| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rprmcl | Structured version Visualization version GIF version | ||
| Description: A ring prime is an element of the base set. (Contributed by Thierry Arnoux, 18-May-2025.) |
| Ref | Expression |
|---|---|
| rprmcl.b | ⊢ 𝐵 = (Base‘𝑅) |
| rprmcl.p | ⊢ 𝑃 = (RPrime‘𝑅) |
| rprmcl.r | ⊢ (𝜑 → 𝑅 ∈ 𝑉) |
| rprmcl.x | ⊢ (𝜑 → 𝑋 ∈ 𝑃) |
| Ref | Expression |
|---|---|
| rprmcl | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rprmcl.r | . 2 ⊢ (𝜑 → 𝑅 ∈ 𝑉) | |
| 2 | rprmcl.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝑃) | |
| 3 | rprmcl.p | . . 3 ⊢ 𝑃 = (RPrime‘𝑅) | |
| 4 | 2, 3 | eleqtrdi 2838 | . 2 ⊢ (𝜑 → 𝑋 ∈ (RPrime‘𝑅)) |
| 5 | rprmcl.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑅) | |
| 6 | eqid 2729 | . . . . 5 ⊢ (Unit‘𝑅) = (Unit‘𝑅) | |
| 7 | eqid 2729 | . . . . 5 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
| 8 | eqid 2729 | . . . . 5 ⊢ (∥r‘𝑅) = (∥r‘𝑅) | |
| 9 | eqid 2729 | . . . . 5 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
| 10 | 5, 6, 7, 8, 9 | isrprm 33488 | . . . 4 ⊢ (𝑅 ∈ 𝑉 → (𝑋 ∈ (RPrime‘𝑅) ↔ (𝑋 ∈ (𝐵 ∖ ((Unit‘𝑅) ∪ {(0g‘𝑅)})) ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑋(∥r‘𝑅)(𝑥(.r‘𝑅)𝑦) → (𝑋(∥r‘𝑅)𝑥 ∨ 𝑋(∥r‘𝑅)𝑦))))) |
| 11 | 10 | simprbda 498 | . . 3 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑋 ∈ (RPrime‘𝑅)) → 𝑋 ∈ (𝐵 ∖ ((Unit‘𝑅) ∪ {(0g‘𝑅)}))) |
| 12 | 11 | eldifad 3926 | . 2 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑋 ∈ (RPrime‘𝑅)) → 𝑋 ∈ 𝐵) |
| 13 | 1, 4, 12 | syl2anc 584 | 1 ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∨ wo 847 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ∖ cdif 3911 ∪ cun 3912 {csn 4589 class class class wbr 5107 ‘cfv 6511 (class class class)co 7387 Basecbs 17179 .rcmulr 17221 0gc0g 17402 ∥rcdsr 20263 Unitcui 20264 RPrimecrpm 20341 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-iota 6464 df-fun 6513 df-fv 6519 df-ov 7390 df-rprm 20342 |
| This theorem is referenced by: rsprprmprmidl 33493 rprmasso 33496 rprmasso2 33497 rprmasso3 33498 unitmulrprm 33499 rprmirred 33502 1arithidomlem1 33506 1arithidomlem2 33507 1arithidom 33508 1arithufdlem1 33515 1arithufdlem2 33516 1arithufdlem3 33517 1arithufdlem4 33518 dfufd2lem 33520 |
| Copyright terms: Public domain | W3C validator |