![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > s1co | Structured version Visualization version GIF version |
Description: Mapping of a singleton word. (Contributed by Mario Carneiro, 27-Sep-2015.) (Revised by Mario Carneiro, 26-Feb-2016.) |
Ref | Expression |
---|---|
s1co | ⊢ ((𝑆 ∈ 𝐴 ∧ 𝐹:𝐴⟶𝐵) → (𝐹 ∘ ⟨“𝑆”⟩) = ⟨“(𝐹‘𝑆)”⟩) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | s1val 14550 | . . . . 5 ⊢ (𝑆 ∈ 𝐴 → ⟨“𝑆”⟩ = {⟨0, 𝑆⟩}) | |
2 | 0cn 11208 | . . . . . 6 ⊢ 0 ∈ ℂ | |
3 | xpsng 7139 | . . . . . 6 ⊢ ((0 ∈ ℂ ∧ 𝑆 ∈ 𝐴) → ({0} × {𝑆}) = {⟨0, 𝑆⟩}) | |
4 | 2, 3 | mpan 688 | . . . . 5 ⊢ (𝑆 ∈ 𝐴 → ({0} × {𝑆}) = {⟨0, 𝑆⟩}) |
5 | 1, 4 | eqtr4d 2775 | . . . 4 ⊢ (𝑆 ∈ 𝐴 → ⟨“𝑆”⟩ = ({0} × {𝑆})) |
6 | 5 | adantr 481 | . . 3 ⊢ ((𝑆 ∈ 𝐴 ∧ 𝐹:𝐴⟶𝐵) → ⟨“𝑆”⟩ = ({0} × {𝑆})) |
7 | 6 | coeq2d 5862 | . 2 ⊢ ((𝑆 ∈ 𝐴 ∧ 𝐹:𝐴⟶𝐵) → (𝐹 ∘ ⟨“𝑆”⟩) = (𝐹 ∘ ({0} × {𝑆}))) |
8 | fvex 6904 | . . . . 5 ⊢ (𝐹‘𝑆) ∈ V | |
9 | s1val 14550 | . . . . 5 ⊢ ((𝐹‘𝑆) ∈ V → ⟨“(𝐹‘𝑆)”⟩ = {⟨0, (𝐹‘𝑆)⟩}) | |
10 | 8, 9 | ax-mp 5 | . . . 4 ⊢ ⟨“(𝐹‘𝑆)”⟩ = {⟨0, (𝐹‘𝑆)⟩} |
11 | c0ex 11210 | . . . . 5 ⊢ 0 ∈ V | |
12 | 11, 8 | xpsn 7141 | . . . 4 ⊢ ({0} × {(𝐹‘𝑆)}) = {⟨0, (𝐹‘𝑆)⟩} |
13 | 10, 12 | eqtr4i 2763 | . . 3 ⊢ ⟨“(𝐹‘𝑆)”⟩ = ({0} × {(𝐹‘𝑆)}) |
14 | ffn 6717 | . . . 4 ⊢ (𝐹:𝐴⟶𝐵 → 𝐹 Fn 𝐴) | |
15 | id 22 | . . . 4 ⊢ (𝑆 ∈ 𝐴 → 𝑆 ∈ 𝐴) | |
16 | fcoconst 7134 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑆 ∈ 𝐴) → (𝐹 ∘ ({0} × {𝑆})) = ({0} × {(𝐹‘𝑆)})) | |
17 | 14, 15, 16 | syl2anr 597 | . . 3 ⊢ ((𝑆 ∈ 𝐴 ∧ 𝐹:𝐴⟶𝐵) → (𝐹 ∘ ({0} × {𝑆})) = ({0} × {(𝐹‘𝑆)})) |
18 | 13, 17 | eqtr4id 2791 | . 2 ⊢ ((𝑆 ∈ 𝐴 ∧ 𝐹:𝐴⟶𝐵) → ⟨“(𝐹‘𝑆)”⟩ = (𝐹 ∘ ({0} × {𝑆}))) |
19 | 7, 18 | eqtr4d 2775 | 1 ⊢ ((𝑆 ∈ 𝐴 ∧ 𝐹:𝐴⟶𝐵) → (𝐹 ∘ ⟨“𝑆”⟩) = ⟨“(𝐹‘𝑆)”⟩) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1541 ∈ wcel 2106 Vcvv 3474 {csn 4628 ⟨cop 4634 × cxp 5674 ∘ ccom 5680 Fn wfn 6538 ⟶wf 6539 ‘cfv 6543 ℂcc 11110 0cc0 11112 ⟨“cs1 14547 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pr 5427 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-mulcl 11174 ax-i2m1 11180 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-s1 14548 |
This theorem is referenced by: cats1co 14809 s2co 14873 frmdgsum 18745 frmdup2 18748 efginvrel2 19597 vrgpinv 19639 frgpup2 19646 mrsubcv 34570 |
Copyright terms: Public domain | W3C validator |