| Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rngo0cl | Structured version Visualization version GIF version | ||
| Description: A ring has an additive identity element. (Contributed by Steve Rodriguez, 9-Sep-2007.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| ring0cl.1 | ⊢ 𝐺 = (1st ‘𝑅) |
| ring0cl.2 | ⊢ 𝑋 = ran 𝐺 |
| ring0cl.3 | ⊢ 𝑍 = (GId‘𝐺) |
| Ref | Expression |
|---|---|
| rngo0cl | ⊢ (𝑅 ∈ RingOps → 𝑍 ∈ 𝑋) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ring0cl.1 | . . 3 ⊢ 𝐺 = (1st ‘𝑅) | |
| 2 | 1 | rngogrpo 37956 | . 2 ⊢ (𝑅 ∈ RingOps → 𝐺 ∈ GrpOp) |
| 3 | ring0cl.2 | . . 3 ⊢ 𝑋 = ran 𝐺 | |
| 4 | ring0cl.3 | . . 3 ⊢ 𝑍 = (GId‘𝐺) | |
| 5 | 3, 4 | grpoidcl 30501 | . 2 ⊢ (𝐺 ∈ GrpOp → 𝑍 ∈ 𝑋) |
| 6 | 2, 5 | syl 17 | 1 ⊢ (𝑅 ∈ RingOps → 𝑍 ∈ 𝑋) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 ran crn 5620 ‘cfv 6487 1st c1st 7925 GrpOpcgr 30476 GIdcgi 30477 RingOpscrngo 37940 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5236 ax-nul 5246 ax-pr 5372 ax-un 7674 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-iota 6443 df-fun 6489 df-fn 6490 df-f 6491 df-fo 6493 df-fv 6495 df-riota 7309 df-ov 7355 df-1st 7927 df-2nd 7928 df-grpo 30480 df-gid 30481 df-ablo 30532 df-rngo 37941 |
| This theorem is referenced by: rngolz 37968 rngorz 37969 rngosn6 37972 rngoueqz 37986 rngoidl 38070 0idl 38071 keridl 38078 prnc 38113 isdmn3 38120 |
| Copyright terms: Public domain | W3C validator |