![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ofs1 | Structured version Visualization version GIF version |
Description: Letterwise operations on a single letter word. (Contributed by Thierry Arnoux, 7-Oct-2018.) |
Ref | Expression |
---|---|
ofs1 | ⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑇) → (〈“𝐴”〉 ∘f 𝑅〈“𝐵”〉) = 〈“(𝐴𝑅𝐵)”〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snex 5451 | . . . 4 ⊢ {0} ∈ V | |
2 | 1 | a1i 11 | . . 3 ⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑇) → {0} ∈ V) |
3 | simpll 766 | . . 3 ⊢ (((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑇) ∧ 𝑖 ∈ {0}) → 𝐴 ∈ 𝑆) | |
4 | simplr 768 | . . 3 ⊢ (((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑇) ∧ 𝑖 ∈ {0}) → 𝐵 ∈ 𝑇) | |
5 | s1val 14646 | . . . . 5 ⊢ (𝐴 ∈ 𝑆 → 〈“𝐴”〉 = {〈0, 𝐴〉}) | |
6 | 0nn0 12568 | . . . . . 6 ⊢ 0 ∈ ℕ0 | |
7 | fmptsn 7201 | . . . . . 6 ⊢ ((0 ∈ ℕ0 ∧ 𝐴 ∈ 𝑆) → {〈0, 𝐴〉} = (𝑖 ∈ {0} ↦ 𝐴)) | |
8 | 6, 7 | mpan 689 | . . . . 5 ⊢ (𝐴 ∈ 𝑆 → {〈0, 𝐴〉} = (𝑖 ∈ {0} ↦ 𝐴)) |
9 | 5, 8 | eqtrd 2780 | . . . 4 ⊢ (𝐴 ∈ 𝑆 → 〈“𝐴”〉 = (𝑖 ∈ {0} ↦ 𝐴)) |
10 | 9 | adantr 480 | . . 3 ⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑇) → 〈“𝐴”〉 = (𝑖 ∈ {0} ↦ 𝐴)) |
11 | s1val 14646 | . . . . 5 ⊢ (𝐵 ∈ 𝑇 → 〈“𝐵”〉 = {〈0, 𝐵〉}) | |
12 | fmptsn 7201 | . . . . . 6 ⊢ ((0 ∈ ℕ0 ∧ 𝐵 ∈ 𝑇) → {〈0, 𝐵〉} = (𝑖 ∈ {0} ↦ 𝐵)) | |
13 | 6, 12 | mpan 689 | . . . . 5 ⊢ (𝐵 ∈ 𝑇 → {〈0, 𝐵〉} = (𝑖 ∈ {0} ↦ 𝐵)) |
14 | 11, 13 | eqtrd 2780 | . . . 4 ⊢ (𝐵 ∈ 𝑇 → 〈“𝐵”〉 = (𝑖 ∈ {0} ↦ 𝐵)) |
15 | 14 | adantl 481 | . . 3 ⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑇) → 〈“𝐵”〉 = (𝑖 ∈ {0} ↦ 𝐵)) |
16 | 2, 3, 4, 10, 15 | offval2 7734 | . 2 ⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑇) → (〈“𝐴”〉 ∘f 𝑅〈“𝐵”〉) = (𝑖 ∈ {0} ↦ (𝐴𝑅𝐵))) |
17 | ovex 7481 | . . . 4 ⊢ (𝐴𝑅𝐵) ∈ V | |
18 | s1val 14646 | . . . 4 ⊢ ((𝐴𝑅𝐵) ∈ V → 〈“(𝐴𝑅𝐵)”〉 = {〈0, (𝐴𝑅𝐵)〉}) | |
19 | 17, 18 | ax-mp 5 | . . 3 ⊢ 〈“(𝐴𝑅𝐵)”〉 = {〈0, (𝐴𝑅𝐵)〉} |
20 | fmptsn 7201 | . . . 4 ⊢ ((0 ∈ ℕ0 ∧ (𝐴𝑅𝐵) ∈ V) → {〈0, (𝐴𝑅𝐵)〉} = (𝑖 ∈ {0} ↦ (𝐴𝑅𝐵))) | |
21 | 6, 17, 20 | mp2an 691 | . . 3 ⊢ {〈0, (𝐴𝑅𝐵)〉} = (𝑖 ∈ {0} ↦ (𝐴𝑅𝐵)) |
22 | 19, 21 | eqtri 2768 | . 2 ⊢ 〈“(𝐴𝑅𝐵)”〉 = (𝑖 ∈ {0} ↦ (𝐴𝑅𝐵)) |
23 | 16, 22 | eqtr4di 2798 | 1 ⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑇) → (〈“𝐴”〉 ∘f 𝑅〈“𝐵”〉) = 〈“(𝐴𝑅𝐵)”〉) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 Vcvv 3488 {csn 4648 〈cop 4654 ↦ cmpt 5249 (class class class)co 7448 ∘f cof 7712 0cc0 11184 ℕ0cn0 12553 〈“cs1 14643 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-mulcl 11246 ax-i2m1 11252 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-of 7714 df-n0 12554 df-s1 14644 |
This theorem is referenced by: ofs2 15020 1arithidomlem2 33529 |
Copyright terms: Public domain | W3C validator |