Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  znfermltl Structured version   Visualization version   GIF version

Theorem znfermltl 31087
Description: Fermat's little theorem in ℤ/n. (Contributed by Thierry Arnoux, 24-Jul-2024.)
Hypotheses
Ref Expression
znfermltl.z 𝑍 = (ℤ/nℤ‘𝑃)
znfermltl.b 𝐵 = (Base‘𝑍)
znfermltl.p = (.g‘(mulGrp‘𝑍))
Assertion
Ref Expression
znfermltl ((𝑃 ∈ ℙ ∧ 𝐴𝐵) → (𝑃 𝐴) = 𝐴)

Proof of Theorem znfermltl
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 prmnn 16075 . . . . . . . . 9 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
21nnnn0d 11999 . . . . . . . 8 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ0)
32ad3antrrr 729 . . . . . . 7 ((((𝑃 ∈ ℙ ∧ 𝐴𝐵) ∧ 𝑎 ∈ ℤ) ∧ 𝐴 = ((ℤRHom‘𝑍)‘𝑎)) → 𝑃 ∈ ℕ0)
4 simplr 768 . . . . . . 7 ((((𝑃 ∈ ℙ ∧ 𝐴𝐵) ∧ 𝑎 ∈ ℤ) ∧ 𝐴 = ((ℤRHom‘𝑍)‘𝑎)) → 𝑎 ∈ ℤ)
5 eqid 2758 . . . . . . . 8 ((mulGrp‘ℂfld) ↾s ℤ) = ((mulGrp‘ℂfld) ↾s ℤ)
6 zsscn 12033 . . . . . . . . 9 ℤ ⊆ ℂ
7 eqid 2758 . . . . . . . . . 10 (mulGrp‘ℂfld) = (mulGrp‘ℂfld)
8 cnfldbas 20175 . . . . . . . . . 10 ℂ = (Base‘ℂfld)
97, 8mgpbas 19318 . . . . . . . . 9 ℂ = (Base‘(mulGrp‘ℂfld))
106, 9sseqtri 3930 . . . . . . . 8 ℤ ⊆ (Base‘(mulGrp‘ℂfld))
11 eqid 2758 . . . . . . . 8 (.g‘(mulGrp‘ℂfld)) = (.g‘(mulGrp‘ℂfld))
12 eqid 2758 . . . . . . . 8 (invg‘(mulGrp‘ℂfld)) = (invg‘(mulGrp‘ℂfld))
13 cnring 20193 . . . . . . . . . 10 fld ∈ Ring
147ringmgp 19376 . . . . . . . . . 10 (ℂfld ∈ Ring → (mulGrp‘ℂfld) ∈ Mnd)
1513, 14ax-mp 5 . . . . . . . . 9 (mulGrp‘ℂfld) ∈ Mnd
16 cnfld1 20196 . . . . . . . . . . 11 1 = (1r‘ℂfld)
177, 16ringidval 19326 . . . . . . . . . 10 1 = (0g‘(mulGrp‘ℂfld))
18 1z 12056 . . . . . . . . . 10 1 ∈ ℤ
1917, 18eqeltrri 2849 . . . . . . . . 9 (0g‘(mulGrp‘ℂfld)) ∈ ℤ
20 eqid 2758 . . . . . . . . . 10 (0g‘(mulGrp‘ℂfld)) = (0g‘(mulGrp‘ℂfld))
215, 9, 20ress0g 18010 . . . . . . . . 9 (((mulGrp‘ℂfld) ∈ Mnd ∧ (0g‘(mulGrp‘ℂfld)) ∈ ℤ ∧ ℤ ⊆ ℂ) → (0g‘(mulGrp‘ℂfld)) = (0g‘((mulGrp‘ℂfld) ↾s ℤ)))
2215, 19, 6, 21mp3an 1458 . . . . . . . 8 (0g‘(mulGrp‘ℂfld)) = (0g‘((mulGrp‘ℂfld) ↾s ℤ))
235, 10, 11, 12, 22ressmulgnn0 30823 . . . . . . 7 ((𝑃 ∈ ℕ0𝑎 ∈ ℤ) → (𝑃(.g‘((mulGrp‘ℂfld) ↾s ℤ))𝑎) = (𝑃(.g‘(mulGrp‘ℂfld))𝑎))
243, 4, 23syl2anc 587 . . . . . 6 ((((𝑃 ∈ ℙ ∧ 𝐴𝐵) ∧ 𝑎 ∈ ℤ) ∧ 𝐴 = ((ℤRHom‘𝑍)‘𝑎)) → (𝑃(.g‘((mulGrp‘ℂfld) ↾s ℤ))𝑎) = (𝑃(.g‘(mulGrp‘ℂfld))𝑎))
254zcnd 12132 . . . . . . 7 ((((𝑃 ∈ ℙ ∧ 𝐴𝐵) ∧ 𝑎 ∈ ℤ) ∧ 𝐴 = ((ℤRHom‘𝑍)‘𝑎)) → 𝑎 ∈ ℂ)
26 cnfldexp 20204 . . . . . . 7 ((𝑎 ∈ ℂ ∧ 𝑃 ∈ ℕ0) → (𝑃(.g‘(mulGrp‘ℂfld))𝑎) = (𝑎𝑃))
2725, 3, 26syl2anc 587 . . . . . 6 ((((𝑃 ∈ ℙ ∧ 𝐴𝐵) ∧ 𝑎 ∈ ℤ) ∧ 𝐴 = ((ℤRHom‘𝑍)‘𝑎)) → (𝑃(.g‘(mulGrp‘ℂfld))𝑎) = (𝑎𝑃))
2824, 27eqtrd 2793 . . . . 5 ((((𝑃 ∈ ℙ ∧ 𝐴𝐵) ∧ 𝑎 ∈ ℤ) ∧ 𝐴 = ((ℤRHom‘𝑍)‘𝑎)) → (𝑃(.g‘((mulGrp‘ℂfld) ↾s ℤ))𝑎) = (𝑎𝑃))
2928fveq2d 6666 . . . 4 ((((𝑃 ∈ ℙ ∧ 𝐴𝐵) ∧ 𝑎 ∈ ℤ) ∧ 𝐴 = ((ℤRHom‘𝑍)‘𝑎)) → ((ℤRHom‘𝑍)‘(𝑃(.g‘((mulGrp‘ℂfld) ↾s ℤ))𝑎)) = ((ℤRHom‘𝑍)‘(𝑎𝑃)))
30 nnnn0 11946 . . . . . . 7 (𝑃 ∈ ℕ → 𝑃 ∈ ℕ0)
31 znfermltl.z . . . . . . . . . 10 𝑍 = (ℤ/nℤ‘𝑃)
3231zncrng 20317 . . . . . . . . 9 (𝑃 ∈ ℕ0𝑍 ∈ CRing)
3332crngringd 19383 . . . . . . . 8 (𝑃 ∈ ℕ0𝑍 ∈ Ring)
34 eqid 2758 . . . . . . . . 9 (ℤRHom‘𝑍) = (ℤRHom‘𝑍)
3534zrhrhm 20286 . . . . . . . 8 (𝑍 ∈ Ring → (ℤRHom‘𝑍) ∈ (ℤring RingHom 𝑍))
3633, 35syl 17 . . . . . . 7 (𝑃 ∈ ℕ0 → (ℤRHom‘𝑍) ∈ (ℤring RingHom 𝑍))
37 zringmpg 20266 . . . . . . . 8 ((mulGrp‘ℂfld) ↾s ℤ) = (mulGrp‘ℤring)
38 eqid 2758 . . . . . . . 8 (mulGrp‘𝑍) = (mulGrp‘𝑍)
3937, 38rhmmhm 19550 . . . . . . 7 ((ℤRHom‘𝑍) ∈ (ℤring RingHom 𝑍) → (ℤRHom‘𝑍) ∈ (((mulGrp‘ℂfld) ↾s ℤ) MndHom (mulGrp‘𝑍)))
401, 30, 36, 394syl 19 . . . . . 6 (𝑃 ∈ ℙ → (ℤRHom‘𝑍) ∈ (((mulGrp‘ℂfld) ↾s ℤ) MndHom (mulGrp‘𝑍)))
4140ad3antrrr 729 . . . . 5 ((((𝑃 ∈ ℙ ∧ 𝐴𝐵) ∧ 𝑎 ∈ ℤ) ∧ 𝐴 = ((ℤRHom‘𝑍)‘𝑎)) → (ℤRHom‘𝑍) ∈ (((mulGrp‘ℂfld) ↾s ℤ) MndHom (mulGrp‘𝑍)))
425, 9ressbas2 16618 . . . . . . 7 (ℤ ⊆ ℂ → ℤ = (Base‘((mulGrp‘ℂfld) ↾s ℤ)))
436, 42ax-mp 5 . . . . . 6 ℤ = (Base‘((mulGrp‘ℂfld) ↾s ℤ))
44 eqid 2758 . . . . . 6 (.g‘((mulGrp‘ℂfld) ↾s ℤ)) = (.g‘((mulGrp‘ℂfld) ↾s ℤ))
45 znfermltl.p . . . . . 6 = (.g‘(mulGrp‘𝑍))
4643, 44, 45mhmmulg 18340 . . . . 5 (((ℤRHom‘𝑍) ∈ (((mulGrp‘ℂfld) ↾s ℤ) MndHom (mulGrp‘𝑍)) ∧ 𝑃 ∈ ℕ0𝑎 ∈ ℤ) → ((ℤRHom‘𝑍)‘(𝑃(.g‘((mulGrp‘ℂfld) ↾s ℤ))𝑎)) = (𝑃 ((ℤRHom‘𝑍)‘𝑎)))
4741, 3, 4, 46syl3anc 1368 . . . 4 ((((𝑃 ∈ ℙ ∧ 𝐴𝐵) ∧ 𝑎 ∈ ℤ) ∧ 𝐴 = ((ℤRHom‘𝑍)‘𝑎)) → ((ℤRHom‘𝑍)‘(𝑃(.g‘((mulGrp‘ℂfld) ↾s ℤ))𝑎)) = (𝑃 ((ℤRHom‘𝑍)‘𝑎)))
48 simpr 488 . . . . . . . . . 10 ((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℤ) → 𝑎 ∈ ℤ)
491adantr 484 . . . . . . . . . . 11 ((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℤ) → 𝑃 ∈ ℕ)
5049nnnn0d 11999 . . . . . . . . . 10 ((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℤ) → 𝑃 ∈ ℕ0)
51 zexpcl 13499 . . . . . . . . . 10 ((𝑎 ∈ ℤ ∧ 𝑃 ∈ ℕ0) → (𝑎𝑃) ∈ ℤ)
5248, 50, 51syl2anc 587 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℤ) → (𝑎𝑃) ∈ ℤ)
53 eqid 2758 . . . . . . . . . 10 (-g‘ℤring) = (-g‘ℤring)
5453zringsubgval 20265 . . . . . . . . 9 (((𝑎𝑃) ∈ ℤ ∧ 𝑎 ∈ ℤ) → ((𝑎𝑃) − 𝑎) = ((𝑎𝑃)(-g‘ℤring)𝑎))
5552, 48, 54syl2anc 587 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℤ) → ((𝑎𝑃) − 𝑎) = ((𝑎𝑃)(-g‘ℤring)𝑎))
5655fveq2d 6666 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℤ) → ((ℤRHom‘𝑍)‘((𝑎𝑃) − 𝑎)) = ((ℤRHom‘𝑍)‘((𝑎𝑃)(-g‘ℤring)𝑎)))
5752zred 12131 . . . . . . . . . . 11 ((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℤ) → (𝑎𝑃) ∈ ℝ)
58 zre 12029 . . . . . . . . . . . 12 (𝑎 ∈ ℤ → 𝑎 ∈ ℝ)
5958adantl 485 . . . . . . . . . . 11 ((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℤ) → 𝑎 ∈ ℝ)
6049nnrpd 12475 . . . . . . . . . . 11 ((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℤ) → 𝑃 ∈ ℝ+)
61 fermltl 16181 . . . . . . . . . . 11 ((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℤ) → ((𝑎𝑃) mod 𝑃) = (𝑎 mod 𝑃))
62 eqidd 2759 . . . . . . . . . . 11 ((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℤ) → (𝑎 mod 𝑃) = (𝑎 mod 𝑃))
6357, 59, 59, 59, 60, 61, 62modsub12d 13350 . . . . . . . . . 10 ((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℤ) → (((𝑎𝑃) − 𝑎) mod 𝑃) = ((𝑎𝑎) mod 𝑃))
64 zcn 12030 . . . . . . . . . . . . 13 (𝑎 ∈ ℤ → 𝑎 ∈ ℂ)
6564subidd 11028 . . . . . . . . . . . 12 (𝑎 ∈ ℤ → (𝑎𝑎) = 0)
6665adantl 485 . . . . . . . . . . 11 ((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℤ) → (𝑎𝑎) = 0)
6766oveq1d 7170 . . . . . . . . . 10 ((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℤ) → ((𝑎𝑎) mod 𝑃) = (0 mod 𝑃))
68 0mod 13324 . . . . . . . . . . 11 (𝑃 ∈ ℝ+ → (0 mod 𝑃) = 0)
6960, 68syl 17 . . . . . . . . . 10 ((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℤ) → (0 mod 𝑃) = 0)
7063, 67, 693eqtrd 2797 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℤ) → (((𝑎𝑃) − 𝑎) mod 𝑃) = 0)
7152, 48zsubcld 12136 . . . . . . . . . 10 ((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℤ) → ((𝑎𝑃) − 𝑎) ∈ ℤ)
72 dvdsval3 15664 . . . . . . . . . 10 ((𝑃 ∈ ℕ ∧ ((𝑎𝑃) − 𝑎) ∈ ℤ) → (𝑃 ∥ ((𝑎𝑃) − 𝑎) ↔ (((𝑎𝑃) − 𝑎) mod 𝑃) = 0))
7349, 71, 72syl2anc 587 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℤ) → (𝑃 ∥ ((𝑎𝑃) − 𝑎) ↔ (((𝑎𝑃) − 𝑎) mod 𝑃) = 0))
7470, 73mpbird 260 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℤ) → 𝑃 ∥ ((𝑎𝑃) − 𝑎))
75 eqid 2758 . . . . . . . . . 10 (0g𝑍) = (0g𝑍)
7631, 34, 75zndvds0 20323 . . . . . . . . 9 ((𝑃 ∈ ℕ0 ∧ ((𝑎𝑃) − 𝑎) ∈ ℤ) → (((ℤRHom‘𝑍)‘((𝑎𝑃) − 𝑎)) = (0g𝑍) ↔ 𝑃 ∥ ((𝑎𝑃) − 𝑎)))
7750, 71, 76syl2anc 587 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℤ) → (((ℤRHom‘𝑍)‘((𝑎𝑃) − 𝑎)) = (0g𝑍) ↔ 𝑃 ∥ ((𝑎𝑃) − 𝑎)))
7874, 77mpbird 260 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℤ) → ((ℤRHom‘𝑍)‘((𝑎𝑃) − 𝑎)) = (0g𝑍))
79 rhmghm 19553 . . . . . . . . 9 ((ℤRHom‘𝑍) ∈ (ℤring RingHom 𝑍) → (ℤRHom‘𝑍) ∈ (ℤring GrpHom 𝑍))
8050, 36, 793syl 18 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℤ) → (ℤRHom‘𝑍) ∈ (ℤring GrpHom 𝑍))
81 zringbas 20249 . . . . . . . . 9 ℤ = (Base‘ℤring)
82 eqid 2758 . . . . . . . . 9 (-g𝑍) = (-g𝑍)
8381, 53, 82ghmsub 18438 . . . . . . . 8 (((ℤRHom‘𝑍) ∈ (ℤring GrpHom 𝑍) ∧ (𝑎𝑃) ∈ ℤ ∧ 𝑎 ∈ ℤ) → ((ℤRHom‘𝑍)‘((𝑎𝑃)(-g‘ℤring)𝑎)) = (((ℤRHom‘𝑍)‘(𝑎𝑃))(-g𝑍)((ℤRHom‘𝑍)‘𝑎)))
8480, 52, 48, 83syl3anc 1368 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℤ) → ((ℤRHom‘𝑍)‘((𝑎𝑃)(-g‘ℤring)𝑎)) = (((ℤRHom‘𝑍)‘(𝑎𝑃))(-g𝑍)((ℤRHom‘𝑍)‘𝑎)))
8556, 78, 843eqtr3rd 2802 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℤ) → (((ℤRHom‘𝑍)‘(𝑎𝑃))(-g𝑍)((ℤRHom‘𝑍)‘𝑎)) = (0g𝑍))
861, 30, 333syl 18 . . . . . . . . 9 (𝑃 ∈ ℙ → 𝑍 ∈ Ring)
8786ringgrpd 19379 . . . . . . . 8 (𝑃 ∈ ℙ → 𝑍 ∈ Grp)
8887adantr 484 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℤ) → 𝑍 ∈ Grp)
89 eqid 2758 . . . . . . . . . 10 (Base‘𝑍) = (Base‘𝑍)
9081, 89rhmf 19554 . . . . . . . . 9 ((ℤRHom‘𝑍) ∈ (ℤring RingHom 𝑍) → (ℤRHom‘𝑍):ℤ⟶(Base‘𝑍))
9150, 36, 903syl 18 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℤ) → (ℤRHom‘𝑍):ℤ⟶(Base‘𝑍))
9291, 52ffvelrnd 6848 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℤ) → ((ℤRHom‘𝑍)‘(𝑎𝑃)) ∈ (Base‘𝑍))
9391, 48ffvelrnd 6848 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℤ) → ((ℤRHom‘𝑍)‘𝑎) ∈ (Base‘𝑍))
9489, 75, 82grpsubeq0 18257 . . . . . . 7 ((𝑍 ∈ Grp ∧ ((ℤRHom‘𝑍)‘(𝑎𝑃)) ∈ (Base‘𝑍) ∧ ((ℤRHom‘𝑍)‘𝑎) ∈ (Base‘𝑍)) → ((((ℤRHom‘𝑍)‘(𝑎𝑃))(-g𝑍)((ℤRHom‘𝑍)‘𝑎)) = (0g𝑍) ↔ ((ℤRHom‘𝑍)‘(𝑎𝑃)) = ((ℤRHom‘𝑍)‘𝑎)))
9588, 92, 93, 94syl3anc 1368 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℤ) → ((((ℤRHom‘𝑍)‘(𝑎𝑃))(-g𝑍)((ℤRHom‘𝑍)‘𝑎)) = (0g𝑍) ↔ ((ℤRHom‘𝑍)‘(𝑎𝑃)) = ((ℤRHom‘𝑍)‘𝑎)))
9685, 95mpbid 235 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℤ) → ((ℤRHom‘𝑍)‘(𝑎𝑃)) = ((ℤRHom‘𝑍)‘𝑎))
9796ad4ant13 750 . . . 4 ((((𝑃 ∈ ℙ ∧ 𝐴𝐵) ∧ 𝑎 ∈ ℤ) ∧ 𝐴 = ((ℤRHom‘𝑍)‘𝑎)) → ((ℤRHom‘𝑍)‘(𝑎𝑃)) = ((ℤRHom‘𝑍)‘𝑎))
9829, 47, 973eqtr3d 2801 . . 3 ((((𝑃 ∈ ℙ ∧ 𝐴𝐵) ∧ 𝑎 ∈ ℤ) ∧ 𝐴 = ((ℤRHom‘𝑍)‘𝑎)) → (𝑃 ((ℤRHom‘𝑍)‘𝑎)) = ((ℤRHom‘𝑍)‘𝑎))
99 oveq2 7163 . . . 4 (𝐴 = ((ℤRHom‘𝑍)‘𝑎) → (𝑃 𝐴) = (𝑃 ((ℤRHom‘𝑍)‘𝑎)))
10099adantl 485 . . 3 ((((𝑃 ∈ ℙ ∧ 𝐴𝐵) ∧ 𝑎 ∈ ℤ) ∧ 𝐴 = ((ℤRHom‘𝑍)‘𝑎)) → (𝑃 𝐴) = (𝑃 ((ℤRHom‘𝑍)‘𝑎)))
101 simpr 488 . . 3 ((((𝑃 ∈ ℙ ∧ 𝐴𝐵) ∧ 𝑎 ∈ ℤ) ∧ 𝐴 = ((ℤRHom‘𝑍)‘𝑎)) → 𝐴 = ((ℤRHom‘𝑍)‘𝑎))
10298, 100, 1013eqtr4d 2803 . 2 ((((𝑃 ∈ ℙ ∧ 𝐴𝐵) ∧ 𝑎 ∈ ℤ) ∧ 𝐴 = ((ℤRHom‘𝑍)‘𝑎)) → (𝑃 𝐴) = 𝐴)
103 znfermltl.b . . . . 5 𝐵 = (Base‘𝑍)
10431, 103, 34znzrhfo 20320 . . . 4 (𝑃 ∈ ℕ0 → (ℤRHom‘𝑍):ℤ–onto𝐵)
1051, 30, 1043syl 18 . . 3 (𝑃 ∈ ℙ → (ℤRHom‘𝑍):ℤ–onto𝐵)
106 foelrn 6868 . . 3 (((ℤRHom‘𝑍):ℤ–onto𝐵𝐴𝐵) → ∃𝑎 ∈ ℤ 𝐴 = ((ℤRHom‘𝑍)‘𝑎))
107105, 106sylan 583 . 2 ((𝑃 ∈ ℙ ∧ 𝐴𝐵) → ∃𝑎 ∈ ℤ 𝐴 = ((ℤRHom‘𝑍)‘𝑎))
108102, 107r19.29a 3213 1 ((𝑃 ∈ ℙ ∧ 𝐴𝐵) → (𝑃 𝐴) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2111  wrex 3071  wss 3860   class class class wbr 5035  wf 6335  ontowfo 6337  cfv 6339  (class class class)co 7155  cc 10578  cr 10579  0cc0 10580  1c1 10581  cmin 10913  cn 11679  0cn0 11939  cz 12025  +crp 12435   mod cmo 13291  cexp 13484  cdvds 15660  cprime 16072  Basecbs 16546  s cress 16547  0gc0g 16776  Mndcmnd 17982   MndHom cmhm 18025  Grpcgrp 18174  invgcminusg 18175  -gcsg 18176  .gcmg 18296   GrpHom cghm 18427  mulGrpcmgp 19312  Ringcrg 19370   RingHom crh 19540  fldccnfld 20171  ringzring 20243  ℤRHomczrh 20274  ℤ/nczn 20277
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5159  ax-sep 5172  ax-nul 5179  ax-pow 5237  ax-pr 5301  ax-un 7464  ax-cnex 10636  ax-resscn 10637  ax-1cn 10638  ax-icn 10639  ax-addcl 10640  ax-addrcl 10641  ax-mulcl 10642  ax-mulrcl 10643  ax-mulcom 10644  ax-addass 10645  ax-mulass 10646  ax-distr 10647  ax-i2m1 10648  ax-1ne0 10649  ax-1rid 10650  ax-rnegex 10651  ax-rrecex 10652  ax-cnre 10653  ax-pre-lttri 10654  ax-pre-lttrn 10655  ax-pre-ltadd 10656  ax-pre-mulgt0 10657  ax-pre-sup 10658  ax-addf 10659  ax-mulf 10660
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-nel 3056  df-ral 3075  df-rex 3076  df-reu 3077  df-rmo 3078  df-rab 3079  df-v 3411  df-sbc 3699  df-csb 3808  df-dif 3863  df-un 3865  df-in 3867  df-ss 3877  df-pss 3879  df-nul 4228  df-if 4424  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4802  df-int 4842  df-iun 4888  df-br 5036  df-opab 5098  df-mpt 5116  df-tr 5142  df-id 5433  df-eprel 5438  df-po 5446  df-so 5447  df-fr 5486  df-we 5488  df-xp 5533  df-rel 5534  df-cnv 5535  df-co 5536  df-dm 5537  df-rn 5538  df-res 5539  df-ima 5540  df-pred 6130  df-ord 6176  df-on 6177  df-lim 6178  df-suc 6179  df-iota 6298  df-fun 6341  df-fn 6342  df-f 6343  df-f1 6344  df-fo 6345  df-f1o 6346  df-fv 6347  df-riota 7113  df-ov 7158  df-oprab 7159  df-mpo 7160  df-om 7585  df-1st 7698  df-2nd 7699  df-tpos 7907  df-wrecs 7962  df-recs 8023  df-rdg 8061  df-1o 8117  df-2o 8118  df-oadd 8121  df-er 8304  df-ec 8306  df-qs 8310  df-map 8423  df-en 8533  df-dom 8534  df-sdom 8535  df-fin 8536  df-sup 8944  df-inf 8945  df-dju 9368  df-card 9406  df-pnf 10720  df-mnf 10721  df-xr 10722  df-ltxr 10723  df-le 10724  df-sub 10915  df-neg 10916  df-div 11341  df-nn 11680  df-2 11742  df-3 11743  df-4 11744  df-5 11745  df-6 11746  df-7 11747  df-8 11748  df-9 11749  df-n0 11940  df-xnn0 12012  df-z 12026  df-dec 12143  df-uz 12288  df-rp 12436  df-fz 12945  df-fzo 13088  df-fl 13216  df-mod 13292  df-seq 13424  df-exp 13485  df-hash 13746  df-cj 14511  df-re 14512  df-im 14513  df-sqrt 14647  df-abs 14648  df-dvds 15661  df-gcd 15899  df-prm 16073  df-phi 16163  df-struct 16548  df-ndx 16549  df-slot 16550  df-base 16552  df-sets 16553  df-ress 16554  df-plusg 16641  df-mulr 16642  df-starv 16643  df-sca 16644  df-vsca 16645  df-ip 16646  df-tset 16647  df-ple 16648  df-ds 16650  df-unif 16651  df-0g 16778  df-imas 16844  df-qus 16845  df-mgm 17923  df-sgrp 17972  df-mnd 17983  df-mhm 18027  df-grp 18177  df-minusg 18178  df-sbg 18179  df-mulg 18297  df-subg 18348  df-nsg 18349  df-eqg 18350  df-ghm 18428  df-cmn 18980  df-abl 18981  df-mgp 19313  df-ur 19325  df-ring 19372  df-cring 19373  df-oppr 19449  df-dvdsr 19467  df-unit 19468  df-invr 19498  df-dvr 19509  df-rnghom 19543  df-drng 19577  df-subrg 19606  df-lmod 19709  df-lss 19777  df-lsp 19817  df-sra 20017  df-rgmod 20018  df-lidl 20019  df-rsp 20020  df-2idl 20078  df-cnfld 20172  df-zring 20244  df-zrh 20278  df-zn 20281
This theorem is referenced by:  ply1fermltl  31195
  Copyright terms: Public domain W3C validator