![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > rprmcl | Structured version Visualization version GIF version |
Description: A ring prime is an element of the base set. (Contributed by Thierry Arnoux, 18-May-2025.) |
Ref | Expression |
---|---|
rprmcl.b | ⊢ 𝐵 = (Base‘𝑅) |
rprmcl.p | ⊢ 𝑃 = (RPrime‘𝑅) |
rprmcl.r | ⊢ (𝜑 → 𝑅 ∈ 𝑉) |
rprmcl.x | ⊢ (𝜑 → 𝑋 ∈ 𝑃) |
Ref | Expression |
---|---|
rprmcl | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rprmcl.r | . 2 ⊢ (𝜑 → 𝑅 ∈ 𝑉) | |
2 | rprmcl.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝑃) | |
3 | rprmcl.p | . . 3 ⊢ 𝑃 = (RPrime‘𝑅) | |
4 | 2, 3 | eleqtrdi 2854 | . 2 ⊢ (𝜑 → 𝑋 ∈ (RPrime‘𝑅)) |
5 | rprmcl.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑅) | |
6 | eqid 2740 | . . . . 5 ⊢ (Unit‘𝑅) = (Unit‘𝑅) | |
7 | eqid 2740 | . . . . 5 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
8 | eqid 2740 | . . . . 5 ⊢ (∥r‘𝑅) = (∥r‘𝑅) | |
9 | eqid 2740 | . . . . 5 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
10 | 5, 6, 7, 8, 9 | isrprm 33510 | . . . 4 ⊢ (𝑅 ∈ 𝑉 → (𝑋 ∈ (RPrime‘𝑅) ↔ (𝑋 ∈ (𝐵 ∖ ((Unit‘𝑅) ∪ {(0g‘𝑅)})) ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑋(∥r‘𝑅)(𝑥(.r‘𝑅)𝑦) → (𝑋(∥r‘𝑅)𝑥 ∨ 𝑋(∥r‘𝑅)𝑦))))) |
11 | 10 | simprbda 498 | . . 3 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑋 ∈ (RPrime‘𝑅)) → 𝑋 ∈ (𝐵 ∖ ((Unit‘𝑅) ∪ {(0g‘𝑅)}))) |
12 | 11 | eldifad 3988 | . 2 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑋 ∈ (RPrime‘𝑅)) → 𝑋 ∈ 𝐵) |
13 | 1, 4, 12 | syl2anc 583 | 1 ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∨ wo 846 = wceq 1537 ∈ wcel 2108 ∀wral 3067 ∖ cdif 3973 ∪ cun 3974 {csn 4648 class class class wbr 5166 ‘cfv 6573 (class class class)co 7448 Basecbs 17258 .rcmulr 17312 0gc0g 17499 ∥rcdsr 20380 Unitcui 20381 RPrimecrpm 20458 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-iota 6525 df-fun 6575 df-fv 6581 df-ov 7451 df-rprm 20459 |
This theorem is referenced by: rsprprmprmidl 33515 rprmasso 33518 rprmasso2 33519 rprmasso3 33520 unitmulrprm 33521 rprmirred 33524 1arithidomlem1 33528 1arithidomlem2 33529 1arithidom 33530 1arithufdlem1 33537 1arithufdlem2 33538 1arithufdlem3 33539 1arithufdlem4 33540 dfufd2lem 33542 |
Copyright terms: Public domain | W3C validator |