![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ofs1 | Structured version Visualization version GIF version |
Description: Letterwise operations on a single letter word. (Contributed by Thierry Arnoux, 7-Oct-2018.) |
Ref | Expression |
---|---|
ofs1 | ⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑇) → (〈“𝐴”〉 ∘f 𝑅〈“𝐵”〉) = 〈“(𝐴𝑅𝐵)”〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snex 5428 | . . . 4 ⊢ {0} ∈ V | |
2 | 1 | a1i 11 | . . 3 ⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑇) → {0} ∈ V) |
3 | simpll 765 | . . 3 ⊢ (((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑇) ∧ 𝑖 ∈ {0}) → 𝐴 ∈ 𝑆) | |
4 | simplr 767 | . . 3 ⊢ (((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑇) ∧ 𝑖 ∈ {0}) → 𝐵 ∈ 𝑇) | |
5 | s1val 14599 | . . . . 5 ⊢ (𝐴 ∈ 𝑆 → 〈“𝐴”〉 = {〈0, 𝐴〉}) | |
6 | 0nn0 12531 | . . . . . 6 ⊢ 0 ∈ ℕ0 | |
7 | fmptsn 7171 | . . . . . 6 ⊢ ((0 ∈ ℕ0 ∧ 𝐴 ∈ 𝑆) → {〈0, 𝐴〉} = (𝑖 ∈ {0} ↦ 𝐴)) | |
8 | 6, 7 | mpan 688 | . . . . 5 ⊢ (𝐴 ∈ 𝑆 → {〈0, 𝐴〉} = (𝑖 ∈ {0} ↦ 𝐴)) |
9 | 5, 8 | eqtrd 2766 | . . . 4 ⊢ (𝐴 ∈ 𝑆 → 〈“𝐴”〉 = (𝑖 ∈ {0} ↦ 𝐴)) |
10 | 9 | adantr 479 | . . 3 ⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑇) → 〈“𝐴”〉 = (𝑖 ∈ {0} ↦ 𝐴)) |
11 | s1val 14599 | . . . . 5 ⊢ (𝐵 ∈ 𝑇 → 〈“𝐵”〉 = {〈0, 𝐵〉}) | |
12 | fmptsn 7171 | . . . . . 6 ⊢ ((0 ∈ ℕ0 ∧ 𝐵 ∈ 𝑇) → {〈0, 𝐵〉} = (𝑖 ∈ {0} ↦ 𝐵)) | |
13 | 6, 12 | mpan 688 | . . . . 5 ⊢ (𝐵 ∈ 𝑇 → {〈0, 𝐵〉} = (𝑖 ∈ {0} ↦ 𝐵)) |
14 | 11, 13 | eqtrd 2766 | . . . 4 ⊢ (𝐵 ∈ 𝑇 → 〈“𝐵”〉 = (𝑖 ∈ {0} ↦ 𝐵)) |
15 | 14 | adantl 480 | . . 3 ⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑇) → 〈“𝐵”〉 = (𝑖 ∈ {0} ↦ 𝐵)) |
16 | 2, 3, 4, 10, 15 | offval2 7700 | . 2 ⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑇) → (〈“𝐴”〉 ∘f 𝑅〈“𝐵”〉) = (𝑖 ∈ {0} ↦ (𝐴𝑅𝐵))) |
17 | ovex 7447 | . . . 4 ⊢ (𝐴𝑅𝐵) ∈ V | |
18 | s1val 14599 | . . . 4 ⊢ ((𝐴𝑅𝐵) ∈ V → 〈“(𝐴𝑅𝐵)”〉 = {〈0, (𝐴𝑅𝐵)〉}) | |
19 | 17, 18 | ax-mp 5 | . . 3 ⊢ 〈“(𝐴𝑅𝐵)”〉 = {〈0, (𝐴𝑅𝐵)〉} |
20 | fmptsn 7171 | . . . 4 ⊢ ((0 ∈ ℕ0 ∧ (𝐴𝑅𝐵) ∈ V) → {〈0, (𝐴𝑅𝐵)〉} = (𝑖 ∈ {0} ↦ (𝐴𝑅𝐵))) | |
21 | 6, 17, 20 | mp2an 690 | . . 3 ⊢ {〈0, (𝐴𝑅𝐵)〉} = (𝑖 ∈ {0} ↦ (𝐴𝑅𝐵)) |
22 | 19, 21 | eqtri 2754 | . 2 ⊢ 〈“(𝐴𝑅𝐵)”〉 = (𝑖 ∈ {0} ↦ (𝐴𝑅𝐵)) |
23 | 16, 22 | eqtr4di 2784 | 1 ⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑇) → (〈“𝐴”〉 ∘f 𝑅〈“𝐵”〉) = 〈“(𝐴𝑅𝐵)”〉) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1534 ∈ wcel 2099 Vcvv 3463 {csn 4624 〈cop 4630 ↦ cmpt 5227 (class class class)co 7414 ∘f cof 7678 0cc0 11147 ℕ0cn0 12516 〈“cs1 14596 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-rep 5281 ax-sep 5295 ax-nul 5302 ax-pr 5424 ax-1cn 11205 ax-icn 11206 ax-addcl 11207 ax-mulcl 11209 ax-i2m1 11215 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-ral 3052 df-rex 3061 df-reu 3366 df-rab 3421 df-v 3465 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4324 df-if 4525 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4907 df-iun 4996 df-br 5145 df-opab 5207 df-mpt 5228 df-id 5571 df-xp 5679 df-rel 5680 df-cnv 5681 df-co 5682 df-dm 5683 df-rn 5684 df-res 5685 df-ima 5686 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-ov 7417 df-oprab 7418 df-mpo 7419 df-of 7680 df-n0 12517 df-s1 14597 |
This theorem is referenced by: ofs2 14969 1arithidomlem2 33415 |
Copyright terms: Public domain | W3C validator |