Step | Hyp | Ref
| Expression |
1 | | prmnn 16307 |
. . . . . . . . 9
⊢ (𝑃 ∈ ℙ → 𝑃 ∈
ℕ) |
2 | 1 | nnnn0d 12223 |
. . . . . . . 8
⊢ (𝑃 ∈ ℙ → 𝑃 ∈
ℕ0) |
3 | 2 | ad3antrrr 726 |
. . . . . . 7
⊢ ((((𝑃 ∈ ℙ ∧ 𝐴 ∈ 𝐵) ∧ 𝑎 ∈ ℤ) ∧ 𝐴 = ((ℤRHom‘𝑍)‘𝑎)) → 𝑃 ∈
ℕ0) |
4 | | simplr 765 |
. . . . . . 7
⊢ ((((𝑃 ∈ ℙ ∧ 𝐴 ∈ 𝐵) ∧ 𝑎 ∈ ℤ) ∧ 𝐴 = ((ℤRHom‘𝑍)‘𝑎)) → 𝑎 ∈ ℤ) |
5 | | eqid 2738 |
. . . . . . . 8
⊢
((mulGrp‘ℂfld) ↾s ℤ) =
((mulGrp‘ℂfld) ↾s
ℤ) |
6 | | zsscn 12257 |
. . . . . . . . 9
⊢ ℤ
⊆ ℂ |
7 | | eqid 2738 |
. . . . . . . . . 10
⊢
(mulGrp‘ℂfld) =
(mulGrp‘ℂfld) |
8 | | cnfldbas 20514 |
. . . . . . . . . 10
⊢ ℂ =
(Base‘ℂfld) |
9 | 7, 8 | mgpbas 19641 |
. . . . . . . . 9
⊢ ℂ =
(Base‘(mulGrp‘ℂfld)) |
10 | 6, 9 | sseqtri 3953 |
. . . . . . . 8
⊢ ℤ
⊆ (Base‘(mulGrp‘ℂfld)) |
11 | | eqid 2738 |
. . . . . . . 8
⊢
(.g‘(mulGrp‘ℂfld)) =
(.g‘(mulGrp‘ℂfld)) |
12 | | eqid 2738 |
. . . . . . . 8
⊢
(invg‘(mulGrp‘ℂfld)) =
(invg‘(mulGrp‘ℂfld)) |
13 | | cnring 20532 |
. . . . . . . . . 10
⊢
ℂfld ∈ Ring |
14 | 7 | ringmgp 19704 |
. . . . . . . . . 10
⊢
(ℂfld ∈ Ring →
(mulGrp‘ℂfld) ∈ Mnd) |
15 | 13, 14 | ax-mp 5 |
. . . . . . . . 9
⊢
(mulGrp‘ℂfld) ∈ Mnd |
16 | | cnfld1 20535 |
. . . . . . . . . . 11
⊢ 1 =
(1r‘ℂfld) |
17 | 7, 16 | ringidval 19654 |
. . . . . . . . . 10
⊢ 1 =
(0g‘(mulGrp‘ℂfld)) |
18 | | 1z 12280 |
. . . . . . . . . 10
⊢ 1 ∈
ℤ |
19 | 17, 18 | eqeltrri 2836 |
. . . . . . . . 9
⊢
(0g‘(mulGrp‘ℂfld)) ∈
ℤ |
20 | | eqid 2738 |
. . . . . . . . . 10
⊢
(0g‘(mulGrp‘ℂfld)) =
(0g‘(mulGrp‘ℂfld)) |
21 | 5, 9, 20 | ress0g 18328 |
. . . . . . . . 9
⊢
(((mulGrp‘ℂfld) ∈ Mnd ∧
(0g‘(mulGrp‘ℂfld)) ∈ ℤ ∧
ℤ ⊆ ℂ) →
(0g‘(mulGrp‘ℂfld)) =
(0g‘((mulGrp‘ℂfld) ↾s
ℤ))) |
22 | 15, 19, 6, 21 | mp3an 1459 |
. . . . . . . 8
⊢
(0g‘(mulGrp‘ℂfld)) =
(0g‘((mulGrp‘ℂfld) ↾s
ℤ)) |
23 | 5, 10, 11, 12, 22 | ressmulgnn0 31195 |
. . . . . . 7
⊢ ((𝑃 ∈ ℕ0
∧ 𝑎 ∈ ℤ)
→ (𝑃(.g‘((mulGrp‘ℂfld)
↾s ℤ))𝑎) = (𝑃(.g‘(mulGrp‘ℂfld))𝑎)) |
24 | 3, 4, 23 | syl2anc 583 |
. . . . . 6
⊢ ((((𝑃 ∈ ℙ ∧ 𝐴 ∈ 𝐵) ∧ 𝑎 ∈ ℤ) ∧ 𝐴 = ((ℤRHom‘𝑍)‘𝑎)) → (𝑃(.g‘((mulGrp‘ℂfld)
↾s ℤ))𝑎) = (𝑃(.g‘(mulGrp‘ℂfld))𝑎)) |
25 | 4 | zcnd 12356 |
. . . . . . 7
⊢ ((((𝑃 ∈ ℙ ∧ 𝐴 ∈ 𝐵) ∧ 𝑎 ∈ ℤ) ∧ 𝐴 = ((ℤRHom‘𝑍)‘𝑎)) → 𝑎 ∈ ℂ) |
26 | | cnfldexp 20543 |
. . . . . . 7
⊢ ((𝑎 ∈ ℂ ∧ 𝑃 ∈ ℕ0)
→ (𝑃(.g‘(mulGrp‘ℂfld))𝑎) = (𝑎↑𝑃)) |
27 | 25, 3, 26 | syl2anc 583 |
. . . . . 6
⊢ ((((𝑃 ∈ ℙ ∧ 𝐴 ∈ 𝐵) ∧ 𝑎 ∈ ℤ) ∧ 𝐴 = ((ℤRHom‘𝑍)‘𝑎)) → (𝑃(.g‘(mulGrp‘ℂfld))𝑎) = (𝑎↑𝑃)) |
28 | 24, 27 | eqtrd 2778 |
. . . . 5
⊢ ((((𝑃 ∈ ℙ ∧ 𝐴 ∈ 𝐵) ∧ 𝑎 ∈ ℤ) ∧ 𝐴 = ((ℤRHom‘𝑍)‘𝑎)) → (𝑃(.g‘((mulGrp‘ℂfld)
↾s ℤ))𝑎) = (𝑎↑𝑃)) |
29 | 28 | fveq2d 6760 |
. . . 4
⊢ ((((𝑃 ∈ ℙ ∧ 𝐴 ∈ 𝐵) ∧ 𝑎 ∈ ℤ) ∧ 𝐴 = ((ℤRHom‘𝑍)‘𝑎)) → ((ℤRHom‘𝑍)‘(𝑃(.g‘((mulGrp‘ℂfld)
↾s ℤ))𝑎)) =
((ℤRHom‘𝑍)‘(𝑎↑𝑃))) |
30 | | nnnn0 12170 |
. . . . . . 7
⊢ (𝑃 ∈ ℕ → 𝑃 ∈
ℕ0) |
31 | | znfermltl.z |
. . . . . . . . . 10
⊢ 𝑍 =
(ℤ/nℤ‘𝑃) |
32 | 31 | zncrng 20664 |
. . . . . . . . 9
⊢ (𝑃 ∈ ℕ0
→ 𝑍 ∈
CRing) |
33 | 32 | crngringd 19711 |
. . . . . . . 8
⊢ (𝑃 ∈ ℕ0
→ 𝑍 ∈
Ring) |
34 | | eqid 2738 |
. . . . . . . . 9
⊢
(ℤRHom‘𝑍) = (ℤRHom‘𝑍) |
35 | 34 | zrhrhm 20625 |
. . . . . . . 8
⊢ (𝑍 ∈ Ring →
(ℤRHom‘𝑍)
∈ (ℤring RingHom 𝑍)) |
36 | 33, 35 | syl 17 |
. . . . . . 7
⊢ (𝑃 ∈ ℕ0
→ (ℤRHom‘𝑍) ∈ (ℤring RingHom
𝑍)) |
37 | | zringmpg 20605 |
. . . . . . . 8
⊢
((mulGrp‘ℂfld) ↾s ℤ) =
(mulGrp‘ℤring) |
38 | | eqid 2738 |
. . . . . . . 8
⊢
(mulGrp‘𝑍) =
(mulGrp‘𝑍) |
39 | 37, 38 | rhmmhm 19881 |
. . . . . . 7
⊢
((ℤRHom‘𝑍) ∈ (ℤring RingHom
𝑍) →
(ℤRHom‘𝑍)
∈ (((mulGrp‘ℂfld) ↾s ℤ)
MndHom (mulGrp‘𝑍))) |
40 | 1, 30, 36, 39 | 4syl 19 |
. . . . . 6
⊢ (𝑃 ∈ ℙ →
(ℤRHom‘𝑍)
∈ (((mulGrp‘ℂfld) ↾s ℤ)
MndHom (mulGrp‘𝑍))) |
41 | 40 | ad3antrrr 726 |
. . . . 5
⊢ ((((𝑃 ∈ ℙ ∧ 𝐴 ∈ 𝐵) ∧ 𝑎 ∈ ℤ) ∧ 𝐴 = ((ℤRHom‘𝑍)‘𝑎)) → (ℤRHom‘𝑍) ∈
(((mulGrp‘ℂfld) ↾s ℤ) MndHom
(mulGrp‘𝑍))) |
42 | 5, 9 | ressbas2 16875 |
. . . . . . 7
⊢ (ℤ
⊆ ℂ → ℤ =
(Base‘((mulGrp‘ℂfld) ↾s
ℤ))) |
43 | 6, 42 | ax-mp 5 |
. . . . . 6
⊢ ℤ =
(Base‘((mulGrp‘ℂfld) ↾s
ℤ)) |
44 | | eqid 2738 |
. . . . . 6
⊢
(.g‘((mulGrp‘ℂfld)
↾s ℤ)) =
(.g‘((mulGrp‘ℂfld) ↾s
ℤ)) |
45 | | znfermltl.p |
. . . . . 6
⊢ ↑ =
(.g‘(mulGrp‘𝑍)) |
46 | 43, 44, 45 | mhmmulg 18659 |
. . . . 5
⊢
(((ℤRHom‘𝑍) ∈
(((mulGrp‘ℂfld) ↾s ℤ) MndHom
(mulGrp‘𝑍)) ∧
𝑃 ∈
ℕ0 ∧ 𝑎
∈ ℤ) → ((ℤRHom‘𝑍)‘(𝑃(.g‘((mulGrp‘ℂfld)
↾s ℤ))𝑎)) = (𝑃 ↑ ((ℤRHom‘𝑍)‘𝑎))) |
47 | 41, 3, 4, 46 | syl3anc 1369 |
. . . 4
⊢ ((((𝑃 ∈ ℙ ∧ 𝐴 ∈ 𝐵) ∧ 𝑎 ∈ ℤ) ∧ 𝐴 = ((ℤRHom‘𝑍)‘𝑎)) → ((ℤRHom‘𝑍)‘(𝑃(.g‘((mulGrp‘ℂfld)
↾s ℤ))𝑎)) = (𝑃 ↑ ((ℤRHom‘𝑍)‘𝑎))) |
48 | | simpr 484 |
. . . . . . . . . 10
⊢ ((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℤ) → 𝑎 ∈
ℤ) |
49 | 1 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℤ) → 𝑃 ∈
ℕ) |
50 | 49 | nnnn0d 12223 |
. . . . . . . . . 10
⊢ ((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℤ) → 𝑃 ∈
ℕ0) |
51 | | zexpcl 13725 |
. . . . . . . . . 10
⊢ ((𝑎 ∈ ℤ ∧ 𝑃 ∈ ℕ0)
→ (𝑎↑𝑃) ∈
ℤ) |
52 | 48, 50, 51 | syl2anc 583 |
. . . . . . . . 9
⊢ ((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℤ) → (𝑎↑𝑃) ∈ ℤ) |
53 | | eqid 2738 |
. . . . . . . . . 10
⊢
(-g‘ℤring) =
(-g‘ℤring) |
54 | 53 | zringsubgval 20604 |
. . . . . . . . 9
⊢ (((𝑎↑𝑃) ∈ ℤ ∧ 𝑎 ∈ ℤ) → ((𝑎↑𝑃) − 𝑎) = ((𝑎↑𝑃)(-g‘ℤring)𝑎)) |
55 | 52, 48, 54 | syl2anc 583 |
. . . . . . . 8
⊢ ((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℤ) → ((𝑎↑𝑃) − 𝑎) = ((𝑎↑𝑃)(-g‘ℤring)𝑎)) |
56 | 55 | fveq2d 6760 |
. . . . . . 7
⊢ ((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℤ) →
((ℤRHom‘𝑍)‘((𝑎↑𝑃) − 𝑎)) = ((ℤRHom‘𝑍)‘((𝑎↑𝑃)(-g‘ℤring)𝑎))) |
57 | 52 | zred 12355 |
. . . . . . . . . . 11
⊢ ((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℤ) → (𝑎↑𝑃) ∈ ℝ) |
58 | | zre 12253 |
. . . . . . . . . . . 12
⊢ (𝑎 ∈ ℤ → 𝑎 ∈
ℝ) |
59 | 58 | adantl 481 |
. . . . . . . . . . 11
⊢ ((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℤ) → 𝑎 ∈
ℝ) |
60 | 49 | nnrpd 12699 |
. . . . . . . . . . 11
⊢ ((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℤ) → 𝑃 ∈
ℝ+) |
61 | | fermltl 16413 |
. . . . . . . . . . 11
⊢ ((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℤ) → ((𝑎↑𝑃) mod 𝑃) = (𝑎 mod 𝑃)) |
62 | | eqidd 2739 |
. . . . . . . . . . 11
⊢ ((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℤ) → (𝑎 mod 𝑃) = (𝑎 mod 𝑃)) |
63 | 57, 59, 59, 59, 60, 61, 62 | modsub12d 13576 |
. . . . . . . . . 10
⊢ ((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℤ) → (((𝑎↑𝑃) − 𝑎) mod 𝑃) = ((𝑎 − 𝑎) mod 𝑃)) |
64 | | zcn 12254 |
. . . . . . . . . . . . 13
⊢ (𝑎 ∈ ℤ → 𝑎 ∈
ℂ) |
65 | 64 | subidd 11250 |
. . . . . . . . . . . 12
⊢ (𝑎 ∈ ℤ → (𝑎 − 𝑎) = 0) |
66 | 65 | adantl 481 |
. . . . . . . . . . 11
⊢ ((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℤ) → (𝑎 − 𝑎) = 0) |
67 | 66 | oveq1d 7270 |
. . . . . . . . . 10
⊢ ((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℤ) → ((𝑎 − 𝑎) mod 𝑃) = (0 mod 𝑃)) |
68 | | 0mod 13550 |
. . . . . . . . . . 11
⊢ (𝑃 ∈ ℝ+
→ (0 mod 𝑃) =
0) |
69 | 60, 68 | syl 17 |
. . . . . . . . . 10
⊢ ((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℤ) → (0 mod
𝑃) = 0) |
70 | 63, 67, 69 | 3eqtrd 2782 |
. . . . . . . . 9
⊢ ((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℤ) → (((𝑎↑𝑃) − 𝑎) mod 𝑃) = 0) |
71 | 52, 48 | zsubcld 12360 |
. . . . . . . . . 10
⊢ ((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℤ) → ((𝑎↑𝑃) − 𝑎) ∈ ℤ) |
72 | | dvdsval3 15895 |
. . . . . . . . . 10
⊢ ((𝑃 ∈ ℕ ∧ ((𝑎↑𝑃) − 𝑎) ∈ ℤ) → (𝑃 ∥ ((𝑎↑𝑃) − 𝑎) ↔ (((𝑎↑𝑃) − 𝑎) mod 𝑃) = 0)) |
73 | 49, 71, 72 | syl2anc 583 |
. . . . . . . . 9
⊢ ((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℤ) → (𝑃 ∥ ((𝑎↑𝑃) − 𝑎) ↔ (((𝑎↑𝑃) − 𝑎) mod 𝑃) = 0)) |
74 | 70, 73 | mpbird 256 |
. . . . . . . 8
⊢ ((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℤ) → 𝑃 ∥ ((𝑎↑𝑃) − 𝑎)) |
75 | | eqid 2738 |
. . . . . . . . . 10
⊢
(0g‘𝑍) = (0g‘𝑍) |
76 | 31, 34, 75 | zndvds0 20670 |
. . . . . . . . 9
⊢ ((𝑃 ∈ ℕ0
∧ ((𝑎↑𝑃) − 𝑎) ∈ ℤ) →
(((ℤRHom‘𝑍)‘((𝑎↑𝑃) − 𝑎)) = (0g‘𝑍) ↔ 𝑃 ∥ ((𝑎↑𝑃) − 𝑎))) |
77 | 50, 71, 76 | syl2anc 583 |
. . . . . . . 8
⊢ ((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℤ) →
(((ℤRHom‘𝑍)‘((𝑎↑𝑃) − 𝑎)) = (0g‘𝑍) ↔ 𝑃 ∥ ((𝑎↑𝑃) − 𝑎))) |
78 | 74, 77 | mpbird 256 |
. . . . . . 7
⊢ ((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℤ) →
((ℤRHom‘𝑍)‘((𝑎↑𝑃) − 𝑎)) = (0g‘𝑍)) |
79 | | rhmghm 19884 |
. . . . . . . . 9
⊢
((ℤRHom‘𝑍) ∈ (ℤring RingHom
𝑍) →
(ℤRHom‘𝑍)
∈ (ℤring GrpHom 𝑍)) |
80 | 50, 36, 79 | 3syl 18 |
. . . . . . . 8
⊢ ((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℤ) →
(ℤRHom‘𝑍)
∈ (ℤring GrpHom 𝑍)) |
81 | | zringbas 20588 |
. . . . . . . . 9
⊢ ℤ =
(Base‘ℤring) |
82 | | eqid 2738 |
. . . . . . . . 9
⊢
(-g‘𝑍) = (-g‘𝑍) |
83 | 81, 53, 82 | ghmsub 18757 |
. . . . . . . 8
⊢
(((ℤRHom‘𝑍) ∈ (ℤring GrpHom
𝑍) ∧ (𝑎↑𝑃) ∈ ℤ ∧ 𝑎 ∈ ℤ) →
((ℤRHom‘𝑍)‘((𝑎↑𝑃)(-g‘ℤring)𝑎)) = (((ℤRHom‘𝑍)‘(𝑎↑𝑃))(-g‘𝑍)((ℤRHom‘𝑍)‘𝑎))) |
84 | 80, 52, 48, 83 | syl3anc 1369 |
. . . . . . 7
⊢ ((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℤ) →
((ℤRHom‘𝑍)‘((𝑎↑𝑃)(-g‘ℤring)𝑎)) = (((ℤRHom‘𝑍)‘(𝑎↑𝑃))(-g‘𝑍)((ℤRHom‘𝑍)‘𝑎))) |
85 | 56, 78, 84 | 3eqtr3rd 2787 |
. . . . . 6
⊢ ((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℤ) →
(((ℤRHom‘𝑍)‘(𝑎↑𝑃))(-g‘𝑍)((ℤRHom‘𝑍)‘𝑎)) = (0g‘𝑍)) |
86 | 1, 30, 33 | 3syl 18 |
. . . . . . . . 9
⊢ (𝑃 ∈ ℙ → 𝑍 ∈ Ring) |
87 | 86 | ringgrpd 19707 |
. . . . . . . 8
⊢ (𝑃 ∈ ℙ → 𝑍 ∈ Grp) |
88 | 87 | adantr 480 |
. . . . . . 7
⊢ ((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℤ) → 𝑍 ∈ Grp) |
89 | | eqid 2738 |
. . . . . . . . . 10
⊢
(Base‘𝑍) =
(Base‘𝑍) |
90 | 81, 89 | rhmf 19885 |
. . . . . . . . 9
⊢
((ℤRHom‘𝑍) ∈ (ℤring RingHom
𝑍) →
(ℤRHom‘𝑍):ℤ⟶(Base‘𝑍)) |
91 | 50, 36, 90 | 3syl 18 |
. . . . . . . 8
⊢ ((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℤ) →
(ℤRHom‘𝑍):ℤ⟶(Base‘𝑍)) |
92 | 91, 52 | ffvelrnd 6944 |
. . . . . . 7
⊢ ((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℤ) →
((ℤRHom‘𝑍)‘(𝑎↑𝑃)) ∈ (Base‘𝑍)) |
93 | 91, 48 | ffvelrnd 6944 |
. . . . . . 7
⊢ ((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℤ) →
((ℤRHom‘𝑍)‘𝑎) ∈ (Base‘𝑍)) |
94 | 89, 75, 82 | grpsubeq0 18576 |
. . . . . . 7
⊢ ((𝑍 ∈ Grp ∧
((ℤRHom‘𝑍)‘(𝑎↑𝑃)) ∈ (Base‘𝑍) ∧ ((ℤRHom‘𝑍)‘𝑎) ∈ (Base‘𝑍)) → ((((ℤRHom‘𝑍)‘(𝑎↑𝑃))(-g‘𝑍)((ℤRHom‘𝑍)‘𝑎)) = (0g‘𝑍) ↔ ((ℤRHom‘𝑍)‘(𝑎↑𝑃)) = ((ℤRHom‘𝑍)‘𝑎))) |
95 | 88, 92, 93, 94 | syl3anc 1369 |
. . . . . 6
⊢ ((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℤ) →
((((ℤRHom‘𝑍)‘(𝑎↑𝑃))(-g‘𝑍)((ℤRHom‘𝑍)‘𝑎)) = (0g‘𝑍) ↔ ((ℤRHom‘𝑍)‘(𝑎↑𝑃)) = ((ℤRHom‘𝑍)‘𝑎))) |
96 | 85, 95 | mpbid 231 |
. . . . 5
⊢ ((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℤ) →
((ℤRHom‘𝑍)‘(𝑎↑𝑃)) = ((ℤRHom‘𝑍)‘𝑎)) |
97 | 96 | ad4ant13 747 |
. . . 4
⊢ ((((𝑃 ∈ ℙ ∧ 𝐴 ∈ 𝐵) ∧ 𝑎 ∈ ℤ) ∧ 𝐴 = ((ℤRHom‘𝑍)‘𝑎)) → ((ℤRHom‘𝑍)‘(𝑎↑𝑃)) = ((ℤRHom‘𝑍)‘𝑎)) |
98 | 29, 47, 97 | 3eqtr3d 2786 |
. . 3
⊢ ((((𝑃 ∈ ℙ ∧ 𝐴 ∈ 𝐵) ∧ 𝑎 ∈ ℤ) ∧ 𝐴 = ((ℤRHom‘𝑍)‘𝑎)) → (𝑃 ↑
((ℤRHom‘𝑍)‘𝑎)) = ((ℤRHom‘𝑍)‘𝑎)) |
99 | | oveq2 7263 |
. . . 4
⊢ (𝐴 = ((ℤRHom‘𝑍)‘𝑎) → (𝑃 ↑ 𝐴) = (𝑃 ↑
((ℤRHom‘𝑍)‘𝑎))) |
100 | 99 | adantl 481 |
. . 3
⊢ ((((𝑃 ∈ ℙ ∧ 𝐴 ∈ 𝐵) ∧ 𝑎 ∈ ℤ) ∧ 𝐴 = ((ℤRHom‘𝑍)‘𝑎)) → (𝑃 ↑ 𝐴) = (𝑃 ↑
((ℤRHom‘𝑍)‘𝑎))) |
101 | | simpr 484 |
. . 3
⊢ ((((𝑃 ∈ ℙ ∧ 𝐴 ∈ 𝐵) ∧ 𝑎 ∈ ℤ) ∧ 𝐴 = ((ℤRHom‘𝑍)‘𝑎)) → 𝐴 = ((ℤRHom‘𝑍)‘𝑎)) |
102 | 98, 100, 101 | 3eqtr4d 2788 |
. 2
⊢ ((((𝑃 ∈ ℙ ∧ 𝐴 ∈ 𝐵) ∧ 𝑎 ∈ ℤ) ∧ 𝐴 = ((ℤRHom‘𝑍)‘𝑎)) → (𝑃 ↑ 𝐴) = 𝐴) |
103 | | znfermltl.b |
. . . . 5
⊢ 𝐵 = (Base‘𝑍) |
104 | 31, 103, 34 | znzrhfo 20667 |
. . . 4
⊢ (𝑃 ∈ ℕ0
→ (ℤRHom‘𝑍):ℤ–onto→𝐵) |
105 | 1, 30, 104 | 3syl 18 |
. . 3
⊢ (𝑃 ∈ ℙ →
(ℤRHom‘𝑍):ℤ–onto→𝐵) |
106 | | foelrn 6964 |
. . 3
⊢
(((ℤRHom‘𝑍):ℤ–onto→𝐵 ∧ 𝐴 ∈ 𝐵) → ∃𝑎 ∈ ℤ 𝐴 = ((ℤRHom‘𝑍)‘𝑎)) |
107 | 105, 106 | sylan 579 |
. 2
⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ 𝐵) → ∃𝑎 ∈ ℤ 𝐴 = ((ℤRHom‘𝑍)‘𝑎)) |
108 | 102, 107 | r19.29a 3217 |
1
⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ 𝐵) → (𝑃 ↑ 𝐴) = 𝐴) |