MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ofs1 Structured version   Visualization version   GIF version

Theorem ofs1 14681
Description: Letterwise operations on a single letter word. (Contributed by Thierry Arnoux, 7-Oct-2018.)
Assertion
Ref Expression
ofs1 ((𝐴𝑆𝐵𝑇) → (⟨“𝐴”⟩ ∘f 𝑅⟨“𝐵”⟩) = ⟨“(𝐴𝑅𝐵)”⟩)

Proof of Theorem ofs1
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 snex 5354 . . . 4 {0} ∈ V
21a1i 11 . . 3 ((𝐴𝑆𝐵𝑇) → {0} ∈ V)
3 simpll 764 . . 3 (((𝐴𝑆𝐵𝑇) ∧ 𝑖 ∈ {0}) → 𝐴𝑆)
4 simplr 766 . . 3 (((𝐴𝑆𝐵𝑇) ∧ 𝑖 ∈ {0}) → 𝐵𝑇)
5 s1val 14303 . . . . 5 (𝐴𝑆 → ⟨“𝐴”⟩ = {⟨0, 𝐴⟩})
6 0nn0 12248 . . . . . 6 0 ∈ ℕ0
7 fmptsn 7039 . . . . . 6 ((0 ∈ ℕ0𝐴𝑆) → {⟨0, 𝐴⟩} = (𝑖 ∈ {0} ↦ 𝐴))
86, 7mpan 687 . . . . 5 (𝐴𝑆 → {⟨0, 𝐴⟩} = (𝑖 ∈ {0} ↦ 𝐴))
95, 8eqtrd 2778 . . . 4 (𝐴𝑆 → ⟨“𝐴”⟩ = (𝑖 ∈ {0} ↦ 𝐴))
109adantr 481 . . 3 ((𝐴𝑆𝐵𝑇) → ⟨“𝐴”⟩ = (𝑖 ∈ {0} ↦ 𝐴))
11 s1val 14303 . . . . 5 (𝐵𝑇 → ⟨“𝐵”⟩ = {⟨0, 𝐵⟩})
12 fmptsn 7039 . . . . . 6 ((0 ∈ ℕ0𝐵𝑇) → {⟨0, 𝐵⟩} = (𝑖 ∈ {0} ↦ 𝐵))
136, 12mpan 687 . . . . 5 (𝐵𝑇 → {⟨0, 𝐵⟩} = (𝑖 ∈ {0} ↦ 𝐵))
1411, 13eqtrd 2778 . . . 4 (𝐵𝑇 → ⟨“𝐵”⟩ = (𝑖 ∈ {0} ↦ 𝐵))
1514adantl 482 . . 3 ((𝐴𝑆𝐵𝑇) → ⟨“𝐵”⟩ = (𝑖 ∈ {0} ↦ 𝐵))
162, 3, 4, 10, 15offval2 7553 . 2 ((𝐴𝑆𝐵𝑇) → (⟨“𝐴”⟩ ∘f 𝑅⟨“𝐵”⟩) = (𝑖 ∈ {0} ↦ (𝐴𝑅𝐵)))
17 ovex 7308 . . . 4 (𝐴𝑅𝐵) ∈ V
18 s1val 14303 . . . 4 ((𝐴𝑅𝐵) ∈ V → ⟨“(𝐴𝑅𝐵)”⟩ = {⟨0, (𝐴𝑅𝐵)⟩})
1917, 18ax-mp 5 . . 3 ⟨“(𝐴𝑅𝐵)”⟩ = {⟨0, (𝐴𝑅𝐵)⟩}
20 fmptsn 7039 . . . 4 ((0 ∈ ℕ0 ∧ (𝐴𝑅𝐵) ∈ V) → {⟨0, (𝐴𝑅𝐵)⟩} = (𝑖 ∈ {0} ↦ (𝐴𝑅𝐵)))
216, 17, 20mp2an 689 . . 3 {⟨0, (𝐴𝑅𝐵)⟩} = (𝑖 ∈ {0} ↦ (𝐴𝑅𝐵))
2219, 21eqtri 2766 . 2 ⟨“(𝐴𝑅𝐵)”⟩ = (𝑖 ∈ {0} ↦ (𝐴𝑅𝐵))
2316, 22eqtr4di 2796 1 ((𝐴𝑆𝐵𝑇) → (⟨“𝐴”⟩ ∘f 𝑅⟨“𝐵”⟩) = ⟨“(𝐴𝑅𝐵)”⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  Vcvv 3432  {csn 4561  cop 4567  cmpt 5157  (class class class)co 7275  f cof 7531  0cc0 10871  0cn0 12233  ⟨“cs1 14300
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pr 5352  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-mulcl 10933  ax-i2m1 10939
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-of 7533  df-n0 12234  df-s1 14301
This theorem is referenced by:  ofs2  14682
  Copyright terms: Public domain W3C validator