MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  s1co Structured version   Visualization version   GIF version

Theorem s1co 14189
Description: Mapping of a singleton word. (Contributed by Mario Carneiro, 27-Sep-2015.) (Revised by Mario Carneiro, 26-Feb-2016.)
Assertion
Ref Expression
s1co ((𝑆𝐴𝐹:𝐴𝐵) → (𝐹 ∘ ⟨“𝑆”⟩) = ⟨“(𝐹𝑆)”⟩)

Proof of Theorem s1co
StepHypRef Expression
1 s1val 13946 . . . . 5 (𝑆𝐴 → ⟨“𝑆”⟩ = {⟨0, 𝑆⟩})
2 0cn 10627 . . . . . 6 0 ∈ ℂ
3 xpsng 6895 . . . . . 6 ((0 ∈ ℂ ∧ 𝑆𝐴) → ({0} × {𝑆}) = {⟨0, 𝑆⟩})
42, 3mpan 688 . . . . 5 (𝑆𝐴 → ({0} × {𝑆}) = {⟨0, 𝑆⟩})
51, 4eqtr4d 2859 . . . 4 (𝑆𝐴 → ⟨“𝑆”⟩ = ({0} × {𝑆}))
65adantr 483 . . 3 ((𝑆𝐴𝐹:𝐴𝐵) → ⟨“𝑆”⟩ = ({0} × {𝑆}))
76coeq2d 5727 . 2 ((𝑆𝐴𝐹:𝐴𝐵) → (𝐹 ∘ ⟨“𝑆”⟩) = (𝐹 ∘ ({0} × {𝑆})))
8 ffn 6508 . . . 4 (𝐹:𝐴𝐵𝐹 Fn 𝐴)
9 id 22 . . . 4 (𝑆𝐴𝑆𝐴)
10 fcoconst 6890 . . . 4 ((𝐹 Fn 𝐴𝑆𝐴) → (𝐹 ∘ ({0} × {𝑆})) = ({0} × {(𝐹𝑆)}))
118, 9, 10syl2anr 598 . . 3 ((𝑆𝐴𝐹:𝐴𝐵) → (𝐹 ∘ ({0} × {𝑆})) = ({0} × {(𝐹𝑆)}))
12 fvex 6677 . . . . 5 (𝐹𝑆) ∈ V
13 s1val 13946 . . . . 5 ((𝐹𝑆) ∈ V → ⟨“(𝐹𝑆)”⟩ = {⟨0, (𝐹𝑆)⟩})
1412, 13ax-mp 5 . . . 4 ⟨“(𝐹𝑆)”⟩ = {⟨0, (𝐹𝑆)⟩}
15 c0ex 10629 . . . . 5 0 ∈ V
1615, 12xpsn 6897 . . . 4 ({0} × {(𝐹𝑆)}) = {⟨0, (𝐹𝑆)⟩}
1714, 16eqtr4i 2847 . . 3 ⟨“(𝐹𝑆)”⟩ = ({0} × {(𝐹𝑆)})
1811, 17syl6reqr 2875 . 2 ((𝑆𝐴𝐹:𝐴𝐵) → ⟨“(𝐹𝑆)”⟩ = (𝐹 ∘ ({0} × {𝑆})))
197, 18eqtr4d 2859 1 ((𝑆𝐴𝐹:𝐴𝐵) → (𝐹 ∘ ⟨“𝑆”⟩) = ⟨“(𝐹𝑆)”⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1533  wcel 2110  Vcvv 3494  {csn 4560  cop 4566   × cxp 5547  ccom 5553   Fn wfn 6344  wf 6345  cfv 6349  cc 10529  0cc0 10531  ⟨“cs1 13943
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-mulcl 10593  ax-i2m1 10599
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-sn 4561  df-pr 4563  df-op 4567  df-uni 4832  df-br 5059  df-opab 5121  df-mpt 5139  df-id 5454  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-s1 13944
This theorem is referenced by:  cats1co  14212  s2co  14276  frmdgsum  18021  frmdup2  18024  efginvrel2  18847  vrgpinv  18889  frgpup2  18896  mrsubcv  32752
  Copyright terms: Public domain W3C validator