Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  0idl Structured version   Visualization version   GIF version

Theorem 0idl 36110
Description: The set containing only 0 is an ideal. (Contributed by Jeff Madsen, 10-Jun-2010.)
Hypotheses
Ref Expression
0idl.1 𝐺 = (1st𝑅)
0idl.2 𝑍 = (GId‘𝐺)
Assertion
Ref Expression
0idl (𝑅 ∈ RingOps → {𝑍} ∈ (Idl‘𝑅))

Proof of Theorem 0idl
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0idl.1 . . . 4 𝐺 = (1st𝑅)
2 eqid 2738 . . . 4 ran 𝐺 = ran 𝐺
3 0idl.2 . . . 4 𝑍 = (GId‘𝐺)
41, 2, 3rngo0cl 36004 . . 3 (𝑅 ∈ RingOps → 𝑍 ∈ ran 𝐺)
54snssd 4739 . 2 (𝑅 ∈ RingOps → {𝑍} ⊆ ran 𝐺)
63fvexi 6770 . . . 4 𝑍 ∈ V
76snid 4594 . . 3 𝑍 ∈ {𝑍}
87a1i 11 . 2 (𝑅 ∈ RingOps → 𝑍 ∈ {𝑍})
9 velsn 4574 . . . 4 (𝑥 ∈ {𝑍} ↔ 𝑥 = 𝑍)
10 velsn 4574 . . . . . . . 8 (𝑦 ∈ {𝑍} ↔ 𝑦 = 𝑍)
111, 2, 3rngo0rid 36005 . . . . . . . . . . 11 ((𝑅 ∈ RingOps ∧ 𝑍 ∈ ran 𝐺) → (𝑍𝐺𝑍) = 𝑍)
124, 11mpdan 683 . . . . . . . . . 10 (𝑅 ∈ RingOps → (𝑍𝐺𝑍) = 𝑍)
13 ovex 7288 . . . . . . . . . . 11 (𝑍𝐺𝑍) ∈ V
1413elsn 4573 . . . . . . . . . 10 ((𝑍𝐺𝑍) ∈ {𝑍} ↔ (𝑍𝐺𝑍) = 𝑍)
1512, 14sylibr 233 . . . . . . . . 9 (𝑅 ∈ RingOps → (𝑍𝐺𝑍) ∈ {𝑍})
16 oveq2 7263 . . . . . . . . . 10 (𝑦 = 𝑍 → (𝑍𝐺𝑦) = (𝑍𝐺𝑍))
1716eleq1d 2823 . . . . . . . . 9 (𝑦 = 𝑍 → ((𝑍𝐺𝑦) ∈ {𝑍} ↔ (𝑍𝐺𝑍) ∈ {𝑍}))
1815, 17syl5ibrcom 246 . . . . . . . 8 (𝑅 ∈ RingOps → (𝑦 = 𝑍 → (𝑍𝐺𝑦) ∈ {𝑍}))
1910, 18syl5bi 241 . . . . . . 7 (𝑅 ∈ RingOps → (𝑦 ∈ {𝑍} → (𝑍𝐺𝑦) ∈ {𝑍}))
2019ralrimiv 3106 . . . . . 6 (𝑅 ∈ RingOps → ∀𝑦 ∈ {𝑍} (𝑍𝐺𝑦) ∈ {𝑍})
21 eqid 2738 . . . . . . . . . 10 (2nd𝑅) = (2nd𝑅)
223, 2, 1, 21rngorz 36008 . . . . . . . . 9 ((𝑅 ∈ RingOps ∧ 𝑧 ∈ ran 𝐺) → (𝑧(2nd𝑅)𝑍) = 𝑍)
23 ovex 7288 . . . . . . . . . 10 (𝑧(2nd𝑅)𝑍) ∈ V
2423elsn 4573 . . . . . . . . 9 ((𝑧(2nd𝑅)𝑍) ∈ {𝑍} ↔ (𝑧(2nd𝑅)𝑍) = 𝑍)
2522, 24sylibr 233 . . . . . . . 8 ((𝑅 ∈ RingOps ∧ 𝑧 ∈ ran 𝐺) → (𝑧(2nd𝑅)𝑍) ∈ {𝑍})
263, 2, 1, 21rngolz 36007 . . . . . . . . 9 ((𝑅 ∈ RingOps ∧ 𝑧 ∈ ran 𝐺) → (𝑍(2nd𝑅)𝑧) = 𝑍)
27 ovex 7288 . . . . . . . . . 10 (𝑍(2nd𝑅)𝑧) ∈ V
2827elsn 4573 . . . . . . . . 9 ((𝑍(2nd𝑅)𝑧) ∈ {𝑍} ↔ (𝑍(2nd𝑅)𝑧) = 𝑍)
2926, 28sylibr 233 . . . . . . . 8 ((𝑅 ∈ RingOps ∧ 𝑧 ∈ ran 𝐺) → (𝑍(2nd𝑅)𝑧) ∈ {𝑍})
3025, 29jca 511 . . . . . . 7 ((𝑅 ∈ RingOps ∧ 𝑧 ∈ ran 𝐺) → ((𝑧(2nd𝑅)𝑍) ∈ {𝑍} ∧ (𝑍(2nd𝑅)𝑧) ∈ {𝑍}))
3130ralrimiva 3107 . . . . . 6 (𝑅 ∈ RingOps → ∀𝑧 ∈ ran 𝐺((𝑧(2nd𝑅)𝑍) ∈ {𝑍} ∧ (𝑍(2nd𝑅)𝑧) ∈ {𝑍}))
3220, 31jca 511 . . . . 5 (𝑅 ∈ RingOps → (∀𝑦 ∈ {𝑍} (𝑍𝐺𝑦) ∈ {𝑍} ∧ ∀𝑧 ∈ ran 𝐺((𝑧(2nd𝑅)𝑍) ∈ {𝑍} ∧ (𝑍(2nd𝑅)𝑧) ∈ {𝑍})))
33 oveq1 7262 . . . . . . . 8 (𝑥 = 𝑍 → (𝑥𝐺𝑦) = (𝑍𝐺𝑦))
3433eleq1d 2823 . . . . . . 7 (𝑥 = 𝑍 → ((𝑥𝐺𝑦) ∈ {𝑍} ↔ (𝑍𝐺𝑦) ∈ {𝑍}))
3534ralbidv 3120 . . . . . 6 (𝑥 = 𝑍 → (∀𝑦 ∈ {𝑍} (𝑥𝐺𝑦) ∈ {𝑍} ↔ ∀𝑦 ∈ {𝑍} (𝑍𝐺𝑦) ∈ {𝑍}))
36 oveq2 7263 . . . . . . . . 9 (𝑥 = 𝑍 → (𝑧(2nd𝑅)𝑥) = (𝑧(2nd𝑅)𝑍))
3736eleq1d 2823 . . . . . . . 8 (𝑥 = 𝑍 → ((𝑧(2nd𝑅)𝑥) ∈ {𝑍} ↔ (𝑧(2nd𝑅)𝑍) ∈ {𝑍}))
38 oveq1 7262 . . . . . . . . 9 (𝑥 = 𝑍 → (𝑥(2nd𝑅)𝑧) = (𝑍(2nd𝑅)𝑧))
3938eleq1d 2823 . . . . . . . 8 (𝑥 = 𝑍 → ((𝑥(2nd𝑅)𝑧) ∈ {𝑍} ↔ (𝑍(2nd𝑅)𝑧) ∈ {𝑍}))
4037, 39anbi12d 630 . . . . . . 7 (𝑥 = 𝑍 → (((𝑧(2nd𝑅)𝑥) ∈ {𝑍} ∧ (𝑥(2nd𝑅)𝑧) ∈ {𝑍}) ↔ ((𝑧(2nd𝑅)𝑍) ∈ {𝑍} ∧ (𝑍(2nd𝑅)𝑧) ∈ {𝑍})))
4140ralbidv 3120 . . . . . 6 (𝑥 = 𝑍 → (∀𝑧 ∈ ran 𝐺((𝑧(2nd𝑅)𝑥) ∈ {𝑍} ∧ (𝑥(2nd𝑅)𝑧) ∈ {𝑍}) ↔ ∀𝑧 ∈ ran 𝐺((𝑧(2nd𝑅)𝑍) ∈ {𝑍} ∧ (𝑍(2nd𝑅)𝑧) ∈ {𝑍})))
4235, 41anbi12d 630 . . . . 5 (𝑥 = 𝑍 → ((∀𝑦 ∈ {𝑍} (𝑥𝐺𝑦) ∈ {𝑍} ∧ ∀𝑧 ∈ ran 𝐺((𝑧(2nd𝑅)𝑥) ∈ {𝑍} ∧ (𝑥(2nd𝑅)𝑧) ∈ {𝑍})) ↔ (∀𝑦 ∈ {𝑍} (𝑍𝐺𝑦) ∈ {𝑍} ∧ ∀𝑧 ∈ ran 𝐺((𝑧(2nd𝑅)𝑍) ∈ {𝑍} ∧ (𝑍(2nd𝑅)𝑧) ∈ {𝑍}))))
4332, 42syl5ibrcom 246 . . . 4 (𝑅 ∈ RingOps → (𝑥 = 𝑍 → (∀𝑦 ∈ {𝑍} (𝑥𝐺𝑦) ∈ {𝑍} ∧ ∀𝑧 ∈ ran 𝐺((𝑧(2nd𝑅)𝑥) ∈ {𝑍} ∧ (𝑥(2nd𝑅)𝑧) ∈ {𝑍}))))
449, 43syl5bi 241 . . 3 (𝑅 ∈ RingOps → (𝑥 ∈ {𝑍} → (∀𝑦 ∈ {𝑍} (𝑥𝐺𝑦) ∈ {𝑍} ∧ ∀𝑧 ∈ ran 𝐺((𝑧(2nd𝑅)𝑥) ∈ {𝑍} ∧ (𝑥(2nd𝑅)𝑧) ∈ {𝑍}))))
4544ralrimiv 3106 . 2 (𝑅 ∈ RingOps → ∀𝑥 ∈ {𝑍} (∀𝑦 ∈ {𝑍} (𝑥𝐺𝑦) ∈ {𝑍} ∧ ∀𝑧 ∈ ran 𝐺((𝑧(2nd𝑅)𝑥) ∈ {𝑍} ∧ (𝑥(2nd𝑅)𝑧) ∈ {𝑍})))
461, 21, 2, 3isidl 36099 . 2 (𝑅 ∈ RingOps → ({𝑍} ∈ (Idl‘𝑅) ↔ ({𝑍} ⊆ ran 𝐺𝑍 ∈ {𝑍} ∧ ∀𝑥 ∈ {𝑍} (∀𝑦 ∈ {𝑍} (𝑥𝐺𝑦) ∈ {𝑍} ∧ ∀𝑧 ∈ ran 𝐺((𝑧(2nd𝑅)𝑥) ∈ {𝑍} ∧ (𝑥(2nd𝑅)𝑧) ∈ {𝑍})))))
475, 8, 45, 46mpbir3and 1340 1 (𝑅 ∈ RingOps → {𝑍} ∈ (Idl‘𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  wral 3063  wss 3883  {csn 4558  ran crn 5581  cfv 6418  (class class class)co 7255  1st c1st 7802  2nd c2nd 7803  GIdcgi 28753  RingOpscrngo 35979  Idlcidl 36092
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-1st 7804  df-2nd 7805  df-grpo 28756  df-gid 28757  df-ginv 28758  df-ablo 28808  df-rngo 35980  df-idl 36095
This theorem is referenced by:  0rngo  36112  divrngidl  36113  smprngopr  36137  isdmn3  36159
  Copyright terms: Public domain W3C validator