![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > s1co | Structured version Visualization version GIF version |
Description: Mapping of a singleton word. (Contributed by Mario Carneiro, 27-Sep-2015.) (Revised by Mario Carneiro, 26-Feb-2016.) |
Ref | Expression |
---|---|
s1co | ⊢ ((𝑆 ∈ 𝐴 ∧ 𝐹:𝐴⟶𝐵) → (𝐹 ∘ 〈“𝑆”〉) = 〈“(𝐹‘𝑆)”〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | s1val 14608 | . . . . 5 ⊢ (𝑆 ∈ 𝐴 → 〈“𝑆”〉 = {〈0, 𝑆〉}) | |
2 | 0cn 11258 | . . . . . 6 ⊢ 0 ∈ ℂ | |
3 | xpsng 7155 | . . . . . 6 ⊢ ((0 ∈ ℂ ∧ 𝑆 ∈ 𝐴) → ({0} × {𝑆}) = {〈0, 𝑆〉}) | |
4 | 2, 3 | mpan 688 | . . . . 5 ⊢ (𝑆 ∈ 𝐴 → ({0} × {𝑆}) = {〈0, 𝑆〉}) |
5 | 1, 4 | eqtr4d 2769 | . . . 4 ⊢ (𝑆 ∈ 𝐴 → 〈“𝑆”〉 = ({0} × {𝑆})) |
6 | 5 | adantr 479 | . . 3 ⊢ ((𝑆 ∈ 𝐴 ∧ 𝐹:𝐴⟶𝐵) → 〈“𝑆”〉 = ({0} × {𝑆})) |
7 | 6 | coeq2d 5871 | . 2 ⊢ ((𝑆 ∈ 𝐴 ∧ 𝐹:𝐴⟶𝐵) → (𝐹 ∘ 〈“𝑆”〉) = (𝐹 ∘ ({0} × {𝑆}))) |
8 | fvex 6916 | . . . . 5 ⊢ (𝐹‘𝑆) ∈ V | |
9 | s1val 14608 | . . . . 5 ⊢ ((𝐹‘𝑆) ∈ V → 〈“(𝐹‘𝑆)”〉 = {〈0, (𝐹‘𝑆)〉}) | |
10 | 8, 9 | ax-mp 5 | . . . 4 ⊢ 〈“(𝐹‘𝑆)”〉 = {〈0, (𝐹‘𝑆)〉} |
11 | c0ex 11260 | . . . . 5 ⊢ 0 ∈ V | |
12 | 11, 8 | xpsn 7157 | . . . 4 ⊢ ({0} × {(𝐹‘𝑆)}) = {〈0, (𝐹‘𝑆)〉} |
13 | 10, 12 | eqtr4i 2757 | . . 3 ⊢ 〈“(𝐹‘𝑆)”〉 = ({0} × {(𝐹‘𝑆)}) |
14 | ffn 6730 | . . . 4 ⊢ (𝐹:𝐴⟶𝐵 → 𝐹 Fn 𝐴) | |
15 | id 22 | . . . 4 ⊢ (𝑆 ∈ 𝐴 → 𝑆 ∈ 𝐴) | |
16 | fcoconst 7150 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑆 ∈ 𝐴) → (𝐹 ∘ ({0} × {𝑆})) = ({0} × {(𝐹‘𝑆)})) | |
17 | 14, 15, 16 | syl2anr 595 | . . 3 ⊢ ((𝑆 ∈ 𝐴 ∧ 𝐹:𝐴⟶𝐵) → (𝐹 ∘ ({0} × {𝑆})) = ({0} × {(𝐹‘𝑆)})) |
18 | 13, 17 | eqtr4id 2785 | . 2 ⊢ ((𝑆 ∈ 𝐴 ∧ 𝐹:𝐴⟶𝐵) → 〈“(𝐹‘𝑆)”〉 = (𝐹 ∘ ({0} × {𝑆}))) |
19 | 7, 18 | eqtr4d 2769 | 1 ⊢ ((𝑆 ∈ 𝐴 ∧ 𝐹:𝐴⟶𝐵) → (𝐹 ∘ 〈“𝑆”〉) = 〈“(𝐹‘𝑆)”〉) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1534 ∈ wcel 2099 Vcvv 3462 {csn 4633 〈cop 4639 × cxp 5682 ∘ ccom 5688 Fn wfn 6551 ⟶wf 6552 ‘cfv 6556 ℂcc 11158 0cc0 11160 〈“cs1 14605 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-sep 5306 ax-nul 5313 ax-pr 5435 ax-1cn 11218 ax-icn 11219 ax-addcl 11220 ax-mulcl 11222 ax-i2m1 11228 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-ral 3052 df-rex 3061 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4326 df-if 4534 df-sn 4634 df-pr 4636 df-op 4640 df-uni 4916 df-br 5156 df-opab 5218 df-mpt 5239 df-id 5582 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-iota 6508 df-fun 6558 df-fn 6559 df-f 6560 df-f1 6561 df-fo 6562 df-f1o 6563 df-fv 6564 df-s1 14606 |
This theorem is referenced by: cats1co 14867 s2co 14931 frmdgsum 18854 frmdup2 18857 efginvrel2 19727 vrgpinv 19769 frgpup2 19776 ccatws1f1olast 32818 mrsubcv 35340 |
Copyright terms: Public domain | W3C validator |