| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ofs1 | Structured version Visualization version GIF version | ||
| Description: Letterwise operations on a single letter word. (Contributed by Thierry Arnoux, 7-Oct-2018.) |
| Ref | Expression |
|---|---|
| ofs1 | ⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑇) → (〈“𝐴”〉 ∘f 𝑅〈“𝐵”〉) = 〈“(𝐴𝑅𝐵)”〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | snex 5376 | . . . 4 ⊢ {0} ∈ V | |
| 2 | 1 | a1i 11 | . . 3 ⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑇) → {0} ∈ V) |
| 3 | simpll 766 | . . 3 ⊢ (((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑇) ∧ 𝑖 ∈ {0}) → 𝐴 ∈ 𝑆) | |
| 4 | simplr 768 | . . 3 ⊢ (((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑇) ∧ 𝑖 ∈ {0}) → 𝐵 ∈ 𝑇) | |
| 5 | s1val 14508 | . . . . 5 ⊢ (𝐴 ∈ 𝑆 → 〈“𝐴”〉 = {〈0, 𝐴〉}) | |
| 6 | 0nn0 12403 | . . . . . 6 ⊢ 0 ∈ ℕ0 | |
| 7 | fmptsn 7107 | . . . . . 6 ⊢ ((0 ∈ ℕ0 ∧ 𝐴 ∈ 𝑆) → {〈0, 𝐴〉} = (𝑖 ∈ {0} ↦ 𝐴)) | |
| 8 | 6, 7 | mpan 690 | . . . . 5 ⊢ (𝐴 ∈ 𝑆 → {〈0, 𝐴〉} = (𝑖 ∈ {0} ↦ 𝐴)) |
| 9 | 5, 8 | eqtrd 2768 | . . . 4 ⊢ (𝐴 ∈ 𝑆 → 〈“𝐴”〉 = (𝑖 ∈ {0} ↦ 𝐴)) |
| 10 | 9 | adantr 480 | . . 3 ⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑇) → 〈“𝐴”〉 = (𝑖 ∈ {0} ↦ 𝐴)) |
| 11 | s1val 14508 | . . . . 5 ⊢ (𝐵 ∈ 𝑇 → 〈“𝐵”〉 = {〈0, 𝐵〉}) | |
| 12 | fmptsn 7107 | . . . . . 6 ⊢ ((0 ∈ ℕ0 ∧ 𝐵 ∈ 𝑇) → {〈0, 𝐵〉} = (𝑖 ∈ {0} ↦ 𝐵)) | |
| 13 | 6, 12 | mpan 690 | . . . . 5 ⊢ (𝐵 ∈ 𝑇 → {〈0, 𝐵〉} = (𝑖 ∈ {0} ↦ 𝐵)) |
| 14 | 11, 13 | eqtrd 2768 | . . . 4 ⊢ (𝐵 ∈ 𝑇 → 〈“𝐵”〉 = (𝑖 ∈ {0} ↦ 𝐵)) |
| 15 | 14 | adantl 481 | . . 3 ⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑇) → 〈“𝐵”〉 = (𝑖 ∈ {0} ↦ 𝐵)) |
| 16 | 2, 3, 4, 10, 15 | offval2 7636 | . 2 ⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑇) → (〈“𝐴”〉 ∘f 𝑅〈“𝐵”〉) = (𝑖 ∈ {0} ↦ (𝐴𝑅𝐵))) |
| 17 | ovex 7385 | . . . 4 ⊢ (𝐴𝑅𝐵) ∈ V | |
| 18 | s1val 14508 | . . . 4 ⊢ ((𝐴𝑅𝐵) ∈ V → 〈“(𝐴𝑅𝐵)”〉 = {〈0, (𝐴𝑅𝐵)〉}) | |
| 19 | 17, 18 | ax-mp 5 | . . 3 ⊢ 〈“(𝐴𝑅𝐵)”〉 = {〈0, (𝐴𝑅𝐵)〉} |
| 20 | fmptsn 7107 | . . . 4 ⊢ ((0 ∈ ℕ0 ∧ (𝐴𝑅𝐵) ∈ V) → {〈0, (𝐴𝑅𝐵)〉} = (𝑖 ∈ {0} ↦ (𝐴𝑅𝐵))) | |
| 21 | 6, 17, 20 | mp2an 692 | . . 3 ⊢ {〈0, (𝐴𝑅𝐵)〉} = (𝑖 ∈ {0} ↦ (𝐴𝑅𝐵)) |
| 22 | 19, 21 | eqtri 2756 | . 2 ⊢ 〈“(𝐴𝑅𝐵)”〉 = (𝑖 ∈ {0} ↦ (𝐴𝑅𝐵)) |
| 23 | 16, 22 | eqtr4di 2786 | 1 ⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑇) → (〈“𝐴”〉 ∘f 𝑅〈“𝐵”〉) = 〈“(𝐴𝑅𝐵)”〉) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 Vcvv 3437 {csn 4575 〈cop 4581 ↦ cmpt 5174 (class class class)co 7352 ∘f cof 7614 0cc0 11013 ℕ0cn0 12388 〈“cs1 14505 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pr 5372 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-mulcl 11075 ax-i2m1 11081 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7355 df-oprab 7356 df-mpo 7357 df-of 7616 df-n0 12389 df-s1 14506 |
| This theorem is referenced by: ofs2 14880 1arithidomlem2 33508 |
| Copyright terms: Public domain | W3C validator |