![]() |
Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > rngo0cl | Structured version Visualization version GIF version |
Description: A ring has an additive identity element. (Contributed by Steve Rodriguez, 9-Sep-2007.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ring0cl.1 | ⊢ 𝐺 = (1st ‘𝑅) |
ring0cl.2 | ⊢ 𝑋 = ran 𝐺 |
ring0cl.3 | ⊢ 𝑍 = (GId‘𝐺) |
Ref | Expression |
---|---|
rngo0cl | ⊢ (𝑅 ∈ RingOps → 𝑍 ∈ 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ring0cl.1 | . . 3 ⊢ 𝐺 = (1st ‘𝑅) | |
2 | 1 | rngogrpo 37094 | . 2 ⊢ (𝑅 ∈ RingOps → 𝐺 ∈ GrpOp) |
3 | ring0cl.2 | . . 3 ⊢ 𝑋 = ran 𝐺 | |
4 | ring0cl.3 | . . 3 ⊢ 𝑍 = (GId‘𝐺) | |
5 | 3, 4 | grpoidcl 30049 | . 2 ⊢ (𝐺 ∈ GrpOp → 𝑍 ∈ 𝑋) |
6 | 2, 5 | syl 17 | 1 ⊢ (𝑅 ∈ RingOps → 𝑍 ∈ 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2105 ran crn 5677 ‘cfv 6543 1st c1st 7977 GrpOpcgr 30024 GIdcgi 30025 RingOpscrngo 37078 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pr 5427 ax-un 7729 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-fo 6549 df-fv 6551 df-riota 7368 df-ov 7415 df-1st 7979 df-2nd 7980 df-grpo 30028 df-gid 30029 df-ablo 30080 df-rngo 37079 |
This theorem is referenced by: rngolz 37106 rngorz 37107 rngosn6 37110 rngoueqz 37124 rngoidl 37208 0idl 37209 keridl 37216 prnc 37251 isdmn3 37258 |
Copyright terms: Public domain | W3C validator |