zncrng 21510 . . . . . . . . 9 (𝑃 ∈ ℕ0𝑍 ∈ CRing)
3332crngringd 20211 . . . . . . . 8 (𝑃 ∈ ℕ0𝑍 ∈ Ring)
34 eqid 2736 . . . . . . . . 9 (ℤRHom‘𝑍) = (ℤRHom‘𝑍)
3534zrhrhm 21477 . . . . . . . 8 (𝑍 ∈ Ring → (ℤRHom‘𝑍) ∈ (ℤring RingHom 𝑍))
3633, 35syl 17 . . . . . . 7 (𝑃 ∈ ℕ0 → (ℤRHom‘𝑍) ∈ (ℤring RingHom 𝑍))
37 zringmpg 21437 . . . . . . . 8 ((mulGrp‘ℂfld) ↾s ℤ) = (mulGrp‘ℤring)
38 eqid 2736 . . . . . . . 8 (mulGrp‘𝑍) = (mulGrp‘𝑍)
3937, 38rhmmhm 20444 . . . . . . 7 ((ℤRHom‘𝑍) ∈ (ℤring RingHom 𝑍) → (ℤRHom‘𝑍) ∈ (((mulGrp‘ℂfld) ↾s ℤ) MndHom (mulGrp‘𝑍)))
401, 30, 36, 394syl 19 . . . . . 6 (𝑃 ∈ ℙ → (ℤRHom‘𝑍) ∈ (((mulGrp‘ℂfld) ↾s ℤ) MndHom (mulGrp‘𝑍)))
4140ad3antrrr 730 . . . . 5 ((((𝑃 ∈ ℙ ∧ 𝐴𝐵) ∧ 𝑎 ∈ ℤ) ∧ 𝐴 = ((ℤRHom‘𝑍)‘𝑎)) → (ℤRHom‘𝑍) ∈ (((mulGrp‘ℂfld) ↾s ℤ) MndHom (mulGrp‘𝑍)))
425, 9ressbas2 17264 . . . . . . 7 (ℤ ⊆ ℂ → ℤ = (Base‘((mulGrp‘ℂfld) ↾s ℤ)))
436, 42ax-mp 5 . . . . . 6 ℤ = (Base‘((mulGrp‘ℂfld) ↾s ℤ))
44 eqid 2736 . . . . . 6 (.g‘((mulGrp‘ℂfld) ↾s ℤ)) = (.g‘((mulGrp‘ℂfld) ↾s ℤ))
45 znfermltl.p . . . . . 6 = (.g‘(mulGrp‘𝑍))
4643, 44, 45mhmmulg 19103 . . . . 5 (((ℤRHom‘𝑍) ∈ (((mulGrp‘ℂfld) ↾s ℤ) MndHom (mulGrp‘𝑍)) ∧ 𝑃 ∈ ℕ0𝑎 ∈ ℤ) → ((ℤRHom‘𝑍)‘(𝑃(.g‘((mulGrp‘ℂfld) ↾s ℤ))𝑎)) = (𝑃 ((ℤRHom‘𝑍)‘𝑎)))
4741, 3, 4, 46syl3anc 1373 . . . 4 ((((𝑃 ∈ ℙ ∧ 𝐴𝐵) ∧ 𝑎 ∈ ℤ) ∧ 𝐴 = ((ℤRHom‘𝑍)‘𝑎)) → ((ℤRHom‘𝑍)‘(𝑃(.g‘((mulGrp‘ℂfld) ↾s ℤ))𝑎)) = (𝑃 ((ℤRHom‘𝑍)‘𝑎)))
48 simpr 484 . . . . . . . . . 10 ((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℤ) → 𝑎 ∈ ℤ)
491adantr 480 . . . . . . . . . . 11 ((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℤ) → 𝑃 ∈ ℕ)
5049nnnn0d 12567 . . . . . . . . . 10 ((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℤ) → 𝑃 ∈ ℕ0)
51 zexpcl 14099 . . . . . . . . . 10 ((𝑎 ∈ ℤ ∧ 𝑃 ∈ ℕ0) → (𝑎𝑃) ∈ ℤ)
5248, 50, 51syl2anc 584 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℤ) → (𝑎𝑃) ∈ ℤ)
53 eqid 2736 . . . . . . . . . 10 (-g‘ℤring) = (-g‘ℤring)
5453zringsubgval 21436 . . . . . . . . 9 (((𝑎𝑃) ∈ ℤ ∧ 𝑎 ∈ ℤ) → ((𝑎𝑃) − 𝑎) = ((𝑎𝑃)(-g‘ℤring)𝑎))
5552, 48, 54syl2anc 584 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℤ) → ((𝑎𝑃) − 𝑎) = ((𝑎𝑃)(-g‘ℤring)𝑎))
5655fveq2d 6885 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℤ) → ((ℤRHom‘𝑍)‘((𝑎𝑃) − 𝑎)) = ((ℤRHom‘𝑍)‘((𝑎𝑃)(-g‘ℤring)𝑎)))
5752zred 12702 . . . . . . . . . . 11 ((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℤ) → (𝑎𝑃) ∈ ℝ)
58 zre 12597 . . . . . . . . . . . 12 (𝑎 ∈ ℤ → 𝑎 ∈ ℝ)
5958adantl 481 . . . . . . . . . . 11 ((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℤ) → 𝑎 ∈ ℝ)
6049nnrpd 13054 . . . . . . . . . . 11 ((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℤ) → 𝑃 ∈ ℝ+)
61 fermltl 16808 . . . . . . . . . . 11 ((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℤ) → ((𝑎𝑃) mod 𝑃) = (𝑎 mod 𝑃))
62 eqidd 2737 . . . . . . . . . . 11 ((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℤ) → (𝑎 mod 𝑃) = (𝑎 mod 𝑃))
6357, 59, 59, 59, 60, 61, 62modsub12d 13951 . . . . . . . . . 10 ((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℤ) → (((𝑎𝑃) − 𝑎) mod 𝑃) = ((𝑎𝑎) mod 𝑃))
64 zcn 12598 . . . . . . . . . . . . 13 (𝑎 ∈ ℤ → 𝑎 ∈ ℂ)
6564subidd 11587 . . . . . . . . . . . 12 (𝑎 ∈ ℤ → (𝑎𝑎) = 0)
6665adantl 481 . . . . . . . . . . 11 ((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℤ) → (𝑎𝑎) = 0)
6766oveq1d 7425 . . . . . . . . . 10 ((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℤ) → ((𝑎𝑎) mod 𝑃) = (0 mod 𝑃))
68 0mod 13924 . . . . . . . . . . 11 (𝑃 ∈ ℝ+ → (0 mod 𝑃) = 0)
6960, 68syl 17 . . . . . . . . . 10 ((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℤ) → (0 mod 𝑃) = 0)
7063, 67, 693eqtrd 2775 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℤ) → (((𝑎𝑃) − 𝑎) mod 𝑃) = 0)
7152, 48zsubcld 12707 . . . . . . . . . 10 ((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℤ) → ((𝑎𝑃) − 𝑎) ∈ ℤ)
72 dvdsval3 16281 . . . . . . . . . 10 ((𝑃 ∈ ℕ ∧ ((𝑎𝑃) − 𝑎) ∈ ℤ) → (𝑃 ∥ ((𝑎𝑃) − 𝑎) ↔ (((𝑎𝑃) − 𝑎) mod 𝑃) = 0))
7349, 71, 72syl2anc 584 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℤ) → (𝑃 ∥ ((𝑎𝑃) − 𝑎) ↔ (((𝑎𝑃) − 𝑎) mod 𝑃) = 0))
7470, 73mpbird 257 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℤ) → 𝑃 ∥ ((𝑎𝑃) − 𝑎))
75 eqid 2736 . . . . . . . . . 10 (0g𝑍) = (0g𝑍)
7631, 34, 75zndvds0 21516 . . . . . . . . 9 ((𝑃 ∈ ℕ0 ∧ ((𝑎𝑃) − 𝑎) ∈ ℤ) → (((ℤRHom‘𝑍)‘((𝑎𝑃) − 𝑎)) = (0g𝑍) ↔ 𝑃 ∥ ((𝑎𝑃) − 𝑎)))
7750, 71, 76syl2anc 584 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℤ) → (((ℤRHom‘𝑍)‘((𝑎𝑃) − 𝑎)) = (0g𝑍) ↔ 𝑃 ∥ ((𝑎𝑃) − 𝑎)))
7874, 77mpbird 257 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℤ) → ((ℤRHom‘𝑍)‘((𝑎𝑃) − 𝑎)) = (0g𝑍))
79 rhmghm 20449 . . . . . . . . 9 ((ℤRHom‘𝑍) ∈ (ℤring RingHom 𝑍) → (ℤRHom‘𝑍) ∈ (ℤring GrpHom 𝑍))
8050, 36, 793syl 18 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℤ) → (ℤRHom‘𝑍) ∈ (ℤring GrpHom 𝑍))
81 zringbas 21419 . . . . . . . . 9 ℤ = (Base‘ℤring)
82 eqid 2736 . . . . . . . . 9 (-g𝑍) = (-g𝑍)
8381, 53, 82ghmsub 19212 . . . . . . . 8 (((ℤRHom‘𝑍) ∈ (ℤring GrpHom 𝑍) ∧ (𝑎𝑃) ∈ ℤ ∧ 𝑎 ∈ ℤ) → ((ℤRHom‘𝑍)‘((𝑎𝑃)(-g‘ℤring)𝑎)) = (((ℤRHom‘𝑍)‘(𝑎𝑃))(-g𝑍)((ℤRHom‘𝑍)‘𝑎)))
8480, 52, 48, 83syl3anc 1373 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℤ) → ((ℤRHom‘𝑍)‘((𝑎𝑃)(-g‘ℤring)𝑎)) = (((ℤRHom‘𝑍)‘(𝑎𝑃))(-g𝑍)((ℤRHom‘𝑍)‘𝑎)))
8556, 78, 843eqtr3rd 2780 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℤ) → (((ℤRHom‘𝑍)‘(𝑎𝑃))(-g𝑍)((ℤRHom‘𝑍)‘𝑎)) = (0g𝑍))
861, 30, 333syl 18 . . . . . . . . 9 (𝑃 ∈ ℙ → 𝑍 ∈ Ring)
8786ringgrpd 20207 . . . . . . . 8 (𝑃 ∈ ℙ → 𝑍 ∈ Grp)
8887adantr 480 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℤ) → 𝑍 ∈ Grp)
89 eqid 2736 . . . . . . . . . 10 (Base‘𝑍) = (Base‘𝑍)
9081, 89rhmf 20450 . . . . . . . . 9 ((ℤRHom‘𝑍) ∈ (ℤring RingHom 𝑍) → (ℤRHom‘𝑍):ℤ⟶(Base‘𝑍))
9150, 36, 903syl 18 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℤ) → (ℤRHom‘𝑍):ℤ⟶(Base‘𝑍))
9291, 52ffvelcdmd 7080 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℤ) → ((ℤRHom‘𝑍)‘(𝑎𝑃)) ∈ (Base‘𝑍))
9391, 48ffvelcdmd 7080 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℤ) → ((ℤRHom‘𝑍)‘𝑎) ∈ (Base‘𝑍))
9489, 75, 82grpsubeq0 19014 . . . . . . 7 ((𝑍 ∈ Grp ∧ ((ℤRHom‘𝑍)‘(𝑎𝑃)) ∈ (Base‘𝑍) ∧ ((ℤRHom‘𝑍)‘𝑎) ∈ (Base‘𝑍)) → ((((ℤRHom‘𝑍)‘(𝑎𝑃))(-g𝑍)((ℤRHom‘𝑍)‘𝑎)) = (0g𝑍) ↔ ((ℤRHom‘𝑍)‘(𝑎𝑃)) = ((ℤRHom‘𝑍)‘𝑎)))
9588, 92, 93, 94syl3anc 1373 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℤ) → ((((ℤRHom‘𝑍)‘(𝑎𝑃))(-g𝑍)((ℤRHom‘𝑍)‘𝑎)) = (0g𝑍) ↔ ((ℤRHom‘𝑍)‘(𝑎𝑃)) = ((ℤRHom‘𝑍)‘𝑎)))
9685, 95mpbid 232 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℤ) → ((ℤRHom‘𝑍)‘(𝑎𝑃)) = ((ℤRHom‘𝑍)‘𝑎))
9796ad4ant13 751 . . . 4 ((((𝑃 ∈ ℙ ∧ 𝐴𝐵) ∧ 𝑎 ∈ ℤ) ∧ 𝐴 = ((ℤRHom‘𝑍)‘𝑎)) → ((ℤRHom‘𝑍)‘(𝑎𝑃)) = ((ℤRHom‘𝑍)‘𝑎))
9829, 47, 973eqtr3d 2779 . . 3 ((((𝑃 ∈ ℙ ∧ 𝐴𝐵) ∧ 𝑎 ∈ ℤ) ∧ 𝐴 = ((ℤRHom‘𝑍)‘𝑎)) → (𝑃 ((ℤRHom‘𝑍)‘𝑎)) = ((ℤRHom‘𝑍)‘𝑎))
99 oveq2 7418 . . . 4 (𝐴 = ((ℤRHom‘𝑍)‘𝑎) → (𝑃 𝐴) = (𝑃 ((ℤRHom‘𝑍)‘𝑎)))
10099adantl 481 . . 3 ((((𝑃 ∈ ℙ ∧ 𝐴𝐵) ∧ 𝑎 ∈ ℤ) ∧ 𝐴 = ((ℤRHom‘𝑍)‘𝑎)) → (𝑃 𝐴) = (𝑃 ((ℤRHom‘𝑍)‘𝑎)))
101 simpr 484 . . 3 ((((𝑃 ∈ ℙ ∧ 𝐴𝐵) ∧ 𝑎 ∈ ℤ) ∧ 𝐴 = ((ℤRHom‘𝑍)‘𝑎)) → 𝐴 = ((ℤRHom‘𝑍)‘𝑎))
10298, 100, 1013eqtr4d 2781 . 2 ((((𝑃 ∈ ℙ ∧ 𝐴𝐵) ∧ 𝑎 ∈ ℤ) ∧ 𝐴 = ((ℤRHom‘𝑍)‘𝑎)) → (𝑃 𝐴) = 𝐴)
103 znfermltl.b . . . . 5 𝐵 = (Base‘𝑍)
10431, 103, 34znzrhfo 21513 . . . 4 (𝑃 ∈ ℕ0 → (ℤRHom‘𝑍):ℤ–onto𝐵)
1051, 30, 1043syl 18 . . 3 (𝑃 ∈ ℙ → (ℤRHom‘𝑍):ℤ–onto𝐵)
106 foelrn 7102 . . 3 (((ℤRHom‘𝑍):ℤ–onto𝐵𝐴𝐵) → ∃𝑎 ∈ ℤ 𝐴 = ((ℤRHom‘𝑍)‘𝑎))
107105, 106sylan 580 . 2 ((𝑃 ∈ ℙ ∧ 𝐴𝐵) → ∃𝑎 ∈ ℤ 𝐴 = ((ℤRHom‘𝑍)‘𝑎))
108102, 107r19.29a 3149 1 ((𝑃 ∈ ℙ ∧ 𝐴𝐵) → (𝑃 𝐴) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wrex 3061  wss 3931   class class class wbr 5124  wf 6532  ontowfo 6534  cfv 6536  (class class class)co 7410  cc 11132  cr 11133  0cc0 11134  1c1 11135  cmin 11471  cn 12245  0cn0 12506  cz 12593  +crp 13013   mod cmo 13891  cexp 14084  cdvds 16277  cprime 16695  Basecbs 17233  s cress 17256  0gc0g 17458  Mndcmnd 18717   MndHom cmhm 18764  Grpcgrp 18921  invgcminusg 18922  -gcsg 18923  .gcmg 19055   GrpHom cghm 19200  mulGrpcmgp 20105  Ringcrg 20198   RingHom crh 20434  fldccnfld 21320  ringczring 21412  ℤRHomczrh 21465  ℤ/nczn 21468
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211  ax-pre-sup 11212  ax-addf 11213  ax-mulf 11214
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-tpos 8230  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-2o 8486  df-oadd 8489  df-er 8724  df-ec 8726  df-qs 8730  df-map 8847  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-sup 9459  df-inf 9460  df-dju 9920  df-card 9958  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-div 11900  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-7 12313  df-8 12314  df-9 12315  df-n0 12507  df-xnn0 12580  df-z 12594  df-dec 12714  df-uz 12858  df-rp 13014  df-fz 13530  df-fzo 13677  df-fl 13814  df-mod 13892  df-seq 14025  df-exp 14085  df-hash 14354  df-cj 15123  df-re 15124  df-im 15125  df-sqrt 15259  df-abs 15260  df-dvds 16278  df-gcd 16519  df-prm 16696  df-phi 16790  df-struct 17171  df-sets 17188  df-slot 17206  df-ndx 17218  df-base 17234  df-ress 17257  df-plusg 17289  df-mulr 17290  df-starv 17291  df-sca 17292  df-vsca 17293  df-ip 17294  df-tset 17295  df-ple 17296  df-ds 17298  df-unif 17299  df-0g 17460  df-imas 17527  df-qus 17528  df-mgm 18623  df-sgrp 18702  df-mnd 18718  df-mhm 18766  df-grp 18924  df-minusg 18925  df-sbg 18926  df-mulg 19056  df-subg 19111  df-nsg 19112  df-eqg 19113  df-ghm 19201  df-cmn 19768  df-abl 19769  df-mgp 20106  df-rng 20118  df-ur 20147  df-ring 20200  df-cring 20201  df-oppr 20302  df-dvdsr 20322  df-unit 20323  df-invr 20353  df-dvr 20366  df-rhm 20437  df-subrng 20511  df-subrg 20535  df-drng 20696  df-lmod 20824  df-lss 20894  df-lsp 20934  df-sra 21136  df-rgmod 21137  df-lidl 21174  df-rsp 21175  df-2idl 21216  df-cnfld 21321  df-zring 21413  df-zrh 21469  df-zn 21472
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator