| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rprmcl | Structured version Visualization version GIF version | ||
| Description: A ring prime is an element of the base set. (Contributed by Thierry Arnoux, 18-May-2025.) |
| Ref | Expression |
|---|---|
| rprmcl.b | ⊢ 𝐵 = (Base‘𝑅) |
| rprmcl.p | ⊢ 𝑃 = (RPrime‘𝑅) |
| rprmcl.r | ⊢ (𝜑 → 𝑅 ∈ 𝑉) |
| rprmcl.x | ⊢ (𝜑 → 𝑋 ∈ 𝑃) |
| Ref | Expression |
|---|---|
| rprmcl | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rprmcl.r | . 2 ⊢ (𝜑 → 𝑅 ∈ 𝑉) | |
| 2 | rprmcl.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝑃) | |
| 3 | rprmcl.p | . . 3 ⊢ 𝑃 = (RPrime‘𝑅) | |
| 4 | 2, 3 | eleqtrdi 2841 | . 2 ⊢ (𝜑 → 𝑋 ∈ (RPrime‘𝑅)) |
| 5 | rprmcl.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑅) | |
| 6 | eqid 2731 | . . . . 5 ⊢ (Unit‘𝑅) = (Unit‘𝑅) | |
| 7 | eqid 2731 | . . . . 5 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
| 8 | eqid 2731 | . . . . 5 ⊢ (∥r‘𝑅) = (∥r‘𝑅) | |
| 9 | eqid 2731 | . . . . 5 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
| 10 | 5, 6, 7, 8, 9 | isrprm 33482 | . . . 4 ⊢ (𝑅 ∈ 𝑉 → (𝑋 ∈ (RPrime‘𝑅) ↔ (𝑋 ∈ (𝐵 ∖ ((Unit‘𝑅) ∪ {(0g‘𝑅)})) ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑋(∥r‘𝑅)(𝑥(.r‘𝑅)𝑦) → (𝑋(∥r‘𝑅)𝑥 ∨ 𝑋(∥r‘𝑅)𝑦))))) |
| 11 | 10 | simprbda 498 | . . 3 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑋 ∈ (RPrime‘𝑅)) → 𝑋 ∈ (𝐵 ∖ ((Unit‘𝑅) ∪ {(0g‘𝑅)}))) |
| 12 | 11 | eldifad 3909 | . 2 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑋 ∈ (RPrime‘𝑅)) → 𝑋 ∈ 𝐵) |
| 13 | 1, 4, 12 | syl2anc 584 | 1 ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∨ wo 847 = wceq 1541 ∈ wcel 2111 ∀wral 3047 ∖ cdif 3894 ∪ cun 3895 {csn 4573 class class class wbr 5089 ‘cfv 6481 (class class class)co 7346 Basecbs 17120 .rcmulr 17162 0gc0g 17343 ∥rcdsr 20272 Unitcui 20273 RPrimecrpm 20350 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-iota 6437 df-fun 6483 df-fv 6489 df-ov 7349 df-rprm 20351 |
| This theorem is referenced by: rsprprmprmidl 33487 rprmasso 33490 rprmasso2 33491 rprmasso3 33492 unitmulrprm 33493 rprmirred 33496 1arithidomlem1 33500 1arithidomlem2 33501 1arithidom 33502 1arithufdlem1 33509 1arithufdlem2 33510 1arithufdlem3 33511 1arithufdlem4 33512 dfufd2lem 33514 |
| Copyright terms: Public domain | W3C validator |