Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  znfermltl Structured version   Visualization version   GIF version

Theorem znfermltl 31464
Description: Fermat's little theorem in ℤ/n. (Contributed by Thierry Arnoux, 24-Jul-2024.)
Hypotheses
Ref Expression
znfermltl.z 𝑍 = (ℤ/nℤ‘𝑃)
znfermltl.b 𝐵 = (Base‘𝑍)
znfermltl.p = (.g‘(mulGrp‘𝑍))
Assertion
Ref Expression
znfermltl ((𝑃 ∈ ℙ ∧ 𝐴𝐵) → (𝑃 𝐴) = 𝐴)

Proof of Theorem znfermltl
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 prmnn 16307 . . . . . . . . 9 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
21nnnn0d 12223 . . . . . . . 8 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ0)
32ad3antrrr 726 . . . . . . 7 ((((𝑃 ∈ ℙ ∧ 𝐴𝐵) ∧ 𝑎 ∈ ℤ) ∧ 𝐴 = ((ℤRHom‘𝑍)‘𝑎)) → 𝑃 ∈ ℕ0)
4 simplr 765 . . . . . . 7 ((((𝑃 ∈ ℙ ∧ 𝐴𝐵) ∧ 𝑎 ∈ ℤ) ∧ 𝐴 = ((ℤRHom‘𝑍)‘𝑎)) → 𝑎 ∈ ℤ)
5 eqid 2738 . . . . . . . 8 ((mulGrp‘ℂfld) ↾s ℤ) = ((mulGrp‘ℂfld) ↾s ℤ)
6 zsscn 12257 . . . . . . . . 9 ℤ ⊆ ℂ
7 eqid 2738 . . . . . . . . . 10 (mulGrp‘ℂfld) = (mulGrp‘ℂfld)
8 cnfldbas 20514 . . . . . . . . . 10 ℂ = (Base‘ℂfld)
97, 8mgpbas 19641 . . . . . . . . 9 ℂ = (Base‘(mulGrp‘ℂfld))
106, 9sseqtri 3953 . . . . . . . 8 ℤ ⊆ (Base‘(mulGrp‘ℂfld))
11 eqid 2738 . . . . . . . 8 (.g‘(mulGrp‘ℂfld)) = (.g‘(mulGrp‘ℂfld))
12 eqid 2738 . . . . . . . 8 (invg‘(mulGrp‘ℂfld)) = (invg‘(mulGrp‘ℂfld))
13 cnring 20532 . . . . . . . . . 10 fld ∈ Ring
147ringmgp 19704 . . . . . . . . . 10 (ℂfld ∈ Ring → (mulGrp‘ℂfld) ∈ Mnd)
1513, 14ax-mp 5 . . . . . . . . 9 (mulGrp‘ℂfld) ∈ Mnd
16 cnfld1 20535 . . . . . . . . . . 11 1 = (1r‘ℂfld)
177, 16ringidval 19654 . . . . . . . . . 10 1 = (0g‘(mulGrp‘ℂfld))
18 1z 12280 . . . . . . . . . 10 1 ∈ ℤ
1917, 18eqeltrri 2836 . . . . . . . . 9 (0g‘(mulGrp‘ℂfld)) ∈ ℤ
20 eqid 2738 . . . . . . . . . 10 (0g‘(mulGrp‘ℂfld)) = (0g‘(mulGrp‘ℂfld))
215, 9, 20ress0g 18328 . . . . . . . . 9 (((mulGrp‘ℂfld) ∈ Mnd ∧ (0g‘(mulGrp‘ℂfld)) ∈ ℤ ∧ ℤ ⊆ ℂ) → (0g‘(mulGrp‘ℂfld)) = (0g‘((mulGrp‘ℂfld) ↾s ℤ)))
2215, 19, 6, 21mp3an 1459 . . . . . . . 8 (0g‘(mulGrp‘ℂfld)) = (0g‘((mulGrp‘ℂfld) ↾s ℤ))
235, 10, 11, 12, 22ressmulgnn0 31195 . . . . . . 7 ((𝑃 ∈ ℕ0𝑎 ∈ ℤ) → (𝑃(.g‘((mulGrp‘ℂfld) ↾s ℤ))𝑎) = (𝑃(.g‘(mulGrp‘ℂfld))𝑎))
243, 4, 23syl2anc 583 . . . . . 6 ((((𝑃 ∈ ℙ ∧ 𝐴𝐵) ∧ 𝑎 ∈ ℤ) ∧ 𝐴 = ((ℤRHom‘𝑍)‘𝑎)) → (𝑃(.g‘((mulGrp‘ℂfld) ↾s ℤ))𝑎) = (𝑃(.g‘(mulGrp‘ℂfld))𝑎))
254zcnd 12356 . . . . . . 7 ((((𝑃 ∈ ℙ ∧ 𝐴𝐵) ∧ 𝑎 ∈ ℤ) ∧ 𝐴 = ((ℤRHom‘𝑍)‘𝑎)) → 𝑎 ∈ ℂ)
26 cnfldexp 20543 . . . . . . 7 ((𝑎 ∈ ℂ ∧ 𝑃 ∈ ℕ0) → (𝑃(.g‘(mulGrp‘ℂfld))𝑎) = (𝑎𝑃))
2725, 3, 26syl2anc 583 . . . . . 6 ((((𝑃 ∈ ℙ ∧ 𝐴𝐵) ∧ 𝑎 ∈ ℤ) ∧ 𝐴 = ((ℤRHom‘𝑍)‘𝑎)) → (𝑃(.g‘(mulGrp‘ℂfld))𝑎) = (𝑎𝑃))
2824, 27eqtrd 2778 . . . . 5 ((((𝑃 ∈ ℙ ∧ 𝐴𝐵) ∧ 𝑎 ∈ ℤ) ∧ 𝐴 = ((ℤRHom‘𝑍)‘𝑎)) → (𝑃(.g‘((mulGrp‘ℂfld) ↾s ℤ))𝑎) = (𝑎𝑃))
2928fveq2d 6760 . . . 4 ((((𝑃 ∈ ℙ ∧ 𝐴𝐵) ∧ 𝑎 ∈ ℤ) ∧ 𝐴 = ((ℤRHom‘𝑍)‘𝑎)) → ((ℤRHom‘𝑍)‘(𝑃(.g‘((mulGrp‘ℂfld) ↾s ℤ))𝑎)) = ((ℤRHom‘𝑍)‘(𝑎𝑃)))
30 nnnn0 12170 . . . . . . 7 (𝑃 ∈ ℕ → 𝑃 ∈ ℕ0)
31 znfermltl.z . . . . . . . . . 10 𝑍 = (ℤ/nℤ‘𝑃)
3231zncrng 20664 . . . . . . . . 9 (𝑃 ∈ ℕ0𝑍 ∈ CRing)
3332crngringd 19711 . . . . . . . 8 (𝑃 ∈ ℕ0𝑍 ∈ Ring)
34 eqid 2738 . . . . . . . . 9 (ℤRHom‘𝑍) = (ℤRHom‘𝑍)
3534zrhrhm 20625 . . . . . . . 8 (𝑍 ∈ Ring → (ℤRHom‘𝑍) ∈ (ℤring RingHom 𝑍))
3633, 35syl 17 . . . . . . 7 (𝑃 ∈ ℕ0 → (ℤRHom‘𝑍) ∈ (ℤring RingHom 𝑍))
37 zringmpg 20605 . . . . . . . 8 ((mulGrp‘ℂfld) ↾s ℤ) = (mulGrp‘ℤring)
38 eqid 2738 . . . . . . . 8 (mulGrp‘𝑍) = (mulGrp‘𝑍)
3937, 38rhmmhm 19881 . . . . . . 7 ((ℤRHom‘𝑍) ∈ (ℤring RingHom 𝑍) → (ℤRHom‘𝑍) ∈ (((mulGrp‘ℂfld) ↾s ℤ) MndHom (mulGrp‘𝑍)))
401, 30, 36, 394syl 19 . . . . . 6 (𝑃 ∈ ℙ → (ℤRHom‘𝑍) ∈ (((mulGrp‘ℂfld) ↾s ℤ) MndHom (mulGrp‘𝑍)))
4140ad3antrrr 726 . . . . 5 ((((𝑃 ∈ ℙ ∧ 𝐴𝐵) ∧ 𝑎 ∈ ℤ) ∧ 𝐴 = ((ℤRHom‘𝑍)‘𝑎)) → (ℤRHom‘𝑍) ∈ (((mulGrp‘ℂfld) ↾s ℤ) MndHom (mulGrp‘𝑍)))
425, 9ressbas2 16875 . . . . . . 7 (ℤ ⊆ ℂ → ℤ = (Base‘((mulGrp‘ℂfld) ↾s ℤ)))
436, 42ax-mp 5 . . . . . 6 ℤ = (Base‘((mulGrp‘ℂfld) ↾s ℤ))
44 eqid 2738 . . . . . 6 (.g‘((mulGrp‘ℂfld) ↾s ℤ)) = (.g‘((mulGrp‘ℂfld) ↾s ℤ))
45 znfermltl.p . . . . . 6 = (.g‘(mulGrp‘𝑍))
4643, 44, 45mhmmulg 18659 . . . . 5 (((ℤRHom‘𝑍) ∈ (((mulGrp‘ℂfld) ↾s ℤ) MndHom (mulGrp‘𝑍)) ∧ 𝑃 ∈ ℕ0𝑎 ∈ ℤ) → ((ℤRHom‘𝑍)‘(𝑃(.g‘((mulGrp‘ℂfld) ↾s ℤ))𝑎)) = (𝑃 ((ℤRHom‘𝑍)‘𝑎)))
4741, 3, 4, 46syl3anc 1369 . . . 4 ((((𝑃 ∈ ℙ ∧ 𝐴𝐵) ∧ 𝑎 ∈ ℤ) ∧ 𝐴 = ((ℤRHom‘𝑍)‘𝑎)) → ((ℤRHom‘𝑍)‘(𝑃(.g‘((mulGrp‘ℂfld) ↾s ℤ))𝑎)) = (𝑃 ((ℤRHom‘𝑍)‘𝑎)))
48 simpr 484 . . . . . . . . . 10 ((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℤ) → 𝑎 ∈ ℤ)
491adantr 480 . . . . . . . . . . 11 ((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℤ) → 𝑃 ∈ ℕ)
5049nnnn0d 12223 . . . . . . . . . 10 ((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℤ) → 𝑃 ∈ ℕ0)
51 zexpcl 13725 . . . . . . . . . 10 ((𝑎 ∈ ℤ ∧ 𝑃 ∈ ℕ0) → (𝑎𝑃) ∈ ℤ)
5248, 50, 51syl2anc 583 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℤ) → (𝑎𝑃) ∈ ℤ)
53 eqid 2738 . . . . . . . . . 10 (-g‘ℤring) = (-g‘ℤring)
5453zringsubgval 20604 . . . . . . . . 9 (((𝑎𝑃) ∈ ℤ ∧ 𝑎 ∈ ℤ) → ((𝑎𝑃) − 𝑎) = ((𝑎𝑃)(-g‘ℤring)𝑎))
5552, 48, 54syl2anc 583 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℤ) → ((𝑎𝑃) − 𝑎) = ((𝑎𝑃)(-g‘ℤring)𝑎))
5655fveq2d 6760 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℤ) → ((ℤRHom‘𝑍)‘((𝑎𝑃) − 𝑎)) = ((ℤRHom‘𝑍)‘((𝑎𝑃)(-g‘ℤring)𝑎)))
5752zred 12355 . . . . . . . . . . 11 ((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℤ) → (𝑎𝑃) ∈ ℝ)
58 zre 12253 . . . . . . . . . . . 12 (𝑎 ∈ ℤ → 𝑎 ∈ ℝ)
5958adantl 481 . . . . . . . . . . 11 ((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℤ) → 𝑎 ∈ ℝ)
6049nnrpd 12699 . . . . . . . . . . 11 ((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℤ) → 𝑃 ∈ ℝ+)
61 fermltl 16413 . . . . . . . . . . 11 ((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℤ) → ((𝑎𝑃) mod 𝑃) = (𝑎 mod 𝑃))
62 eqidd 2739 . . . . . . . . . . 11 ((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℤ) → (𝑎 mod 𝑃) = (𝑎 mod 𝑃))
6357, 59, 59, 59, 60, 61, 62modsub12d 13576 . . . . . . . . . 10 ((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℤ) → (((𝑎𝑃) − 𝑎) mod 𝑃) = ((𝑎𝑎) mod 𝑃))
64 zcn 12254 . . . . . . . . . . . . 13 (𝑎 ∈ ℤ → 𝑎 ∈ ℂ)
6564subidd 11250 . . . . . . . . . . . 12 (𝑎 ∈ ℤ → (𝑎𝑎) = 0)
6665adantl 481 . . . . . . . . . . 11 ((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℤ) → (𝑎𝑎) = 0)
6766oveq1d 7270 . . . . . . . . . 10 ((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℤ) → ((𝑎𝑎) mod 𝑃) = (0 mod 𝑃))
68 0mod 13550 . . . . . . . . . . 11 (𝑃 ∈ ℝ+ → (0 mod 𝑃) = 0)
6960, 68syl 17 . . . . . . . . . 10 ((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℤ) → (0 mod 𝑃) = 0)
7063, 67, 693eqtrd 2782 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℤ) → (((𝑎𝑃) − 𝑎) mod 𝑃) = 0)
7152, 48zsubcld 12360 . . . . . . . . . 10 ((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℤ) → ((𝑎𝑃) − 𝑎) ∈ ℤ)
72 dvdsval3 15895 . . . . . . . . . 10 ((𝑃 ∈ ℕ ∧ ((𝑎𝑃) − 𝑎) ∈ ℤ) → (𝑃 ∥ ((𝑎𝑃) − 𝑎) ↔ (((𝑎𝑃) − 𝑎) mod 𝑃) = 0))
7349, 71, 72syl2anc 583 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℤ) → (𝑃 ∥ ((𝑎𝑃) − 𝑎) ↔ (((𝑎𝑃) − 𝑎) mod 𝑃) = 0))
7470, 73mpbird 256 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℤ) → 𝑃 ∥ ((𝑎𝑃) − 𝑎))
75 eqid 2738 . . . . . . . . . 10 (0g𝑍) = (0g𝑍)
7631, 34, 75zndvds0 20670 . . . . . . . . 9 ((𝑃 ∈ ℕ0 ∧ ((𝑎𝑃) − 𝑎) ∈ ℤ) → (((ℤRHom‘𝑍)‘((𝑎𝑃) − 𝑎)) = (0g𝑍) ↔ 𝑃 ∥ ((𝑎𝑃) − 𝑎)))
7750, 71, 76syl2anc 583 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℤ) → (((ℤRHom‘𝑍)‘((𝑎𝑃) − 𝑎)) = (0g𝑍) ↔ 𝑃 ∥ ((𝑎𝑃) − 𝑎)))
7874, 77mpbird 256 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℤ) → ((ℤRHom‘𝑍)‘((𝑎𝑃) − 𝑎)) = (0g𝑍))
79 rhmghm 19884 . . . . . . . . 9 ((ℤRHom‘𝑍) ∈ (ℤring RingHom 𝑍) → (ℤRHom‘𝑍) ∈ (ℤring GrpHom 𝑍))
8050, 36, 793syl 18 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℤ) → (ℤRHom‘𝑍) ∈ (ℤring GrpHom 𝑍))
81 zringbas 20588 . . . . . . . . 9 ℤ = (Base‘ℤring)
82 eqid 2738 . . . . . . . . 9 (-g𝑍) = (-g𝑍)
8381, 53, 82ghmsub 18757 . . . . . . . 8 (((ℤRHom‘𝑍) ∈ (ℤring GrpHom 𝑍) ∧ (𝑎𝑃) ∈ ℤ ∧ 𝑎 ∈ ℤ) → ((ℤRHom‘𝑍)‘((𝑎𝑃)(-g‘ℤring)𝑎)) = (((ℤRHom‘𝑍)‘(𝑎𝑃))(-g𝑍)((ℤRHom‘𝑍)‘𝑎)))
8480, 52, 48, 83syl3anc 1369 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℤ) → ((ℤRHom‘𝑍)‘((𝑎𝑃)(-g‘ℤring)𝑎)) = (((ℤRHom‘𝑍)‘(𝑎𝑃))(-g𝑍)((ℤRHom‘𝑍)‘𝑎)))
8556, 78, 843eqtr3rd 2787 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℤ) → (((ℤRHom‘𝑍)‘(𝑎𝑃))(-g𝑍)((ℤRHom‘𝑍)‘𝑎)) = (0g𝑍))
861, 30, 333syl 18 . . . . . . . . 9 (𝑃 ∈ ℙ → 𝑍 ∈ Ring)
8786ringgrpd 19707 . . . . . . . 8 (𝑃 ∈ ℙ → 𝑍 ∈ Grp)
8887adantr 480 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℤ) → 𝑍 ∈ Grp)
89 eqid 2738 . . . . . . . . . 10 (Base‘𝑍) = (Base‘𝑍)
9081, 89rhmf 19885 . . . . . . . . 9 ((ℤRHom‘𝑍) ∈ (ℤring RingHom 𝑍) → (ℤRHom‘𝑍):ℤ⟶(Base‘𝑍))
9150, 36, 903syl 18 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℤ) → (ℤRHom‘𝑍):ℤ⟶(Base‘𝑍))
9291, 52ffvelrnd 6944 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℤ) → ((ℤRHom‘𝑍)‘(𝑎𝑃)) ∈ (Base‘𝑍))
9391, 48ffvelrnd 6944 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℤ) → ((ℤRHom‘𝑍)‘𝑎) ∈ (Base‘𝑍))
9489, 75, 82grpsubeq0 18576 . . . . . . 7 ((𝑍 ∈ Grp ∧ ((ℤRHom‘𝑍)‘(𝑎𝑃)) ∈ (Base‘𝑍) ∧ ((ℤRHom‘𝑍)‘𝑎) ∈ (Base‘𝑍)) → ((((ℤRHom‘𝑍)‘(𝑎𝑃))(-g𝑍)((ℤRHom‘𝑍)‘𝑎)) = (0g𝑍) ↔ ((ℤRHom‘𝑍)‘(𝑎𝑃)) = ((ℤRHom‘𝑍)‘𝑎)))
9588, 92, 93, 94syl3anc 1369 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℤ) → ((((ℤRHom‘𝑍)‘(𝑎𝑃))(-g𝑍)((ℤRHom‘𝑍)‘𝑎)) = (0g𝑍) ↔ ((ℤRHom‘𝑍)‘(𝑎𝑃)) = ((ℤRHom‘𝑍)‘𝑎)))
9685, 95mpbid 231 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℤ) → ((ℤRHom‘𝑍)‘(𝑎𝑃)) = ((ℤRHom‘𝑍)‘𝑎))
9796ad4ant13 747 . . . 4 ((((𝑃 ∈ ℙ ∧ 𝐴𝐵) ∧ 𝑎 ∈ ℤ) ∧ 𝐴 = ((ℤRHom‘𝑍)‘𝑎)) → ((ℤRHom‘𝑍)‘(𝑎𝑃)) = ((ℤRHom‘𝑍)‘𝑎))
9829, 47, 973eqtr3d 2786 . . 3 ((((𝑃 ∈ ℙ ∧ 𝐴𝐵) ∧ 𝑎 ∈ ℤ) ∧ 𝐴 = ((ℤRHom‘𝑍)‘𝑎)) → (𝑃 ((ℤRHom‘𝑍)‘𝑎)) = ((ℤRHom‘𝑍)‘𝑎))
99 oveq2 7263 . . . 4 (𝐴 = ((ℤRHom‘𝑍)‘𝑎) → (𝑃 𝐴) = (𝑃 ((ℤRHom‘𝑍)‘𝑎)))
10099adantl 481 . . 3 ((((𝑃 ∈ ℙ ∧ 𝐴𝐵) ∧ 𝑎 ∈ ℤ) ∧ 𝐴 = ((ℤRHom‘𝑍)‘𝑎)) → (𝑃 𝐴) = (𝑃 ((ℤRHom‘𝑍)‘𝑎)))
101 simpr 484 . . 3 ((((𝑃 ∈ ℙ ∧ 𝐴𝐵) ∧ 𝑎 ∈ ℤ) ∧ 𝐴 = ((ℤRHom‘𝑍)‘𝑎)) → 𝐴 = ((ℤRHom‘𝑍)‘𝑎))
10298, 100, 1013eqtr4d 2788 . 2 ((((𝑃 ∈ ℙ ∧ 𝐴𝐵) ∧ 𝑎 ∈ ℤ) ∧ 𝐴 = ((ℤRHom‘𝑍)‘𝑎)) → (𝑃 𝐴) = 𝐴)
103 znfermltl.b . . . . 5 𝐵 = (Base‘𝑍)
10431, 103, 34znzrhfo 20667 . . . 4 (𝑃 ∈ ℕ0 → (ℤRHom‘𝑍):ℤ–onto𝐵)
1051, 30, 1043syl 18 . . 3 (𝑃 ∈ ℙ → (ℤRHom‘𝑍):ℤ–onto𝐵)
106 foelrn 6964 . . 3 (((ℤRHom‘𝑍):ℤ–onto𝐵𝐴𝐵) → ∃𝑎 ∈ ℤ 𝐴 = ((ℤRHom‘𝑍)‘𝑎))
107105, 106sylan 579 . 2 ((𝑃 ∈ ℙ ∧ 𝐴𝐵) → ∃𝑎 ∈ ℤ 𝐴 = ((ℤRHom‘𝑍)‘𝑎))
108102, 107r19.29a 3217 1 ((𝑃 ∈ ℙ ∧ 𝐴𝐵) → (𝑃 𝐴) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wrex 3064  wss 3883   class class class wbr 5070  wf 6414  ontowfo 6416  cfv 6418  (class class class)co 7255  cc 10800  cr 10801  0cc0 10802  1c1 10803  cmin 11135  cn 11903  0cn0 12163  cz 12249  +crp 12659   mod cmo 13517  cexp 13710  cdvds 15891  cprime 16304  Basecbs 16840  s cress 16867  0gc0g 17067  Mndcmnd 18300   MndHom cmhm 18343  Grpcgrp 18492  invgcminusg 18493  -gcsg 18494  .gcmg 18615   GrpHom cghm 18746  mulGrpcmgp 19635  Ringcrg 19698   RingHom crh 19871  fldccnfld 20510  ringzring 20582  ℤRHomczrh 20613  ℤ/nczn 20616
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880  ax-addf 10881  ax-mulf 10882
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-tpos 8013  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-2o 8268  df-oadd 8271  df-er 8456  df-ec 8458  df-qs 8462  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-sup 9131  df-inf 9132  df-dju 9590  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-xnn0 12236  df-z 12250  df-dec 12367  df-uz 12512  df-rp 12660  df-fz 13169  df-fzo 13312  df-fl 13440  df-mod 13518  df-seq 13650  df-exp 13711  df-hash 13973  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-dvds 15892  df-gcd 16130  df-prm 16305  df-phi 16395  df-struct 16776  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-starv 16903  df-sca 16904  df-vsca 16905  df-ip 16906  df-tset 16907  df-ple 16908  df-ds 16910  df-unif 16911  df-0g 17069  df-imas 17136  df-qus 17137  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-mhm 18345  df-grp 18495  df-minusg 18496  df-sbg 18497  df-mulg 18616  df-subg 18667  df-nsg 18668  df-eqg 18669  df-ghm 18747  df-cmn 19303  df-abl 19304  df-mgp 19636  df-ur 19653  df-ring 19700  df-cring 19701  df-oppr 19777  df-dvdsr 19798  df-unit 19799  df-invr 19829  df-dvr 19840  df-rnghom 19874  df-drng 19908  df-subrg 19937  df-lmod 20040  df-lss 20109  df-lsp 20149  df-sra 20349  df-rgmod 20350  df-lidl 20351  df-rsp 20352  df-2idl 20416  df-cnfld 20511  df-zring 20583  df-zrh 20617  df-zn 20620
This theorem is referenced by:  ply1fermltl  31572
  Copyright terms: Public domain W3C validator