Step | Hyp | Ref
| Expression |
1 | | 0idl.1 |
. . . 4
⊢ 𝐺 = (1st ‘𝑅) |
2 | | eqid 2759 |
. . . 4
⊢ ran 𝐺 = ran 𝐺 |
3 | | 0idl.2 |
. . . 4
⊢ 𝑍 = (GId‘𝐺) |
4 | 1, 2, 3 | rngo0cl 35627 |
. . 3
⊢ (𝑅 ∈ RingOps → 𝑍 ∈ ran 𝐺) |
5 | 4 | snssd 4697 |
. 2
⊢ (𝑅 ∈ RingOps → {𝑍} ⊆ ran 𝐺) |
6 | 3 | fvexi 6670 |
. . . 4
⊢ 𝑍 ∈ V |
7 | 6 | snid 4556 |
. . 3
⊢ 𝑍 ∈ {𝑍} |
8 | 7 | a1i 11 |
. 2
⊢ (𝑅 ∈ RingOps → 𝑍 ∈ {𝑍}) |
9 | | velsn 4536 |
. . . 4
⊢ (𝑥 ∈ {𝑍} ↔ 𝑥 = 𝑍) |
10 | | velsn 4536 |
. . . . . . . 8
⊢ (𝑦 ∈ {𝑍} ↔ 𝑦 = 𝑍) |
11 | 1, 2, 3 | rngo0rid 35628 |
. . . . . . . . . . 11
⊢ ((𝑅 ∈ RingOps ∧ 𝑍 ∈ ran 𝐺) → (𝑍𝐺𝑍) = 𝑍) |
12 | 4, 11 | mpdan 687 |
. . . . . . . . . 10
⊢ (𝑅 ∈ RingOps → (𝑍𝐺𝑍) = 𝑍) |
13 | | ovex 7181 |
. . . . . . . . . . 11
⊢ (𝑍𝐺𝑍) ∈ V |
14 | 13 | elsn 4535 |
. . . . . . . . . 10
⊢ ((𝑍𝐺𝑍) ∈ {𝑍} ↔ (𝑍𝐺𝑍) = 𝑍) |
15 | 12, 14 | sylibr 237 |
. . . . . . . . 9
⊢ (𝑅 ∈ RingOps → (𝑍𝐺𝑍) ∈ {𝑍}) |
16 | | oveq2 7156 |
. . . . . . . . . 10
⊢ (𝑦 = 𝑍 → (𝑍𝐺𝑦) = (𝑍𝐺𝑍)) |
17 | 16 | eleq1d 2837 |
. . . . . . . . 9
⊢ (𝑦 = 𝑍 → ((𝑍𝐺𝑦) ∈ {𝑍} ↔ (𝑍𝐺𝑍) ∈ {𝑍})) |
18 | 15, 17 | syl5ibrcom 250 |
. . . . . . . 8
⊢ (𝑅 ∈ RingOps → (𝑦 = 𝑍 → (𝑍𝐺𝑦) ∈ {𝑍})) |
19 | 10, 18 | syl5bi 245 |
. . . . . . 7
⊢ (𝑅 ∈ RingOps → (𝑦 ∈ {𝑍} → (𝑍𝐺𝑦) ∈ {𝑍})) |
20 | 19 | ralrimiv 3113 |
. . . . . 6
⊢ (𝑅 ∈ RingOps →
∀𝑦 ∈ {𝑍} (𝑍𝐺𝑦) ∈ {𝑍}) |
21 | | eqid 2759 |
. . . . . . . . . 10
⊢
(2nd ‘𝑅) = (2nd ‘𝑅) |
22 | 3, 2, 1, 21 | rngorz 35631 |
. . . . . . . . 9
⊢ ((𝑅 ∈ RingOps ∧ 𝑧 ∈ ran 𝐺) → (𝑧(2nd ‘𝑅)𝑍) = 𝑍) |
23 | | ovex 7181 |
. . . . . . . . . 10
⊢ (𝑧(2nd ‘𝑅)𝑍) ∈ V |
24 | 23 | elsn 4535 |
. . . . . . . . 9
⊢ ((𝑧(2nd ‘𝑅)𝑍) ∈ {𝑍} ↔ (𝑧(2nd ‘𝑅)𝑍) = 𝑍) |
25 | 22, 24 | sylibr 237 |
. . . . . . . 8
⊢ ((𝑅 ∈ RingOps ∧ 𝑧 ∈ ran 𝐺) → (𝑧(2nd ‘𝑅)𝑍) ∈ {𝑍}) |
26 | 3, 2, 1, 21 | rngolz 35630 |
. . . . . . . . 9
⊢ ((𝑅 ∈ RingOps ∧ 𝑧 ∈ ran 𝐺) → (𝑍(2nd ‘𝑅)𝑧) = 𝑍) |
27 | | ovex 7181 |
. . . . . . . . . 10
⊢ (𝑍(2nd ‘𝑅)𝑧) ∈ V |
28 | 27 | elsn 4535 |
. . . . . . . . 9
⊢ ((𝑍(2nd ‘𝑅)𝑧) ∈ {𝑍} ↔ (𝑍(2nd ‘𝑅)𝑧) = 𝑍) |
29 | 26, 28 | sylibr 237 |
. . . . . . . 8
⊢ ((𝑅 ∈ RingOps ∧ 𝑧 ∈ ran 𝐺) → (𝑍(2nd ‘𝑅)𝑧) ∈ {𝑍}) |
30 | 25, 29 | jca 516 |
. . . . . . 7
⊢ ((𝑅 ∈ RingOps ∧ 𝑧 ∈ ran 𝐺) → ((𝑧(2nd ‘𝑅)𝑍) ∈ {𝑍} ∧ (𝑍(2nd ‘𝑅)𝑧) ∈ {𝑍})) |
31 | 30 | ralrimiva 3114 |
. . . . . 6
⊢ (𝑅 ∈ RingOps →
∀𝑧 ∈ ran 𝐺((𝑧(2nd ‘𝑅)𝑍) ∈ {𝑍} ∧ (𝑍(2nd ‘𝑅)𝑧) ∈ {𝑍})) |
32 | 20, 31 | jca 516 |
. . . . 5
⊢ (𝑅 ∈ RingOps →
(∀𝑦 ∈ {𝑍} (𝑍𝐺𝑦) ∈ {𝑍} ∧ ∀𝑧 ∈ ran 𝐺((𝑧(2nd ‘𝑅)𝑍) ∈ {𝑍} ∧ (𝑍(2nd ‘𝑅)𝑧) ∈ {𝑍}))) |
33 | | oveq1 7155 |
. . . . . . . 8
⊢ (𝑥 = 𝑍 → (𝑥𝐺𝑦) = (𝑍𝐺𝑦)) |
34 | 33 | eleq1d 2837 |
. . . . . . 7
⊢ (𝑥 = 𝑍 → ((𝑥𝐺𝑦) ∈ {𝑍} ↔ (𝑍𝐺𝑦) ∈ {𝑍})) |
35 | 34 | ralbidv 3127 |
. . . . . 6
⊢ (𝑥 = 𝑍 → (∀𝑦 ∈ {𝑍} (𝑥𝐺𝑦) ∈ {𝑍} ↔ ∀𝑦 ∈ {𝑍} (𝑍𝐺𝑦) ∈ {𝑍})) |
36 | | oveq2 7156 |
. . . . . . . . 9
⊢ (𝑥 = 𝑍 → (𝑧(2nd ‘𝑅)𝑥) = (𝑧(2nd ‘𝑅)𝑍)) |
37 | 36 | eleq1d 2837 |
. . . . . . . 8
⊢ (𝑥 = 𝑍 → ((𝑧(2nd ‘𝑅)𝑥) ∈ {𝑍} ↔ (𝑧(2nd ‘𝑅)𝑍) ∈ {𝑍})) |
38 | | oveq1 7155 |
. . . . . . . . 9
⊢ (𝑥 = 𝑍 → (𝑥(2nd ‘𝑅)𝑧) = (𝑍(2nd ‘𝑅)𝑧)) |
39 | 38 | eleq1d 2837 |
. . . . . . . 8
⊢ (𝑥 = 𝑍 → ((𝑥(2nd ‘𝑅)𝑧) ∈ {𝑍} ↔ (𝑍(2nd ‘𝑅)𝑧) ∈ {𝑍})) |
40 | 37, 39 | anbi12d 634 |
. . . . . . 7
⊢ (𝑥 = 𝑍 → (((𝑧(2nd ‘𝑅)𝑥) ∈ {𝑍} ∧ (𝑥(2nd ‘𝑅)𝑧) ∈ {𝑍}) ↔ ((𝑧(2nd ‘𝑅)𝑍) ∈ {𝑍} ∧ (𝑍(2nd ‘𝑅)𝑧) ∈ {𝑍}))) |
41 | 40 | ralbidv 3127 |
. . . . . 6
⊢ (𝑥 = 𝑍 → (∀𝑧 ∈ ran 𝐺((𝑧(2nd ‘𝑅)𝑥) ∈ {𝑍} ∧ (𝑥(2nd ‘𝑅)𝑧) ∈ {𝑍}) ↔ ∀𝑧 ∈ ran 𝐺((𝑧(2nd ‘𝑅)𝑍) ∈ {𝑍} ∧ (𝑍(2nd ‘𝑅)𝑧) ∈ {𝑍}))) |
42 | 35, 41 | anbi12d 634 |
. . . . 5
⊢ (𝑥 = 𝑍 → ((∀𝑦 ∈ {𝑍} (𝑥𝐺𝑦) ∈ {𝑍} ∧ ∀𝑧 ∈ ran 𝐺((𝑧(2nd ‘𝑅)𝑥) ∈ {𝑍} ∧ (𝑥(2nd ‘𝑅)𝑧) ∈ {𝑍})) ↔ (∀𝑦 ∈ {𝑍} (𝑍𝐺𝑦) ∈ {𝑍} ∧ ∀𝑧 ∈ ran 𝐺((𝑧(2nd ‘𝑅)𝑍) ∈ {𝑍} ∧ (𝑍(2nd ‘𝑅)𝑧) ∈ {𝑍})))) |
43 | 32, 42 | syl5ibrcom 250 |
. . . 4
⊢ (𝑅 ∈ RingOps → (𝑥 = 𝑍 → (∀𝑦 ∈ {𝑍} (𝑥𝐺𝑦) ∈ {𝑍} ∧ ∀𝑧 ∈ ran 𝐺((𝑧(2nd ‘𝑅)𝑥) ∈ {𝑍} ∧ (𝑥(2nd ‘𝑅)𝑧) ∈ {𝑍})))) |
44 | 9, 43 | syl5bi 245 |
. . 3
⊢ (𝑅 ∈ RingOps → (𝑥 ∈ {𝑍} → (∀𝑦 ∈ {𝑍} (𝑥𝐺𝑦) ∈ {𝑍} ∧ ∀𝑧 ∈ ran 𝐺((𝑧(2nd ‘𝑅)𝑥) ∈ {𝑍} ∧ (𝑥(2nd ‘𝑅)𝑧) ∈ {𝑍})))) |
45 | 44 | ralrimiv 3113 |
. 2
⊢ (𝑅 ∈ RingOps →
∀𝑥 ∈ {𝑍} (∀𝑦 ∈ {𝑍} (𝑥𝐺𝑦) ∈ {𝑍} ∧ ∀𝑧 ∈ ran 𝐺((𝑧(2nd ‘𝑅)𝑥) ∈ {𝑍} ∧ (𝑥(2nd ‘𝑅)𝑧) ∈ {𝑍}))) |
46 | 1, 21, 2, 3 | isidl 35722 |
. 2
⊢ (𝑅 ∈ RingOps → ({𝑍} ∈ (Idl‘𝑅) ↔ ({𝑍} ⊆ ran 𝐺 ∧ 𝑍 ∈ {𝑍} ∧ ∀𝑥 ∈ {𝑍} (∀𝑦 ∈ {𝑍} (𝑥𝐺𝑦) ∈ {𝑍} ∧ ∀𝑧 ∈ ran 𝐺((𝑧(2nd ‘𝑅)𝑥) ∈ {𝑍} ∧ (𝑥(2nd ‘𝑅)𝑧) ∈ {𝑍}))))) |
47 | 5, 8, 45, 46 | mpbir3and 1340 |
1
⊢ (𝑅 ∈ RingOps → {𝑍} ∈ (Idl‘𝑅)) |