MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  s1co Structured version   Visualization version   GIF version

Theorem s1co 14742
Description: Mapping of a singleton word. (Contributed by Mario Carneiro, 27-Sep-2015.) (Revised by Mario Carneiro, 26-Feb-2016.)
Assertion
Ref Expression
s1co ((𝑆𝐴𝐹:𝐴𝐵) → (𝐹 ∘ ⟨“𝑆”⟩) = ⟨“(𝐹𝑆)”⟩)

Proof of Theorem s1co
StepHypRef Expression
1 s1val 14508 . . . . 5 (𝑆𝐴 → ⟨“𝑆”⟩ = {⟨0, 𝑆⟩})
2 0cn 11111 . . . . . 6 0 ∈ ℂ
3 xpsng 7078 . . . . . 6 ((0 ∈ ℂ ∧ 𝑆𝐴) → ({0} × {𝑆}) = {⟨0, 𝑆⟩})
42, 3mpan 690 . . . . 5 (𝑆𝐴 → ({0} × {𝑆}) = {⟨0, 𝑆⟩})
51, 4eqtr4d 2771 . . . 4 (𝑆𝐴 → ⟨“𝑆”⟩ = ({0} × {𝑆}))
65adantr 480 . . 3 ((𝑆𝐴𝐹:𝐴𝐵) → ⟨“𝑆”⟩ = ({0} × {𝑆}))
76coeq2d 5806 . 2 ((𝑆𝐴𝐹:𝐴𝐵) → (𝐹 ∘ ⟨“𝑆”⟩) = (𝐹 ∘ ({0} × {𝑆})))
8 fvex 6841 . . . . 5 (𝐹𝑆) ∈ V
9 s1val 14508 . . . . 5 ((𝐹𝑆) ∈ V → ⟨“(𝐹𝑆)”⟩ = {⟨0, (𝐹𝑆)⟩})
108, 9ax-mp 5 . . . 4 ⟨“(𝐹𝑆)”⟩ = {⟨0, (𝐹𝑆)⟩}
11 c0ex 11113 . . . . 5 0 ∈ V
1211, 8xpsn 7080 . . . 4 ({0} × {(𝐹𝑆)}) = {⟨0, (𝐹𝑆)⟩}
1310, 12eqtr4i 2759 . . 3 ⟨“(𝐹𝑆)”⟩ = ({0} × {(𝐹𝑆)})
14 ffn 6656 . . . 4 (𝐹:𝐴𝐵𝐹 Fn 𝐴)
15 id 22 . . . 4 (𝑆𝐴𝑆𝐴)
16 fcoconst 7073 . . . 4 ((𝐹 Fn 𝐴𝑆𝐴) → (𝐹 ∘ ({0} × {𝑆})) = ({0} × {(𝐹𝑆)}))
1714, 15, 16syl2anr 597 . . 3 ((𝑆𝐴𝐹:𝐴𝐵) → (𝐹 ∘ ({0} × {𝑆})) = ({0} × {(𝐹𝑆)}))
1813, 17eqtr4id 2787 . 2 ((𝑆𝐴𝐹:𝐴𝐵) → ⟨“(𝐹𝑆)”⟩ = (𝐹 ∘ ({0} × {𝑆})))
197, 18eqtr4d 2771 1 ((𝑆𝐴𝐹:𝐴𝐵) → (𝐹 ∘ ⟨“𝑆”⟩) = ⟨“(𝐹𝑆)”⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113  Vcvv 3437  {csn 4575  cop 4581   × cxp 5617  ccom 5623   Fn wfn 6481  wf 6482  cfv 6486  cc 11011  0cc0 11013  ⟨“cs1 14505
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pr 5372  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-mulcl 11075  ax-i2m1 11081
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-s1 14506
This theorem is referenced by:  cats1co  14765  s2co  14829  frmdgsum  18772  frmdup2  18775  efginvrel2  19641  vrgpinv  19683  frgpup2  19690  ccatws1f1olast  32940  mrsubcv  35575
  Copyright terms: Public domain W3C validator