![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > rprmcl | Structured version Visualization version GIF version |
Description: A ring prime is an element of the base set. (Contributed by Thierry Arnoux, 18-May-2025.) |
Ref | Expression |
---|---|
rprmcl.b | ⊢ 𝐵 = (Base‘𝑅) |
rprmcl.p | ⊢ 𝑃 = (RPrime‘𝑅) |
rprmcl.r | ⊢ (𝜑 → 𝑅 ∈ 𝑉) |
rprmcl.x | ⊢ (𝜑 → 𝑋 ∈ 𝑃) |
Ref | Expression |
---|---|
rprmcl | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rprmcl.r | . 2 ⊢ (𝜑 → 𝑅 ∈ 𝑉) | |
2 | rprmcl.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝑃) | |
3 | rprmcl.p | . . 3 ⊢ 𝑃 = (RPrime‘𝑅) | |
4 | 2, 3 | eleqtrdi 2836 | . 2 ⊢ (𝜑 → 𝑋 ∈ (RPrime‘𝑅)) |
5 | rprmcl.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑅) | |
6 | eqid 2726 | . . . . 5 ⊢ (Unit‘𝑅) = (Unit‘𝑅) | |
7 | eqid 2726 | . . . . 5 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
8 | eqid 2726 | . . . . 5 ⊢ (∥r‘𝑅) = (∥r‘𝑅) | |
9 | eqid 2726 | . . . . 5 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
10 | 5, 6, 7, 8, 9 | isrprm 33397 | . . . 4 ⊢ (𝑅 ∈ 𝑉 → (𝑋 ∈ (RPrime‘𝑅) ↔ (𝑋 ∈ (𝐵 ∖ ((Unit‘𝑅) ∪ {(0g‘𝑅)})) ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑋(∥r‘𝑅)(𝑥(.r‘𝑅)𝑦) → (𝑋(∥r‘𝑅)𝑥 ∨ 𝑋(∥r‘𝑅)𝑦))))) |
11 | 10 | simprbda 497 | . . 3 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑋 ∈ (RPrime‘𝑅)) → 𝑋 ∈ (𝐵 ∖ ((Unit‘𝑅) ∪ {(0g‘𝑅)}))) |
12 | 11 | eldifad 3960 | . 2 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑋 ∈ (RPrime‘𝑅)) → 𝑋 ∈ 𝐵) |
13 | 1, 4, 12 | syl2anc 582 | 1 ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 ∨ wo 845 = wceq 1534 ∈ wcel 2099 ∀wral 3051 ∖ cdif 3945 ∪ cun 3946 {csn 4625 class class class wbr 5145 ‘cfv 6545 (class class class)co 7415 Basecbs 17207 .rcmulr 17261 0gc0g 17448 ∥rcdsr 20331 Unitcui 20332 RPrimecrpm 20409 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-sep 5296 ax-nul 5303 ax-pr 5425 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-ral 3052 df-rex 3061 df-rab 3421 df-v 3466 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4325 df-if 4526 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4908 df-br 5146 df-opab 5208 df-mpt 5229 df-id 5572 df-xp 5680 df-rel 5681 df-cnv 5682 df-co 5683 df-dm 5684 df-iota 6497 df-fun 6547 df-fv 6553 df-ov 7418 df-rprm 20410 |
This theorem is referenced by: rsprprmprmidl 33402 rprmasso 33405 rprmasso2 33406 rprmasso3 33407 unitmulrprm 33408 rprmirred 33411 1arithidomlem1 33415 1arithidomlem2 33416 1arithidom 33417 1arithufdlem1 33424 1arithufdlem2 33425 1arithufdlem3 33426 1arithufdlem4 33427 dfufd2lem 33429 |
Copyright terms: Public domain | W3C validator |