Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rngo0cl Structured version   Visualization version   GIF version

Theorem rngo0cl 37938
Description: A ring has an additive identity element. (Contributed by Steve Rodriguez, 9-Sep-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
ring0cl.1 𝐺 = (1st𝑅)
ring0cl.2 𝑋 = ran 𝐺
ring0cl.3 𝑍 = (GId‘𝐺)
Assertion
Ref Expression
rngo0cl (𝑅 ∈ RingOps → 𝑍𝑋)

Proof of Theorem rngo0cl
StepHypRef Expression
1 ring0cl.1 . . 3 𝐺 = (1st𝑅)
21rngogrpo 37929 . 2 (𝑅 ∈ RingOps → 𝐺 ∈ GrpOp)
3 ring0cl.2 . . 3 𝑋 = ran 𝐺
4 ring0cl.3 . . 3 𝑍 = (GId‘𝐺)
53, 4grpoidcl 30484 . 2 (𝐺 ∈ GrpOp → 𝑍𝑋)
62, 5syl 17 1 (𝑅 ∈ RingOps → 𝑍𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2110  ran crn 5615  cfv 6477  1st c1st 7914  GrpOpcgr 30459  GIdcgi 30460  RingOpscrngo 37913
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-sep 5232  ax-nul 5242  ax-pr 5368  ax-un 7663
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3345  df-rab 3394  df-v 3436  df-sbc 3740  df-csb 3849  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-nul 4282  df-if 4474  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4858  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-fo 6483  df-fv 6485  df-riota 7298  df-ov 7344  df-1st 7916  df-2nd 7917  df-grpo 30463  df-gid 30464  df-ablo 30515  df-rngo 37914
This theorem is referenced by:  rngolz  37941  rngorz  37942  rngosn6  37945  rngoueqz  37959  rngoidl  38043  0idl  38044  keridl  38051  prnc  38086  isdmn3  38093
  Copyright terms: Public domain W3C validator