| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ofs1 | Structured version Visualization version GIF version | ||
| Description: Letterwise operations on a single letter word. (Contributed by Thierry Arnoux, 7-Oct-2018.) |
| Ref | Expression |
|---|---|
| ofs1 | ⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑇) → (〈“𝐴”〉 ∘f 𝑅〈“𝐵”〉) = 〈“(𝐴𝑅𝐵)”〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | snex 5378 | . . . 4 ⊢ {0} ∈ V | |
| 2 | 1 | a1i 11 | . . 3 ⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑇) → {0} ∈ V) |
| 3 | simpll 766 | . . 3 ⊢ (((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑇) ∧ 𝑖 ∈ {0}) → 𝐴 ∈ 𝑆) | |
| 4 | simplr 768 | . . 3 ⊢ (((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑇) ∧ 𝑖 ∈ {0}) → 𝐵 ∈ 𝑇) | |
| 5 | s1val 14523 | . . . . 5 ⊢ (𝐴 ∈ 𝑆 → 〈“𝐴”〉 = {〈0, 𝐴〉}) | |
| 6 | 0nn0 12417 | . . . . . 6 ⊢ 0 ∈ ℕ0 | |
| 7 | fmptsn 7107 | . . . . . 6 ⊢ ((0 ∈ ℕ0 ∧ 𝐴 ∈ 𝑆) → {〈0, 𝐴〉} = (𝑖 ∈ {0} ↦ 𝐴)) | |
| 8 | 6, 7 | mpan 690 | . . . . 5 ⊢ (𝐴 ∈ 𝑆 → {〈0, 𝐴〉} = (𝑖 ∈ {0} ↦ 𝐴)) |
| 9 | 5, 8 | eqtrd 2764 | . . . 4 ⊢ (𝐴 ∈ 𝑆 → 〈“𝐴”〉 = (𝑖 ∈ {0} ↦ 𝐴)) |
| 10 | 9 | adantr 480 | . . 3 ⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑇) → 〈“𝐴”〉 = (𝑖 ∈ {0} ↦ 𝐴)) |
| 11 | s1val 14523 | . . . . 5 ⊢ (𝐵 ∈ 𝑇 → 〈“𝐵”〉 = {〈0, 𝐵〉}) | |
| 12 | fmptsn 7107 | . . . . . 6 ⊢ ((0 ∈ ℕ0 ∧ 𝐵 ∈ 𝑇) → {〈0, 𝐵〉} = (𝑖 ∈ {0} ↦ 𝐵)) | |
| 13 | 6, 12 | mpan 690 | . . . . 5 ⊢ (𝐵 ∈ 𝑇 → {〈0, 𝐵〉} = (𝑖 ∈ {0} ↦ 𝐵)) |
| 14 | 11, 13 | eqtrd 2764 | . . . 4 ⊢ (𝐵 ∈ 𝑇 → 〈“𝐵”〉 = (𝑖 ∈ {0} ↦ 𝐵)) |
| 15 | 14 | adantl 481 | . . 3 ⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑇) → 〈“𝐵”〉 = (𝑖 ∈ {0} ↦ 𝐵)) |
| 16 | 2, 3, 4, 10, 15 | offval2 7637 | . 2 ⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑇) → (〈“𝐴”〉 ∘f 𝑅〈“𝐵”〉) = (𝑖 ∈ {0} ↦ (𝐴𝑅𝐵))) |
| 17 | ovex 7386 | . . . 4 ⊢ (𝐴𝑅𝐵) ∈ V | |
| 18 | s1val 14523 | . . . 4 ⊢ ((𝐴𝑅𝐵) ∈ V → 〈“(𝐴𝑅𝐵)”〉 = {〈0, (𝐴𝑅𝐵)〉}) | |
| 19 | 17, 18 | ax-mp 5 | . . 3 ⊢ 〈“(𝐴𝑅𝐵)”〉 = {〈0, (𝐴𝑅𝐵)〉} |
| 20 | fmptsn 7107 | . . . 4 ⊢ ((0 ∈ ℕ0 ∧ (𝐴𝑅𝐵) ∈ V) → {〈0, (𝐴𝑅𝐵)〉} = (𝑖 ∈ {0} ↦ (𝐴𝑅𝐵))) | |
| 21 | 6, 17, 20 | mp2an 692 | . . 3 ⊢ {〈0, (𝐴𝑅𝐵)〉} = (𝑖 ∈ {0} ↦ (𝐴𝑅𝐵)) |
| 22 | 19, 21 | eqtri 2752 | . 2 ⊢ 〈“(𝐴𝑅𝐵)”〉 = (𝑖 ∈ {0} ↦ (𝐴𝑅𝐵)) |
| 23 | 16, 22 | eqtr4di 2782 | 1 ⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑇) → (〈“𝐴”〉 ∘f 𝑅〈“𝐵”〉) = 〈“(𝐴𝑅𝐵)”〉) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3438 {csn 4579 〈cop 4585 ↦ cmpt 5176 (class class class)co 7353 ∘f cof 7615 0cc0 11028 ℕ0cn0 12402 〈“cs1 14520 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pr 5374 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-mulcl 11090 ax-i2m1 11096 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7356 df-oprab 7357 df-mpo 7358 df-of 7617 df-n0 12403 df-s1 14521 |
| This theorem is referenced by: ofs2 14896 1arithidomlem2 33483 |
| Copyright terms: Public domain | W3C validator |