Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rngo0cl Structured version   Visualization version   GIF version

Theorem rngo0cl 37965
Description: A ring has an additive identity element. (Contributed by Steve Rodriguez, 9-Sep-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
ring0cl.1 𝐺 = (1st𝑅)
ring0cl.2 𝑋 = ran 𝐺
ring0cl.3 𝑍 = (GId‘𝐺)
Assertion
Ref Expression
rngo0cl (𝑅 ∈ RingOps → 𝑍𝑋)

Proof of Theorem rngo0cl
StepHypRef Expression
1 ring0cl.1 . . 3 𝐺 = (1st𝑅)
21rngogrpo 37956 . 2 (𝑅 ∈ RingOps → 𝐺 ∈ GrpOp)
3 ring0cl.2 . . 3 𝑋 = ran 𝐺
4 ring0cl.3 . . 3 𝑍 = (GId‘𝐺)
53, 4grpoidcl 30501 . 2 (𝐺 ∈ GrpOp → 𝑍𝑋)
62, 5syl 17 1 (𝑅 ∈ RingOps → 𝑍𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2111  ran crn 5620  cfv 6487  1st c1st 7925  GrpOpcgr 30476  GIdcgi 30477  RingOpscrngo 37940
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5236  ax-nul 5246  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4283  df-if 4475  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-iota 6443  df-fun 6489  df-fn 6490  df-f 6491  df-fo 6493  df-fv 6495  df-riota 7309  df-ov 7355  df-1st 7927  df-2nd 7928  df-grpo 30480  df-gid 30481  df-ablo 30532  df-rngo 37941
This theorem is referenced by:  rngolz  37968  rngorz  37969  rngosn6  37972  rngoueqz  37986  rngoidl  38070  0idl  38071  keridl  38078  prnc  38113  isdmn3  38120
  Copyright terms: Public domain W3C validator