Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  znfermltl Structured version   Visualization version   GIF version

Theorem znfermltl 33245
Description: Fermat's little theorem in ℤ/n. (Contributed by Thierry Arnoux, 24-Jul-2024.)
Hypotheses
Ref Expression
znfermltl.z 𝑍 = (ℤ/nℤ‘𝑃)
znfermltl.b 𝐵 = (Base‘𝑍)
znfermltl.p = (.g‘(mulGrp‘𝑍))
Assertion
Ref Expression
znfermltl ((𝑃 ∈ ℙ ∧ 𝐴𝐵) → (𝑃 𝐴) = 𝐴)

Proof of Theorem znfermltl
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 prmnn 16668 . . . . . . . . 9 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
21nnnn0d 12576 . . . . . . . 8 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ0)
32ad3antrrr 728 . . . . . . 7 ((((𝑃 ∈ ℙ ∧ 𝐴𝐵) ∧ 𝑎 ∈ ℤ) ∧ 𝐴 = ((ℤRHom‘𝑍)‘𝑎)) → 𝑃 ∈ ℕ0)
4 simplr 767 . . . . . . 7 ((((𝑃 ∈ ℙ ∧ 𝐴𝐵) ∧ 𝑎 ∈ ℤ) ∧ 𝐴 = ((ℤRHom‘𝑍)‘𝑎)) → 𝑎 ∈ ℤ)
5 eqid 2726 . . . . . . . 8 ((mulGrp‘ℂfld) ↾s ℤ) = ((mulGrp‘ℂfld) ↾s ℤ)
6 zsscn 12610 . . . . . . . . 9 ℤ ⊆ ℂ
7 eqid 2726 . . . . . . . . . 10 (mulGrp‘ℂfld) = (mulGrp‘ℂfld)
8 cnfldbas 21341 . . . . . . . . . 10 ℂ = (Base‘ℂfld)
97, 8mgpbas 20117 . . . . . . . . 9 ℂ = (Base‘(mulGrp‘ℂfld))
106, 9sseqtri 4016 . . . . . . . 8 ℤ ⊆ (Base‘(mulGrp‘ℂfld))
11 eqid 2726 . . . . . . . 8 (.g‘(mulGrp‘ℂfld)) = (.g‘(mulGrp‘ℂfld))
12 eqid 2726 . . . . . . . 8 (invg‘(mulGrp‘ℂfld)) = (invg‘(mulGrp‘ℂfld))
13 cnring 21376 . . . . . . . . . 10 fld ∈ Ring
147ringmgp 20216 . . . . . . . . . 10 (ℂfld ∈ Ring → (mulGrp‘ℂfld) ∈ Mnd)
1513, 14ax-mp 5 . . . . . . . . 9 (mulGrp‘ℂfld) ∈ Mnd
16 cnfld1 21379 . . . . . . . . . . 11 1 = (1r‘ℂfld)
177, 16ringidval 20160 . . . . . . . . . 10 1 = (0g‘(mulGrp‘ℂfld))
18 1z 12636 . . . . . . . . . 10 1 ∈ ℤ
1917, 18eqeltrri 2823 . . . . . . . . 9 (0g‘(mulGrp‘ℂfld)) ∈ ℤ
20 eqid 2726 . . . . . . . . . 10 (0g‘(mulGrp‘ℂfld)) = (0g‘(mulGrp‘ℂfld))
215, 9, 20ress0g 18748 . . . . . . . . 9 (((mulGrp‘ℂfld) ∈ Mnd ∧ (0g‘(mulGrp‘ℂfld)) ∈ ℤ ∧ ℤ ⊆ ℂ) → (0g‘(mulGrp‘ℂfld)) = (0g‘((mulGrp‘ℂfld) ↾s ℤ)))
2215, 19, 6, 21mp3an 1458 . . . . . . . 8 (0g‘(mulGrp‘ℂfld)) = (0g‘((mulGrp‘ℂfld) ↾s ℤ))
235, 10, 11, 12, 22ressmulgnn0 19065 . . . . . . 7 ((𝑃 ∈ ℕ0𝑎 ∈ ℤ) → (𝑃(.g‘((mulGrp‘ℂfld) ↾s ℤ))𝑎) = (𝑃(.g‘(mulGrp‘ℂfld))𝑎))
243, 4, 23syl2anc 582 . . . . . 6 ((((𝑃 ∈ ℙ ∧ 𝐴𝐵) ∧ 𝑎 ∈ ℤ) ∧ 𝐴 = ((ℤRHom‘𝑍)‘𝑎)) → (𝑃(.g‘((mulGrp‘ℂfld) ↾s ℤ))𝑎) = (𝑃(.g‘(mulGrp‘ℂfld))𝑎))
254zcnd 12711 . . . . . . 7 ((((𝑃 ∈ ℙ ∧ 𝐴𝐵) ∧ 𝑎 ∈ ℤ) ∧ 𝐴 = ((ℤRHom‘𝑍)‘𝑎)) → 𝑎 ∈ ℂ)
26 cnfldexp 21390 . . . . . . 7 ((𝑎 ∈ ℂ ∧ 𝑃 ∈ ℕ0) → (𝑃(.g‘(mulGrp‘ℂfld))𝑎) = (𝑎𝑃))
2725, 3, 26syl2anc 582 . . . . . 6 ((((𝑃 ∈ ℙ ∧ 𝐴𝐵) ∧ 𝑎 ∈ ℤ) ∧ 𝐴 = ((ℤRHom‘𝑍)‘𝑎)) → (𝑃(.g‘(mulGrp‘ℂfld))𝑎) = (𝑎𝑃))
2824, 27eqtrd 2766 . . . . 5 ((((𝑃 ∈ ℙ ∧ 𝐴𝐵) ∧ 𝑎 ∈ ℤ) ∧ 𝐴 = ((ℤRHom‘𝑍)‘𝑎)) → (𝑃(.g‘((mulGrp‘ℂfld) ↾s ℤ))𝑎) = (𝑎𝑃))
2928fveq2d 6895 . . . 4 ((((𝑃 ∈ ℙ ∧ 𝐴𝐵) ∧ 𝑎 ∈ ℤ) ∧ 𝐴 = ((ℤRHom‘𝑍)‘𝑎)) → ((ℤRHom‘𝑍)‘(𝑃(.g‘((mulGrp‘ℂfld) ↾s ℤ))𝑎)) = ((ℤRHom‘𝑍)‘(𝑎𝑃)))
30 nnnn0 12523 . . . . . . 7 (𝑃 ∈ ℕ → 𝑃 ∈ ℕ0)
31 znfermltl.z . . . . . . . . . 10 𝑍 = (ℤ/nℤ‘𝑃)
3231zncrng 21536 . . . . . . . . 9 (𝑃 ∈ ℕ0𝑍 ∈ CRing)
3332crngringd 20223 . . . . . . . 8 (𝑃 ∈ ℕ0𝑍 ∈ Ring)
34 eqid 2726 . . . . . . . . 9 (ℤRHom‘𝑍) = (ℤRHom‘𝑍)
3534zrhrhm 21495 . . . . . . . 8 (𝑍 ∈ Ring → (ℤRHom‘𝑍) ∈ (ℤring RingHom 𝑍))
3633, 35syl 17 . . . . . . 7 (𝑃 ∈ ℕ0 → (ℤRHom‘𝑍) ∈ (ℤring RingHom 𝑍))
37 zringmpg 21455 . . . . . . . 8 ((mulGrp‘ℂfld) ↾s ℤ) = (mulGrp‘ℤring)
38 eqid 2726 . . . . . . . 8 (mulGrp‘𝑍) = (mulGrp‘𝑍)
3937, 38rhmmhm 20455 . . . . . . 7 ((ℤRHom‘𝑍) ∈ (ℤring RingHom 𝑍) → (ℤRHom‘𝑍) ∈ (((mulGrp‘ℂfld) ↾s ℤ) MndHom (mulGrp‘𝑍)))
401, 30, 36, 394syl 19 . . . . . 6 (𝑃 ∈ ℙ → (ℤRHom‘𝑍) ∈ (((mulGrp‘ℂfld) ↾s ℤ) MndHom (mulGrp‘𝑍)))
4140ad3antrrr 728 . . . . 5 ((((𝑃 ∈ ℙ ∧ 𝐴𝐵) ∧ 𝑎 ∈ ℤ) ∧ 𝐴 = ((ℤRHom‘𝑍)‘𝑎)) → (ℤRHom‘𝑍) ∈ (((mulGrp‘ℂfld) ↾s ℤ) MndHom (mulGrp‘𝑍)))
425, 9ressbas2 17244 . . . . . . 7 (ℤ ⊆ ℂ → ℤ = (Base‘((mulGrp‘ℂfld) ↾s ℤ)))
436, 42ax-mp 5 . . . . . 6 ℤ = (Base‘((mulGrp‘ℂfld) ↾s ℤ))
44 eqid 2726 . . . . . 6 (.g‘((mulGrp‘ℂfld) ↾s ℤ)) = (.g‘((mulGrp‘ℂfld) ↾s ℤ))
45 znfermltl.p . . . . . 6 = (.g‘(mulGrp‘𝑍))
4643, 44, 45mhmmulg 19103 . . . . 5 (((ℤRHom‘𝑍) ∈ (((mulGrp‘ℂfld) ↾s ℤ) MndHom (mulGrp‘𝑍)) ∧ 𝑃 ∈ ℕ0𝑎 ∈ ℤ) → ((ℤRHom‘𝑍)‘(𝑃(.g‘((mulGrp‘ℂfld) ↾s ℤ))𝑎)) = (𝑃 ((ℤRHom‘𝑍)‘𝑎)))
4741, 3, 4, 46syl3anc 1368 . . . 4 ((((𝑃 ∈ ℙ ∧ 𝐴𝐵) ∧ 𝑎 ∈ ℤ) ∧ 𝐴 = ((ℤRHom‘𝑍)‘𝑎)) → ((ℤRHom‘𝑍)‘(𝑃(.g‘((mulGrp‘ℂfld) ↾s ℤ))𝑎)) = (𝑃 ((ℤRHom‘𝑍)‘𝑎)))
48 simpr 483 . . . . . . . . . 10 ((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℤ) → 𝑎 ∈ ℤ)
491adantr 479 . . . . . . . . . . 11 ((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℤ) → 𝑃 ∈ ℕ)
5049nnnn0d 12576 . . . . . . . . . 10 ((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℤ) → 𝑃 ∈ ℕ0)
51 zexpcl 14088 . . . . . . . . . 10 ((𝑎 ∈ ℤ ∧ 𝑃 ∈ ℕ0) → (𝑎𝑃) ∈ ℤ)
5248, 50, 51syl2anc 582 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℤ) → (𝑎𝑃) ∈ ℤ)
53 eqid 2726 . . . . . . . . . 10 (-g‘ℤring) = (-g‘ℤring)
5453zringsubgval 21454 . . . . . . . . 9 (((𝑎𝑃) ∈ ℤ ∧ 𝑎 ∈ ℤ) → ((𝑎𝑃) − 𝑎) = ((𝑎𝑃)(-g‘ℤring)𝑎))
5552, 48, 54syl2anc 582 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℤ) → ((𝑎𝑃) − 𝑎) = ((𝑎𝑃)(-g‘ℤring)𝑎))
5655fveq2d 6895 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℤ) → ((ℤRHom‘𝑍)‘((𝑎𝑃) − 𝑎)) = ((ℤRHom‘𝑍)‘((𝑎𝑃)(-g‘ℤring)𝑎)))
5752zred 12710 . . . . . . . . . . 11 ((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℤ) → (𝑎𝑃) ∈ ℝ)
58 zre 12606 . . . . . . . . . . . 12 (𝑎 ∈ ℤ → 𝑎 ∈ ℝ)
5958adantl 480 . . . . . . . . . . 11 ((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℤ) → 𝑎 ∈ ℝ)
6049nnrpd 13060 . . . . . . . . . . 11 ((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℤ) → 𝑃 ∈ ℝ+)
61 fermltl 16779 . . . . . . . . . . 11 ((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℤ) → ((𝑎𝑃) mod 𝑃) = (𝑎 mod 𝑃))
62 eqidd 2727 . . . . . . . . . . 11 ((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℤ) → (𝑎 mod 𝑃) = (𝑎 mod 𝑃))
6357, 59, 59, 59, 60, 61, 62modsub12d 13940 . . . . . . . . . 10 ((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℤ) → (((𝑎𝑃) − 𝑎) mod 𝑃) = ((𝑎𝑎) mod 𝑃))
64 zcn 12607 . . . . . . . . . . . . 13 (𝑎 ∈ ℤ → 𝑎 ∈ ℂ)
6564subidd 11598 . . . . . . . . . . . 12 (𝑎 ∈ ℤ → (𝑎𝑎) = 0)
6665adantl 480 . . . . . . . . . . 11 ((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℤ) → (𝑎𝑎) = 0)
6766oveq1d 7429 . . . . . . . . . 10 ((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℤ) → ((𝑎𝑎) mod 𝑃) = (0 mod 𝑃))
68 0mod 13914 . . . . . . . . . . 11 (𝑃 ∈ ℝ+ → (0 mod 𝑃) = 0)
6960, 68syl 17 . . . . . . . . . 10 ((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℤ) → (0 mod 𝑃) = 0)
7063, 67, 693eqtrd 2770 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℤ) → (((𝑎𝑃) − 𝑎) mod 𝑃) = 0)
7152, 48zsubcld 12715 . . . . . . . . . 10 ((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℤ) → ((𝑎𝑃) − 𝑎) ∈ ℤ)
72 dvdsval3 16253 . . . . . . . . . 10 ((𝑃 ∈ ℕ ∧ ((𝑎𝑃) − 𝑎) ∈ ℤ) → (𝑃 ∥ ((𝑎𝑃) − 𝑎) ↔ (((𝑎𝑃) − 𝑎) mod 𝑃) = 0))
7349, 71, 72syl2anc 582 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℤ) → (𝑃 ∥ ((𝑎𝑃) − 𝑎) ↔ (((𝑎𝑃) − 𝑎) mod 𝑃) = 0))
7470, 73mpbird 256 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℤ) → 𝑃 ∥ ((𝑎𝑃) − 𝑎))
75 eqid 2726 . . . . . . . . . 10 (0g𝑍) = (0g𝑍)
7631, 34, 75zndvds0 21542 . . . . . . . . 9 ((𝑃 ∈ ℕ0 ∧ ((𝑎𝑃) − 𝑎) ∈ ℤ) → (((ℤRHom‘𝑍)‘((𝑎𝑃) − 𝑎)) = (0g𝑍) ↔ 𝑃 ∥ ((𝑎𝑃) − 𝑎)))
7750, 71, 76syl2anc 582 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℤ) → (((ℤRHom‘𝑍)‘((𝑎𝑃) − 𝑎)) = (0g𝑍) ↔ 𝑃 ∥ ((𝑎𝑃) − 𝑎)))
7874, 77mpbird 256 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℤ) → ((ℤRHom‘𝑍)‘((𝑎𝑃) − 𝑎)) = (0g𝑍))
79 rhmghm 20460 . . . . . . . . 9 ((ℤRHom‘𝑍) ∈ (ℤring RingHom 𝑍) → (ℤRHom‘𝑍) ∈ (ℤring GrpHom 𝑍))
8050, 36, 793syl 18 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℤ) → (ℤRHom‘𝑍) ∈ (ℤring GrpHom 𝑍))
81 zringbas 21437 . . . . . . . . 9 ℤ = (Base‘ℤring)
82 eqid 2726 . . . . . . . . 9 (-g𝑍) = (-g𝑍)
8381, 53, 82ghmsub 19212 . . . . . . . 8 (((ℤRHom‘𝑍) ∈ (ℤring GrpHom 𝑍) ∧ (𝑎𝑃) ∈ ℤ ∧ 𝑎 ∈ ℤ) → ((ℤRHom‘𝑍)‘((𝑎𝑃)(-g‘ℤring)𝑎)) = (((ℤRHom‘𝑍)‘(𝑎𝑃))(-g𝑍)((ℤRHom‘𝑍)‘𝑎)))
8480, 52, 48, 83syl3anc 1368 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℤ) → ((ℤRHom‘𝑍)‘((𝑎𝑃)(-g‘ℤring)𝑎)) = (((ℤRHom‘𝑍)‘(𝑎𝑃))(-g𝑍)((ℤRHom‘𝑍)‘𝑎)))
8556, 78, 843eqtr3rd 2775 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℤ) → (((ℤRHom‘𝑍)‘(𝑎𝑃))(-g𝑍)((ℤRHom‘𝑍)‘𝑎)) = (0g𝑍))
861, 30, 333syl 18 . . . . . . . . 9 (𝑃 ∈ ℙ → 𝑍 ∈ Ring)
8786ringgrpd 20219 . . . . . . . 8 (𝑃 ∈ ℙ → 𝑍 ∈ Grp)
8887adantr 479 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℤ) → 𝑍 ∈ Grp)
89 eqid 2726 . . . . . . . . . 10 (Base‘𝑍) = (Base‘𝑍)
9081, 89rhmf 20461 . . . . . . . . 9 ((ℤRHom‘𝑍) ∈ (ℤring RingHom 𝑍) → (ℤRHom‘𝑍):ℤ⟶(Base‘𝑍))
9150, 36, 903syl 18 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℤ) → (ℤRHom‘𝑍):ℤ⟶(Base‘𝑍))
9291, 52ffvelcdmd 7089 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℤ) → ((ℤRHom‘𝑍)‘(𝑎𝑃)) ∈ (Base‘𝑍))
9391, 48ffvelcdmd 7089 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℤ) → ((ℤRHom‘𝑍)‘𝑎) ∈ (Base‘𝑍))
9489, 75, 82grpsubeq0 19014 . . . . . . 7 ((𝑍 ∈ Grp ∧ ((ℤRHom‘𝑍)‘(𝑎𝑃)) ∈ (Base‘𝑍) ∧ ((ℤRHom‘𝑍)‘𝑎) ∈ (Base‘𝑍)) → ((((ℤRHom‘𝑍)‘(𝑎𝑃))(-g𝑍)((ℤRHom‘𝑍)‘𝑎)) = (0g𝑍) ↔ ((ℤRHom‘𝑍)‘(𝑎𝑃)) = ((ℤRHom‘𝑍)‘𝑎)))
9588, 92, 93, 94syl3anc 1368 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℤ) → ((((ℤRHom‘𝑍)‘(𝑎𝑃))(-g𝑍)((ℤRHom‘𝑍)‘𝑎)) = (0g𝑍) ↔ ((ℤRHom‘𝑍)‘(𝑎𝑃)) = ((ℤRHom‘𝑍)‘𝑎)))
9685, 95mpbid 231 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℤ) → ((ℤRHom‘𝑍)‘(𝑎𝑃)) = ((ℤRHom‘𝑍)‘𝑎))
9796ad4ant13 749 . . . 4 ((((𝑃 ∈ ℙ ∧ 𝐴𝐵) ∧ 𝑎 ∈ ℤ) ∧ 𝐴 = ((ℤRHom‘𝑍)‘𝑎)) → ((ℤRHom‘𝑍)‘(𝑎𝑃)) = ((ℤRHom‘𝑍)‘𝑎))
9829, 47, 973eqtr3d 2774 . . 3 ((((𝑃 ∈ ℙ ∧ 𝐴𝐵) ∧ 𝑎 ∈ ℤ) ∧ 𝐴 = ((ℤRHom‘𝑍)‘𝑎)) → (𝑃 ((ℤRHom‘𝑍)‘𝑎)) = ((ℤRHom‘𝑍)‘𝑎))
99 oveq2 7422 . . . 4 (𝐴 = ((ℤRHom‘𝑍)‘𝑎) → (𝑃 𝐴) = (𝑃 ((ℤRHom‘𝑍)‘𝑎)))
10099adantl 480 . . 3 ((((𝑃 ∈ ℙ ∧ 𝐴𝐵) ∧ 𝑎 ∈ ℤ) ∧ 𝐴 = ((ℤRHom‘𝑍)‘𝑎)) → (𝑃 𝐴) = (𝑃 ((ℤRHom‘𝑍)‘𝑎)))
101 simpr 483 . . 3 ((((𝑃 ∈ ℙ ∧ 𝐴𝐵) ∧ 𝑎 ∈ ℤ) ∧ 𝐴 = ((ℤRHom‘𝑍)‘𝑎)) → 𝐴 = ((ℤRHom‘𝑍)‘𝑎))
10298, 100, 1013eqtr4d 2776 . 2 ((((𝑃 ∈ ℙ ∧ 𝐴𝐵) ∧ 𝑎 ∈ ℤ) ∧ 𝐴 = ((ℤRHom‘𝑍)‘𝑎)) → (𝑃 𝐴) = 𝐴)
103 znfermltl.b . . . . 5 𝐵 = (Base‘𝑍)
10431, 103, 34znzrhfo 21539 . . . 4 (𝑃 ∈ ℕ0 → (ℤRHom‘𝑍):ℤ–onto𝐵)
1051, 30, 1043syl 18 . . 3 (𝑃 ∈ ℙ → (ℤRHom‘𝑍):ℤ–onto𝐵)
106 foelrn 7111 . . 3 (((ℤRHom‘𝑍):ℤ–onto𝐵𝐴𝐵) → ∃𝑎 ∈ ℤ 𝐴 = ((ℤRHom‘𝑍)‘𝑎))
107105, 106sylan 578 . 2 ((𝑃 ∈ ℙ ∧ 𝐴𝐵) → ∃𝑎 ∈ ℤ 𝐴 = ((ℤRHom‘𝑍)‘𝑎))
108102, 107r19.29a 3152 1 ((𝑃 ∈ ℙ ∧ 𝐴𝐵) → (𝑃 𝐴) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394   = wceq 1534  wcel 2099  wrex 3060  wss 3947   class class class wbr 5144  wf 6540  ontowfo 6542  cfv 6544  (class class class)co 7414  cc 11145  cr 11146  0cc0 11147  1c1 11148  cmin 11483  cn 12256  0cn0 12516  cz 12602  +crp 13020   mod cmo 13881  cexp 14073  cdvds 16249  cprime 16665  Basecbs 17206  s cress 17235  0gc0g 17447  Mndcmnd 18720   MndHom cmhm 18764  Grpcgrp 18921  invgcminusg 18922  -gcsg 18923  .gcmg 19055   GrpHom cghm 19200  mulGrpcmgp 20111  Ringcrg 20210   RingHom crh 20445  fldccnfld 21337  ringczring 21430  ℤRHomczrh 21483  ℤ/nczn 21486
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5281  ax-sep 5295  ax-nul 5302  ax-pow 5360  ax-pr 5424  ax-un 7736  ax-cnex 11203  ax-resscn 11204  ax-1cn 11205  ax-icn 11206  ax-addcl 11207  ax-addrcl 11208  ax-mulcl 11209  ax-mulrcl 11210  ax-mulcom 11211  ax-addass 11212  ax-mulass 11213  ax-distr 11214  ax-i2m1 11215  ax-1ne0 11216  ax-1rid 11217  ax-rnegex 11218  ax-rrecex 11219  ax-cnre 11220  ax-pre-lttri 11221  ax-pre-lttrn 11222  ax-pre-ltadd 11223  ax-pre-mulgt0 11224  ax-pre-sup 11225  ax-addf 11226  ax-mulf 11227
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3365  df-reu 3366  df-rab 3421  df-v 3465  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3967  df-nul 4324  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-tp 4629  df-op 4631  df-uni 4907  df-int 4948  df-iun 4996  df-br 5145  df-opab 5207  df-mpt 5228  df-tr 5262  df-id 5571  df-eprel 5577  df-po 5585  df-so 5586  df-fr 5628  df-we 5630  df-xp 5679  df-rel 5680  df-cnv 5681  df-co 5682  df-dm 5683  df-rn 5684  df-res 5685  df-ima 5686  df-pred 6303  df-ord 6369  df-on 6370  df-lim 6371  df-suc 6372  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-om 7867  df-1st 7993  df-2nd 7994  df-tpos 8231  df-frecs 8286  df-wrecs 8317  df-recs 8391  df-rdg 8430  df-1o 8486  df-2o 8487  df-oadd 8490  df-er 8724  df-ec 8726  df-qs 8730  df-map 8847  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-sup 9476  df-inf 9477  df-dju 9935  df-card 9973  df-pnf 11289  df-mnf 11290  df-xr 11291  df-ltxr 11292  df-le 11293  df-sub 11485  df-neg 11486  df-div 11911  df-nn 12257  df-2 12319  df-3 12320  df-4 12321  df-5 12322  df-6 12323  df-7 12324  df-8 12325  df-9 12326  df-n0 12517  df-xnn0 12589  df-z 12603  df-dec 12722  df-uz 12867  df-rp 13021  df-fz 13531  df-fzo 13674  df-fl 13804  df-mod 13882  df-seq 14014  df-exp 14074  df-hash 14341  df-cj 15097  df-re 15098  df-im 15099  df-sqrt 15233  df-abs 15234  df-dvds 16250  df-gcd 16488  df-prm 16666  df-phi 16761  df-struct 17142  df-sets 17159  df-slot 17177  df-ndx 17189  df-base 17207  df-ress 17236  df-plusg 17272  df-mulr 17273  df-starv 17274  df-sca 17275  df-vsca 17276  df-ip 17277  df-tset 17278  df-ple 17279  df-ds 17281  df-unif 17282  df-0g 17449  df-imas 17516  df-qus 17517  df-mgm 18626  df-sgrp 18705  df-mnd 18721  df-mhm 18766  df-grp 18924  df-minusg 18925  df-sbg 18926  df-mulg 19056  df-subg 19111  df-nsg 19112  df-eqg 19113  df-ghm 19201  df-cmn 19774  df-abl 19775  df-mgp 20112  df-rng 20130  df-ur 20159  df-ring 20212  df-cring 20213  df-oppr 20310  df-dvdsr 20333  df-unit 20334  df-invr 20364  df-dvr 20377  df-rhm 20448  df-subrng 20522  df-subrg 20547  df-drng 20703  df-lmod 20832  df-lss 20903  df-lsp 20943  df-sra 21145  df-rgmod 21146  df-lidl 21191  df-rsp 21192  df-2idl 21233  df-cnfld 21338  df-zring 21431  df-zrh 21487  df-zn 21490
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator