MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ofs1 Structured version   Visualization version   GIF version

Theorem ofs1 15009
Description: Letterwise operations on a single letter word. (Contributed by Thierry Arnoux, 7-Oct-2018.)
Assertion
Ref Expression
ofs1 ((𝐴𝑆𝐵𝑇) → (⟨“𝐴”⟩ ∘f 𝑅⟨“𝐵”⟩) = ⟨“(𝐴𝑅𝐵)”⟩)

Proof of Theorem ofs1
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 snex 5436 . . . 4 {0} ∈ V
21a1i 11 . . 3 ((𝐴𝑆𝐵𝑇) → {0} ∈ V)
3 simpll 767 . . 3 (((𝐴𝑆𝐵𝑇) ∧ 𝑖 ∈ {0}) → 𝐴𝑆)
4 simplr 769 . . 3 (((𝐴𝑆𝐵𝑇) ∧ 𝑖 ∈ {0}) → 𝐵𝑇)
5 s1val 14636 . . . . 5 (𝐴𝑆 → ⟨“𝐴”⟩ = {⟨0, 𝐴⟩})
6 0nn0 12541 . . . . . 6 0 ∈ ℕ0
7 fmptsn 7187 . . . . . 6 ((0 ∈ ℕ0𝐴𝑆) → {⟨0, 𝐴⟩} = (𝑖 ∈ {0} ↦ 𝐴))
86, 7mpan 690 . . . . 5 (𝐴𝑆 → {⟨0, 𝐴⟩} = (𝑖 ∈ {0} ↦ 𝐴))
95, 8eqtrd 2777 . . . 4 (𝐴𝑆 → ⟨“𝐴”⟩ = (𝑖 ∈ {0} ↦ 𝐴))
109adantr 480 . . 3 ((𝐴𝑆𝐵𝑇) → ⟨“𝐴”⟩ = (𝑖 ∈ {0} ↦ 𝐴))
11 s1val 14636 . . . . 5 (𝐵𝑇 → ⟨“𝐵”⟩ = {⟨0, 𝐵⟩})
12 fmptsn 7187 . . . . . 6 ((0 ∈ ℕ0𝐵𝑇) → {⟨0, 𝐵⟩} = (𝑖 ∈ {0} ↦ 𝐵))
136, 12mpan 690 . . . . 5 (𝐵𝑇 → {⟨0, 𝐵⟩} = (𝑖 ∈ {0} ↦ 𝐵))
1411, 13eqtrd 2777 . . . 4 (𝐵𝑇 → ⟨“𝐵”⟩ = (𝑖 ∈ {0} ↦ 𝐵))
1514adantl 481 . . 3 ((𝐴𝑆𝐵𝑇) → ⟨“𝐵”⟩ = (𝑖 ∈ {0} ↦ 𝐵))
162, 3, 4, 10, 15offval2 7717 . 2 ((𝐴𝑆𝐵𝑇) → (⟨“𝐴”⟩ ∘f 𝑅⟨“𝐵”⟩) = (𝑖 ∈ {0} ↦ (𝐴𝑅𝐵)))
17 ovex 7464 . . . 4 (𝐴𝑅𝐵) ∈ V
18 s1val 14636 . . . 4 ((𝐴𝑅𝐵) ∈ V → ⟨“(𝐴𝑅𝐵)”⟩ = {⟨0, (𝐴𝑅𝐵)⟩})
1917, 18ax-mp 5 . . 3 ⟨“(𝐴𝑅𝐵)”⟩ = {⟨0, (𝐴𝑅𝐵)⟩}
20 fmptsn 7187 . . . 4 ((0 ∈ ℕ0 ∧ (𝐴𝑅𝐵) ∈ V) → {⟨0, (𝐴𝑅𝐵)⟩} = (𝑖 ∈ {0} ↦ (𝐴𝑅𝐵)))
216, 17, 20mp2an 692 . . 3 {⟨0, (𝐴𝑅𝐵)⟩} = (𝑖 ∈ {0} ↦ (𝐴𝑅𝐵))
2219, 21eqtri 2765 . 2 ⟨“(𝐴𝑅𝐵)”⟩ = (𝑖 ∈ {0} ↦ (𝐴𝑅𝐵))
2316, 22eqtr4di 2795 1 ((𝐴𝑆𝐵𝑇) → (⟨“𝐴”⟩ ∘f 𝑅⟨“𝐵”⟩) = ⟨“(𝐴𝑅𝐵)”⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  Vcvv 3480  {csn 4626  cop 4632  cmpt 5225  (class class class)co 7431  f cof 7695  0cc0 11155  0cn0 12526  ⟨“cs1 14633
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pr 5432  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-mulcl 11217  ax-i2m1 11223
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-n0 12527  df-s1 14634
This theorem is referenced by:  ofs2  15010  1arithidomlem2  33564
  Copyright terms: Public domain W3C validator