![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ofs1 | Structured version Visualization version GIF version |
Description: Letterwise operations on a single letter word. (Contributed by Thierry Arnoux, 7-Oct-2018.) |
Ref | Expression |
---|---|
ofs1 | ⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑇) → (⟨“𝐴”⟩ ∘f 𝑅⟨“𝐵”⟩) = ⟨“(𝐴𝑅𝐵)”⟩) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snex 5430 | . . . 4 ⊢ {0} ∈ V | |
2 | 1 | a1i 11 | . . 3 ⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑇) → {0} ∈ V) |
3 | simpll 763 | . . 3 ⊢ (((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑇) ∧ 𝑖 ∈ {0}) → 𝐴 ∈ 𝑆) | |
4 | simplr 765 | . . 3 ⊢ (((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑇) ∧ 𝑖 ∈ {0}) → 𝐵 ∈ 𝑇) | |
5 | s1val 14552 | . . . . 5 ⊢ (𝐴 ∈ 𝑆 → ⟨“𝐴”⟩ = {⟨0, 𝐴⟩}) | |
6 | 0nn0 12491 | . . . . . 6 ⊢ 0 ∈ ℕ0 | |
7 | fmptsn 7166 | . . . . . 6 ⊢ ((0 ∈ ℕ0 ∧ 𝐴 ∈ 𝑆) → {⟨0, 𝐴⟩} = (𝑖 ∈ {0} ↦ 𝐴)) | |
8 | 6, 7 | mpan 686 | . . . . 5 ⊢ (𝐴 ∈ 𝑆 → {⟨0, 𝐴⟩} = (𝑖 ∈ {0} ↦ 𝐴)) |
9 | 5, 8 | eqtrd 2770 | . . . 4 ⊢ (𝐴 ∈ 𝑆 → ⟨“𝐴”⟩ = (𝑖 ∈ {0} ↦ 𝐴)) |
10 | 9 | adantr 479 | . . 3 ⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑇) → ⟨“𝐴”⟩ = (𝑖 ∈ {0} ↦ 𝐴)) |
11 | s1val 14552 | . . . . 5 ⊢ (𝐵 ∈ 𝑇 → ⟨“𝐵”⟩ = {⟨0, 𝐵⟩}) | |
12 | fmptsn 7166 | . . . . . 6 ⊢ ((0 ∈ ℕ0 ∧ 𝐵 ∈ 𝑇) → {⟨0, 𝐵⟩} = (𝑖 ∈ {0} ↦ 𝐵)) | |
13 | 6, 12 | mpan 686 | . . . . 5 ⊢ (𝐵 ∈ 𝑇 → {⟨0, 𝐵⟩} = (𝑖 ∈ {0} ↦ 𝐵)) |
14 | 11, 13 | eqtrd 2770 | . . . 4 ⊢ (𝐵 ∈ 𝑇 → ⟨“𝐵”⟩ = (𝑖 ∈ {0} ↦ 𝐵)) |
15 | 14 | adantl 480 | . . 3 ⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑇) → ⟨“𝐵”⟩ = (𝑖 ∈ {0} ↦ 𝐵)) |
16 | 2, 3, 4, 10, 15 | offval2 7692 | . 2 ⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑇) → (⟨“𝐴”⟩ ∘f 𝑅⟨“𝐵”⟩) = (𝑖 ∈ {0} ↦ (𝐴𝑅𝐵))) |
17 | ovex 7444 | . . . 4 ⊢ (𝐴𝑅𝐵) ∈ V | |
18 | s1val 14552 | . . . 4 ⊢ ((𝐴𝑅𝐵) ∈ V → ⟨“(𝐴𝑅𝐵)”⟩ = {⟨0, (𝐴𝑅𝐵)⟩}) | |
19 | 17, 18 | ax-mp 5 | . . 3 ⊢ ⟨“(𝐴𝑅𝐵)”⟩ = {⟨0, (𝐴𝑅𝐵)⟩} |
20 | fmptsn 7166 | . . . 4 ⊢ ((0 ∈ ℕ0 ∧ (𝐴𝑅𝐵) ∈ V) → {⟨0, (𝐴𝑅𝐵)⟩} = (𝑖 ∈ {0} ↦ (𝐴𝑅𝐵))) | |
21 | 6, 17, 20 | mp2an 688 | . . 3 ⊢ {⟨0, (𝐴𝑅𝐵)⟩} = (𝑖 ∈ {0} ↦ (𝐴𝑅𝐵)) |
22 | 19, 21 | eqtri 2758 | . 2 ⊢ ⟨“(𝐴𝑅𝐵)”⟩ = (𝑖 ∈ {0} ↦ (𝐴𝑅𝐵)) |
23 | 16, 22 | eqtr4di 2788 | 1 ⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑇) → (⟨“𝐴”⟩ ∘f 𝑅⟨“𝐵”⟩) = ⟨“(𝐴𝑅𝐵)”⟩) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1539 ∈ wcel 2104 Vcvv 3472 {csn 4627 ⟨cop 4633 ↦ cmpt 5230 (class class class)co 7411 ∘f cof 7670 0cc0 11112 ℕ0cn0 12476 ⟨“cs1 14549 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pr 5426 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-mulcl 11174 ax-i2m1 11180 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-ral 3060 df-rex 3069 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-ov 7414 df-oprab 7415 df-mpo 7416 df-of 7672 df-n0 12477 df-s1 14550 |
This theorem is referenced by: ofs2 14922 |
Copyright terms: Public domain | W3C validator |