![]() |
Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > rngo0cl | Structured version Visualization version GIF version |
Description: A ring has an additive identity element. (Contributed by Steve Rodriguez, 9-Sep-2007.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ring0cl.1 | ⊢ 𝐺 = (1st ‘𝑅) |
ring0cl.2 | ⊢ 𝑋 = ran 𝐺 |
ring0cl.3 | ⊢ 𝑍 = (GId‘𝐺) |
Ref | Expression |
---|---|
rngo0cl | ⊢ (𝑅 ∈ RingOps → 𝑍 ∈ 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ring0cl.1 | . . 3 ⊢ 𝐺 = (1st ‘𝑅) | |
2 | 1 | rngogrpo 37897 | . 2 ⊢ (𝑅 ∈ RingOps → 𝐺 ∈ GrpOp) |
3 | ring0cl.2 | . . 3 ⊢ 𝑋 = ran 𝐺 | |
4 | ring0cl.3 | . . 3 ⊢ 𝑍 = (GId‘𝐺) | |
5 | 3, 4 | grpoidcl 30543 | . 2 ⊢ (𝐺 ∈ GrpOp → 𝑍 ∈ 𝑋) |
6 | 2, 5 | syl 17 | 1 ⊢ (𝑅 ∈ RingOps → 𝑍 ∈ 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2106 ran crn 5690 ‘cfv 6563 1st c1st 8011 GrpOpcgr 30518 GIdcgi 30519 RingOpscrngo 37881 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-fo 6569 df-fv 6571 df-riota 7388 df-ov 7434 df-1st 8013 df-2nd 8014 df-grpo 30522 df-gid 30523 df-ablo 30574 df-rngo 37882 |
This theorem is referenced by: rngolz 37909 rngorz 37910 rngosn6 37913 rngoueqz 37927 rngoidl 38011 0idl 38012 keridl 38019 prnc 38054 isdmn3 38061 |
Copyright terms: Public domain | W3C validator |