MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ofs1 Structured version   Visualization version   GIF version

Theorem ofs1 14943
Description: Letterwise operations on a single letter word. (Contributed by Thierry Arnoux, 7-Oct-2018.)
Assertion
Ref Expression
ofs1 ((𝐴𝑆𝐵𝑇) → (⟨“𝐴”⟩ ∘f 𝑅⟨“𝐵”⟩) = ⟨“(𝐴𝑅𝐵)”⟩)

Proof of Theorem ofs1
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 snex 5394 . . . 4 {0} ∈ V
21a1i 11 . . 3 ((𝐴𝑆𝐵𝑇) → {0} ∈ V)
3 simpll 766 . . 3 (((𝐴𝑆𝐵𝑇) ∧ 𝑖 ∈ {0}) → 𝐴𝑆)
4 simplr 768 . . 3 (((𝐴𝑆𝐵𝑇) ∧ 𝑖 ∈ {0}) → 𝐵𝑇)
5 s1val 14570 . . . . 5 (𝐴𝑆 → ⟨“𝐴”⟩ = {⟨0, 𝐴⟩})
6 0nn0 12464 . . . . . 6 0 ∈ ℕ0
7 fmptsn 7144 . . . . . 6 ((0 ∈ ℕ0𝐴𝑆) → {⟨0, 𝐴⟩} = (𝑖 ∈ {0} ↦ 𝐴))
86, 7mpan 690 . . . . 5 (𝐴𝑆 → {⟨0, 𝐴⟩} = (𝑖 ∈ {0} ↦ 𝐴))
95, 8eqtrd 2765 . . . 4 (𝐴𝑆 → ⟨“𝐴”⟩ = (𝑖 ∈ {0} ↦ 𝐴))
109adantr 480 . . 3 ((𝐴𝑆𝐵𝑇) → ⟨“𝐴”⟩ = (𝑖 ∈ {0} ↦ 𝐴))
11 s1val 14570 . . . . 5 (𝐵𝑇 → ⟨“𝐵”⟩ = {⟨0, 𝐵⟩})
12 fmptsn 7144 . . . . . 6 ((0 ∈ ℕ0𝐵𝑇) → {⟨0, 𝐵⟩} = (𝑖 ∈ {0} ↦ 𝐵))
136, 12mpan 690 . . . . 5 (𝐵𝑇 → {⟨0, 𝐵⟩} = (𝑖 ∈ {0} ↦ 𝐵))
1411, 13eqtrd 2765 . . . 4 (𝐵𝑇 → ⟨“𝐵”⟩ = (𝑖 ∈ {0} ↦ 𝐵))
1514adantl 481 . . 3 ((𝐴𝑆𝐵𝑇) → ⟨“𝐵”⟩ = (𝑖 ∈ {0} ↦ 𝐵))
162, 3, 4, 10, 15offval2 7676 . 2 ((𝐴𝑆𝐵𝑇) → (⟨“𝐴”⟩ ∘f 𝑅⟨“𝐵”⟩) = (𝑖 ∈ {0} ↦ (𝐴𝑅𝐵)))
17 ovex 7423 . . . 4 (𝐴𝑅𝐵) ∈ V
18 s1val 14570 . . . 4 ((𝐴𝑅𝐵) ∈ V → ⟨“(𝐴𝑅𝐵)”⟩ = {⟨0, (𝐴𝑅𝐵)⟩})
1917, 18ax-mp 5 . . 3 ⟨“(𝐴𝑅𝐵)”⟩ = {⟨0, (𝐴𝑅𝐵)⟩}
20 fmptsn 7144 . . . 4 ((0 ∈ ℕ0 ∧ (𝐴𝑅𝐵) ∈ V) → {⟨0, (𝐴𝑅𝐵)⟩} = (𝑖 ∈ {0} ↦ (𝐴𝑅𝐵)))
216, 17, 20mp2an 692 . . 3 {⟨0, (𝐴𝑅𝐵)⟩} = (𝑖 ∈ {0} ↦ (𝐴𝑅𝐵))
2219, 21eqtri 2753 . 2 ⟨“(𝐴𝑅𝐵)”⟩ = (𝑖 ∈ {0} ↦ (𝐴𝑅𝐵))
2316, 22eqtr4di 2783 1 ((𝐴𝑆𝐵𝑇) → (⟨“𝐴”⟩ ∘f 𝑅⟨“𝐵”⟩) = ⟨“(𝐴𝑅𝐵)”⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3450  {csn 4592  cop 4598  cmpt 5191  (class class class)co 7390  f cof 7654  0cc0 11075  0cn0 12449  ⟨“cs1 14567
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pr 5390  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-mulcl 11137  ax-i2m1 11143
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656  df-n0 12450  df-s1 14568
This theorem is referenced by:  ofs2  14944  1arithidomlem2  33514
  Copyright terms: Public domain W3C validator