| Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rngo0cl | Structured version Visualization version GIF version | ||
| Description: A ring has an additive identity element. (Contributed by Steve Rodriguez, 9-Sep-2007.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| ring0cl.1 | ⊢ 𝐺 = (1st ‘𝑅) |
| ring0cl.2 | ⊢ 𝑋 = ran 𝐺 |
| ring0cl.3 | ⊢ 𝑍 = (GId‘𝐺) |
| Ref | Expression |
|---|---|
| rngo0cl | ⊢ (𝑅 ∈ RingOps → 𝑍 ∈ 𝑋) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ring0cl.1 | . . 3 ⊢ 𝐺 = (1st ‘𝑅) | |
| 2 | 1 | rngogrpo 37934 | . 2 ⊢ (𝑅 ∈ RingOps → 𝐺 ∈ GrpOp) |
| 3 | ring0cl.2 | . . 3 ⊢ 𝑋 = ran 𝐺 | |
| 4 | ring0cl.3 | . . 3 ⊢ 𝑍 = (GId‘𝐺) | |
| 5 | 3, 4 | grpoidcl 30495 | . 2 ⊢ (𝐺 ∈ GrpOp → 𝑍 ∈ 𝑋) |
| 6 | 2, 5 | syl 17 | 1 ⊢ (𝑅 ∈ RingOps → 𝑍 ∈ 𝑋) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 ran crn 5655 ‘cfv 6531 1st c1st 7986 GrpOpcgr 30470 GIdcgi 30471 RingOpscrngo 37918 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-fo 6537 df-fv 6539 df-riota 7362 df-ov 7408 df-1st 7988 df-2nd 7989 df-grpo 30474 df-gid 30475 df-ablo 30526 df-rngo 37919 |
| This theorem is referenced by: rngolz 37946 rngorz 37947 rngosn6 37950 rngoueqz 37964 rngoidl 38048 0idl 38049 keridl 38056 prnc 38091 isdmn3 38098 |
| Copyright terms: Public domain | W3C validator |