| Step | Hyp | Ref
| Expression |
| 1 | | prmnn 16698 |
. . . . . . . . 9
⊢ (𝑃 ∈ ℙ → 𝑃 ∈
ℕ) |
| 2 | 1 | nnnn0d 12567 |
. . . . . . . 8
⊢ (𝑃 ∈ ℙ → 𝑃 ∈
ℕ0) |
| 3 | 2 | ad3antrrr 730 |
. . . . . . 7
⊢ ((((𝑃 ∈ ℙ ∧ 𝐴 ∈ 𝐵) ∧ 𝑎 ∈ ℤ) ∧ 𝐴 = ((ℤRHom‘𝑍)‘𝑎)) → 𝑃 ∈
ℕ0) |
| 4 | | simplr 768 |
. . . . . . 7
⊢ ((((𝑃 ∈ ℙ ∧ 𝐴 ∈ 𝐵) ∧ 𝑎 ∈ ℤ) ∧ 𝐴 = ((ℤRHom‘𝑍)‘𝑎)) → 𝑎 ∈ ℤ) |
| 5 | | eqid 2736 |
. . . . . . . 8
⊢
((mulGrp‘ℂfld) ↾s ℤ) =
((mulGrp‘ℂfld) ↾s
ℤ) |
| 6 | | zsscn 12601 |
. . . . . . . . 9
⊢ ℤ
⊆ ℂ |
| 7 | | eqid 2736 |
. . . . . . . . . 10
⊢
(mulGrp‘ℂfld) =
(mulGrp‘ℂfld) |
| 8 | | cnfldbas 21324 |
. . . . . . . . . 10
⊢ ℂ =
(Base‘ℂfld) |
| 9 | 7, 8 | mgpbas 20110 |
. . . . . . . . 9
⊢ ℂ =
(Base‘(mulGrp‘ℂfld)) |
| 10 | 6, 9 | sseqtri 4012 |
. . . . . . . 8
⊢ ℤ
⊆ (Base‘(mulGrp‘ℂfld)) |
| 11 | | eqid 2736 |
. . . . . . . 8
⊢
(.g‘(mulGrp‘ℂfld)) =
(.g‘(mulGrp‘ℂfld)) |
| 12 | | eqid 2736 |
. . . . . . . 8
⊢
(invg‘(mulGrp‘ℂfld)) =
(invg‘(mulGrp‘ℂfld)) |
| 13 | | cnring 21358 |
. . . . . . . . . 10
⊢
ℂfld ∈ Ring |
| 14 | 7 | ringmgp 20204 |
. . . . . . . . . 10
⊢
(ℂfld ∈ Ring →
(mulGrp‘ℂfld) ∈ Mnd) |
| 15 | 13, 14 | ax-mp 5 |
. . . . . . . . 9
⊢
(mulGrp‘ℂfld) ∈ Mnd |
| 16 | | cnfld1 21361 |
. . . . . . . . . . 11
⊢ 1 =
(1r‘ℂfld) |
| 17 | 7, 16 | ringidval 20148 |
. . . . . . . . . 10
⊢ 1 =
(0g‘(mulGrp‘ℂfld)) |
| 18 | | 1z 12627 |
. . . . . . . . . 10
⊢ 1 ∈
ℤ |
| 19 | 17, 18 | eqeltrri 2832 |
. . . . . . . . 9
⊢
(0g‘(mulGrp‘ℂfld)) ∈
ℤ |
| 20 | | eqid 2736 |
. . . . . . . . . 10
⊢
(0g‘(mulGrp‘ℂfld)) =
(0g‘(mulGrp‘ℂfld)) |
| 21 | 5, 9, 20 | ress0g 18745 |
. . . . . . . . 9
⊢
(((mulGrp‘ℂfld) ∈ Mnd ∧
(0g‘(mulGrp‘ℂfld)) ∈ ℤ ∧
ℤ ⊆ ℂ) →
(0g‘(mulGrp‘ℂfld)) =
(0g‘((mulGrp‘ℂfld) ↾s
ℤ))) |
| 22 | 15, 19, 6, 21 | mp3an 1463 |
. . . . . . . 8
⊢
(0g‘(mulGrp‘ℂfld)) =
(0g‘((mulGrp‘ℂfld) ↾s
ℤ)) |
| 23 | 5, 10, 11, 12, 22 | ressmulgnn0 19065 |
. . . . . . 7
⊢ ((𝑃 ∈ ℕ0
∧ 𝑎 ∈ ℤ)
→ (𝑃(.g‘((mulGrp‘ℂfld)
↾s ℤ))𝑎) = (𝑃(.g‘(mulGrp‘ℂfld))𝑎)) |
| 24 | 3, 4, 23 | syl2anc 584 |
. . . . . 6
⊢ ((((𝑃 ∈ ℙ ∧ 𝐴 ∈ 𝐵) ∧ 𝑎 ∈ ℤ) ∧ 𝐴 = ((ℤRHom‘𝑍)‘𝑎)) → (𝑃(.g‘((mulGrp‘ℂfld)
↾s ℤ))𝑎) = (𝑃(.g‘(mulGrp‘ℂfld))𝑎)) |
| 25 | 4 | zcnd 12703 |
. . . . . . 7
⊢ ((((𝑃 ∈ ℙ ∧ 𝐴 ∈ 𝐵) ∧ 𝑎 ∈ ℤ) ∧ 𝐴 = ((ℤRHom‘𝑍)‘𝑎)) → 𝑎 ∈ ℂ) |
| 26 | | cnfldexp 21372 |
. . . . . . 7
⊢ ((𝑎 ∈ ℂ ∧ 𝑃 ∈ ℕ0)
→ (𝑃(.g‘(mulGrp‘ℂfld))𝑎) = (𝑎↑𝑃)) |
| 27 | 25, 3, 26 | syl2anc 584 |
. . . . . 6
⊢ ((((𝑃 ∈ ℙ ∧ 𝐴 ∈ 𝐵) ∧ 𝑎 ∈ ℤ) ∧ 𝐴 = ((ℤRHom‘𝑍)‘𝑎)) → (𝑃(.g‘(mulGrp‘ℂfld))𝑎) = (𝑎↑𝑃)) |
| 28 | 24, 27 | eqtrd 2771 |
. . . . 5
⊢ ((((𝑃 ∈ ℙ ∧ 𝐴 ∈ 𝐵) ∧ 𝑎 ∈ ℤ) ∧ 𝐴 = ((ℤRHom‘𝑍)‘𝑎)) → (𝑃(.g‘((mulGrp‘ℂfld)
↾s ℤ))𝑎) = (𝑎↑𝑃)) |
| 29 | 28 | fveq2d 6885 |
. . . 4
⊢ ((((𝑃 ∈ ℙ ∧ 𝐴 ∈ 𝐵) ∧ 𝑎 ∈ ℤ) ∧ 𝐴 = ((ℤRHom‘𝑍)‘𝑎)) → ((ℤRHom‘𝑍)‘(𝑃(.g‘((mulGrp‘ℂfld)
↾s ℤ))𝑎)) =
((ℤRHom‘𝑍)‘(𝑎↑𝑃))) |
| 30 | | nnnn0 12513 |
. . . . . . 7
⊢ (𝑃 ∈ ℕ → 𝑃 ∈
ℕ0) |
| 31 | | znfermltl.z |
. . . . . . . . . 10
⊢ 𝑍 =
(ℤ/nℤ‘𝑃) |
| 32 | 31 | zncrng 21510 |
. . . . . . . . 9
⊢ (𝑃 ∈ ℕ0
→ 𝑍 ∈
CRing) |
| 33 | 32 | crngringd 20211 |
. . . . . . . 8
⊢ (𝑃 ∈ ℕ0
→ 𝑍 ∈
Ring) |
| 34 | | eqid 2736 |
. . . . . . . . 9
⊢
(ℤRHom‘𝑍) = (ℤRHom‘𝑍) |
| 35 | 34 | zrhrhm 21477 |
. . . . . . . 8
⊢ (𝑍 ∈ Ring →
(ℤRHom‘𝑍)
∈ (ℤring RingHom 𝑍)) |
| 36 | 33, 35 | syl 17 |
. . . . . . 7
⊢ (𝑃 ∈ ℕ0
→ (ℤRHom‘𝑍) ∈ (ℤring RingHom
𝑍)) |
| 37 | | zringmpg 21437 |
. . . . . . . 8
⊢
((mulGrp‘ℂfld) ↾s ℤ) =
(mulGrp‘ℤring) |
| 38 | | eqid 2736 |
. . . . . . . 8
⊢
(mulGrp‘𝑍) =
(mulGrp‘𝑍) |
| 39 | 37, 38 | rhmmhm 20444 |
. . . . . . 7
⊢
((ℤRHom‘𝑍) ∈ (ℤring RingHom
𝑍) →
(ℤRHom‘𝑍)
∈ (((mulGrp‘ℂfld) ↾s ℤ)
MndHom (mulGrp‘𝑍))) |
| 40 | 1, 30, 36, 39 | 4syl 19 |
. . . . . 6
⊢ (𝑃 ∈ ℙ →
(ℤRHom‘𝑍)
∈ (((mulGrp‘ℂfld) ↾s ℤ)
MndHom (mulGrp‘𝑍))) |
| 41 | 40 | ad3antrrr 730 |
. . . . 5
⊢ ((((𝑃 ∈ ℙ ∧ 𝐴 ∈ 𝐵) ∧ 𝑎 ∈ ℤ) ∧ 𝐴 = ((ℤRHom‘𝑍)‘𝑎)) → (ℤRHom‘𝑍) ∈
(((mulGrp‘ℂfld) ↾s ℤ) MndHom
(mulGrp‘𝑍))) |
| 42 | 5, 9 | ressbas2 17264 |
. . . . . . 7
⊢ (ℤ
⊆ ℂ → ℤ =
(Base‘((mulGrp‘ℂfld) ↾s
ℤ))) |
| 43 | 6, 42 | ax-mp 5 |
. . . . . 6
⊢ ℤ =
(Base‘((mulGrp‘ℂfld) ↾s
ℤ)) |
| 44 | | eqid 2736 |
. . . . . 6
⊢
(.g‘((mulGrp‘ℂfld)
↾s ℤ)) =
(.g‘((mulGrp‘ℂfld) ↾s
ℤ)) |
| 45 | | znfermltl.p |
. . . . . 6
⊢ ↑ =
(.g‘(mulGrp‘𝑍)) |
| 46 | 43, 44, 45 | mhmmulg 19103 |
. . . . 5
⊢
(((ℤRHom‘𝑍) ∈
(((mulGrp‘ℂfld) ↾s ℤ) MndHom
(mulGrp‘𝑍)) ∧
𝑃 ∈
ℕ0 ∧ 𝑎
∈ ℤ) → ((ℤRHom‘𝑍)‘(𝑃(.g‘((mulGrp‘ℂfld)
↾s ℤ))𝑎)) = (𝑃 ↑ ((ℤRHom‘𝑍)‘𝑎))) |
| 47 | 41, 3, 4, 46 | syl3anc 1373 |
. . . 4
⊢ ((((𝑃 ∈ ℙ ∧ 𝐴 ∈ 𝐵) ∧ 𝑎 ∈ ℤ) ∧ 𝐴 = ((ℤRHom‘𝑍)‘𝑎)) → ((ℤRHom‘𝑍)‘(𝑃(.g‘((mulGrp‘ℂfld)
↾s ℤ))𝑎)) = (𝑃 ↑ ((ℤRHom‘𝑍)‘𝑎))) |
| 48 | | simpr 484 |
. . . . . . . . . 10
⊢ ((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℤ) → 𝑎 ∈
ℤ) |
| 49 | 1 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℤ) → 𝑃 ∈
ℕ) |
| 50 | 49 | nnnn0d 12567 |
. . . . . . . . . 10
⊢ ((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℤ) → 𝑃 ∈
ℕ0) |
| 51 | | zexpcl 14099 |
. . . . . . . . . 10
⊢ ((𝑎 ∈ ℤ ∧ 𝑃 ∈ ℕ0)
→ (𝑎↑𝑃) ∈
ℤ) |
| 52 | 48, 50, 51 | syl2anc 584 |
. . . . . . . . 9
⊢ ((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℤ) → (𝑎↑𝑃) ∈ ℤ) |
| 53 | | eqid 2736 |
. . . . . . . . . 10
⊢
(-g‘ℤring) =
(-g‘ℤring) |
| 54 | 53 | zringsubgval 21436 |
. . . . . . . . 9
⊢ (((𝑎↑𝑃) ∈ ℤ ∧ 𝑎 ∈ ℤ) → ((𝑎↑𝑃) − 𝑎) = ((𝑎↑𝑃)(-g‘ℤring)𝑎)) |
| 55 | 52, 48, 54 | syl2anc 584 |
. . . . . . . 8
⊢ ((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℤ) → ((𝑎↑𝑃) − 𝑎) = ((𝑎↑𝑃)(-g‘ℤring)𝑎)) |
| 56 | 55 | fveq2d 6885 |
. . . . . . 7
⊢ ((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℤ) →
((ℤRHom‘𝑍)‘((𝑎↑𝑃) − 𝑎)) = ((ℤRHom‘𝑍)‘((𝑎↑𝑃)(-g‘ℤring)𝑎))) |
| 57 | 52 | zred 12702 |
. . . . . . . . . . 11
⊢ ((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℤ) → (𝑎↑𝑃) ∈ ℝ) |
| 58 | | zre 12597 |
. . . . . . . . . . . 12
⊢ (𝑎 ∈ ℤ → 𝑎 ∈
ℝ) |
| 59 | 58 | adantl 481 |
. . . . . . . . . . 11
⊢ ((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℤ) → 𝑎 ∈
ℝ) |
| 60 | 49 | nnrpd 13054 |
. . . . . . . . . . 11
⊢ ((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℤ) → 𝑃 ∈
ℝ+) |
| 61 | | fermltl 16808 |
. . . . . . . . . . 11
⊢ ((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℤ) → ((𝑎↑𝑃) mod 𝑃) = (𝑎 mod 𝑃)) |
| 62 | | eqidd 2737 |
. . . . . . . . . . 11
⊢ ((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℤ) → (𝑎 mod 𝑃) = (𝑎 mod 𝑃)) |
| 63 | 57, 59, 59, 59, 60, 61, 62 | modsub12d 13951 |
. . . . . . . . . 10
⊢ ((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℤ) → (((𝑎↑𝑃) − 𝑎) mod 𝑃) = ((𝑎 − 𝑎) mod 𝑃)) |
| 64 | | zcn 12598 |
. . . . . . . . . . . . 13
⊢ (𝑎 ∈ ℤ → 𝑎 ∈
ℂ) |
| 65 | 64 | subidd 11587 |
. . . . . . . . . . . 12
⊢ (𝑎 ∈ ℤ → (𝑎 − 𝑎) = 0) |
| 66 | 65 | adantl 481 |
. . . . . . . . . . 11
⊢ ((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℤ) → (𝑎 − 𝑎) = 0) |
| 67 | 66 | oveq1d 7425 |
. . . . . . . . . 10
⊢ ((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℤ) → ((𝑎 − 𝑎) mod 𝑃) = (0 mod 𝑃)) |
| 68 | | 0mod 13924 |
. . . . . . . . . . 11
⊢ (𝑃 ∈ ℝ+
→ (0 mod 𝑃) =
0) |
| 69 | 60, 68 | syl 17 |
. . . . . . . . . 10
⊢ ((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℤ) → (0 mod
𝑃) = 0) |
| 70 | 63, 67, 69 | 3eqtrd 2775 |
. . . . . . . . 9
⊢ ((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℤ) → (((𝑎↑𝑃) − 𝑎) mod 𝑃) = 0) |
| 71 | 52, 48 | zsubcld 12707 |
. . . . . . . . . 10
⊢ ((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℤ) → ((𝑎↑𝑃) − 𝑎) ∈ ℤ) |
| 72 | | dvdsval3 16281 |
. . . . . . . . . 10
⊢ ((𝑃 ∈ ℕ ∧ ((𝑎↑𝑃) − 𝑎) ∈ ℤ) → (𝑃 ∥ ((𝑎↑𝑃) − 𝑎) ↔ (((𝑎↑𝑃) − 𝑎) mod 𝑃) = 0)) |
| 73 | 49, 71, 72 | syl2anc 584 |
. . . . . . . . 9
⊢ ((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℤ) → (𝑃 ∥ ((𝑎↑𝑃) − 𝑎) ↔ (((𝑎↑𝑃) − 𝑎) mod 𝑃) = 0)) |
| 74 | 70, 73 | mpbird 257 |
. . . . . . . 8
⊢ ((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℤ) → 𝑃 ∥ ((𝑎↑𝑃) − 𝑎)) |
| 75 | | eqid 2736 |
. . . . . . . . . 10
⊢
(0g‘𝑍) = (0g‘𝑍) |
| 76 | 31, 34, 75 | zndvds0 21516 |
. . . . . . . . 9
⊢ ((𝑃 ∈ ℕ0
∧ ((𝑎↑𝑃) − 𝑎) ∈ ℤ) →
(((ℤRHom‘𝑍)‘((𝑎↑𝑃) − 𝑎)) = (0g‘𝑍) ↔ 𝑃 ∥ ((𝑎↑𝑃) − 𝑎))) |
| 77 | 50, 71, 76 | syl2anc 584 |
. . . . . . . 8
⊢ ((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℤ) →
(((ℤRHom‘𝑍)‘((𝑎↑𝑃) − 𝑎)) = (0g‘𝑍) ↔ 𝑃 ∥ ((𝑎↑𝑃) − 𝑎))) |
| 78 | 74, 77 | mpbird 257 |
. . . . . . 7
⊢ ((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℤ) →
((ℤRHom‘𝑍)‘((𝑎↑𝑃) − 𝑎)) = (0g‘𝑍)) |
| 79 | | rhmghm 20449 |
. . . . . . . . 9
⊢
((ℤRHom‘𝑍) ∈ (ℤring RingHom
𝑍) →
(ℤRHom‘𝑍)
∈ (ℤring GrpHom 𝑍)) |
| 80 | 50, 36, 79 | 3syl 18 |
. . . . . . . 8
⊢ ((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℤ) →
(ℤRHom‘𝑍)
∈ (ℤring GrpHom 𝑍)) |
| 81 | | zringbas 21419 |
. . . . . . . . 9
⊢ ℤ =
(Base‘ℤring) |
| 82 | | eqid 2736 |
. . . . . . . . 9
⊢
(-g‘𝑍) = (-g‘𝑍) |
| 83 | 81, 53, 82 | ghmsub 19212 |
. . . . . . . 8
⊢
(((ℤRHom‘𝑍) ∈ (ℤring GrpHom
𝑍) ∧ (𝑎↑𝑃) ∈ ℤ ∧ 𝑎 ∈ ℤ) →
((ℤRHom‘𝑍)‘((𝑎↑𝑃)(-g‘ℤring)𝑎)) = (((ℤRHom‘𝑍)‘(𝑎↑𝑃))(-g‘𝑍)((ℤRHom‘𝑍)‘𝑎))) |
| 84 | 80, 52, 48, 83 | syl3anc 1373 |
. . . . . . 7
⊢ ((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℤ) →
((ℤRHom‘𝑍)‘((𝑎↑𝑃)(-g‘ℤring)𝑎)) = (((ℤRHom‘𝑍)‘(𝑎↑𝑃))(-g‘𝑍)((ℤRHom‘𝑍)‘𝑎))) |
| 85 | 56, 78, 84 | 3eqtr3rd 2780 |
. . . . . 6
⊢ ((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℤ) →
(((ℤRHom‘𝑍)‘(𝑎↑𝑃))(-g‘𝑍)((ℤRHom‘𝑍)‘𝑎)) = (0g‘𝑍)) |
| 86 | 1, 30, 33 | 3syl 18 |
. . . . . . . . 9
⊢ (𝑃 ∈ ℙ → 𝑍 ∈ Ring) |
| 87 | 86 | ringgrpd 20207 |
. . . . . . . 8
⊢ (𝑃 ∈ ℙ → 𝑍 ∈ Grp) |
| 88 | 87 | adantr 480 |
. . . . . . 7
⊢ ((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℤ) → 𝑍 ∈ Grp) |
| 89 | | eqid 2736 |
. . . . . . . . . 10
⊢
(Base‘𝑍) =
(Base‘𝑍) |
| 90 | 81, 89 | rhmf 20450 |
. . . . . . . . 9
⊢
((ℤRHom‘𝑍) ∈ (ℤring RingHom
𝑍) →
(ℤRHom‘𝑍):ℤ⟶(Base‘𝑍)) |
| 91 | 50, 36, 90 | 3syl 18 |
. . . . . . . 8
⊢ ((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℤ) →
(ℤRHom‘𝑍):ℤ⟶(Base‘𝑍)) |
| 92 | 91, 52 | ffvelcdmd 7080 |
. . . . . . 7
⊢ ((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℤ) →
((ℤRHom‘𝑍)‘(𝑎↑𝑃)) ∈ (Base‘𝑍)) |
| 93 | 91, 48 | ffvelcdmd 7080 |
. . . . . . 7
⊢ ((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℤ) →
((ℤRHom‘𝑍)‘𝑎) ∈ (Base‘𝑍)) |
| 94 | 89, 75, 82 | grpsubeq0 19014 |
. . . . . . 7
⊢ ((𝑍 ∈ Grp ∧
((ℤRHom‘𝑍)‘(𝑎↑𝑃)) ∈ (Base‘𝑍) ∧ ((ℤRHom‘𝑍)‘𝑎) ∈ (Base‘𝑍)) → ((((ℤRHom‘𝑍)‘(𝑎↑𝑃))(-g‘𝑍)((ℤRHom‘𝑍)‘𝑎)) = (0g‘𝑍) ↔ ((ℤRHom‘𝑍)‘(𝑎↑𝑃)) = ((ℤRHom‘𝑍)‘𝑎))) |
| 95 | 88, 92, 93, 94 | syl3anc 1373 |
. . . . . 6
⊢ ((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℤ) →
((((ℤRHom‘𝑍)‘(𝑎↑𝑃))(-g‘𝑍)((ℤRHom‘𝑍)‘𝑎)) = (0g‘𝑍) ↔ ((ℤRHom‘𝑍)‘(𝑎↑𝑃)) = ((ℤRHom‘𝑍)‘𝑎))) |
| 96 | 85, 95 | mpbid 232 |
. . . . 5
⊢ ((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℤ) →
((ℤRHom‘𝑍)‘(𝑎↑𝑃)) = ((ℤRHom‘𝑍)‘𝑎)) |
| 97 | 96 | ad4ant13 751 |
. . . 4
⊢ ((((𝑃 ∈ ℙ ∧ 𝐴 ∈ 𝐵) ∧ 𝑎 ∈ ℤ) ∧ 𝐴 = ((ℤRHom‘𝑍)‘𝑎)) → ((ℤRHom‘𝑍)‘(𝑎↑𝑃)) = ((ℤRHom‘𝑍)‘𝑎)) |
| 98 | 29, 47, 97 | 3eqtr3d 2779 |
. . 3
⊢ ((((𝑃 ∈ ℙ ∧ 𝐴 ∈ 𝐵) ∧ 𝑎 ∈ ℤ) ∧ 𝐴 = ((ℤRHom‘𝑍)‘𝑎)) → (𝑃 ↑
((ℤRHom‘𝑍)‘𝑎)) = ((ℤRHom‘𝑍)‘𝑎)) |
| 99 | | oveq2 7418 |
. . . 4
⊢ (𝐴 = ((ℤRHom‘𝑍)‘𝑎) → (𝑃 ↑ 𝐴) = (𝑃 ↑
((ℤRHom‘𝑍)‘𝑎))) |
| 100 | 99 | adantl 481 |
. . 3
⊢ ((((𝑃 ∈ ℙ ∧ 𝐴 ∈ 𝐵) ∧ 𝑎 ∈ ℤ) ∧ 𝐴 = ((ℤRHom‘𝑍)‘𝑎)) → (𝑃 ↑ 𝐴) = (𝑃 ↑
((ℤRHom‘𝑍)‘𝑎))) |
| 101 | | simpr 484 |
. . 3
⊢ ((((𝑃 ∈ ℙ ∧ 𝐴 ∈ 𝐵) ∧ 𝑎 ∈ ℤ) ∧ 𝐴 = ((ℤRHom‘𝑍)‘𝑎)) → 𝐴 = ((ℤRHom‘𝑍)‘𝑎)) |
| 102 | 98, 100, 101 | 3eqtr4d 2781 |
. 2
⊢ ((((𝑃 ∈ ℙ ∧ 𝐴 ∈ 𝐵) ∧ 𝑎 ∈ ℤ) ∧ 𝐴 = ((ℤRHom‘𝑍)‘𝑎)) → (𝑃 ↑ 𝐴) = 𝐴) |
| 103 | | znfermltl.b |
. . . . 5
⊢ 𝐵 = (Base‘𝑍) |
| 104 | 31, 103, 34 | znzrhfo 21513 |
. . . 4
⊢ (𝑃 ∈ ℕ0
→ (ℤRHom‘𝑍):ℤ–onto→𝐵) |
| 105 | 1, 30, 104 | 3syl 18 |
. . 3
⊢ (𝑃 ∈ ℙ →
(ℤRHom‘𝑍):ℤ–onto→𝐵) |
| 106 | | foelrn 7102 |
. . 3
⊢
(((ℤRHom‘𝑍):ℤ–onto→𝐵 ∧ 𝐴 ∈ 𝐵) → ∃𝑎 ∈ ℤ 𝐴 = ((ℤRHom‘𝑍)‘𝑎)) |
| 107 | 105, 106 | sylan 580 |
. 2
⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ 𝐵) → ∃𝑎 ∈ ℤ 𝐴 = ((ℤRHom‘𝑍)‘𝑎)) |
| 108 | 102, 107 | r19.29a 3149 |
1
⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ 𝐵) → (𝑃 ↑ 𝐴) = 𝐴) |