| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > s1co | Structured version Visualization version GIF version | ||
| Description: Mapping of a singleton word. (Contributed by Mario Carneiro, 27-Sep-2015.) (Revised by Mario Carneiro, 26-Feb-2016.) |
| Ref | Expression |
|---|---|
| s1co | ⊢ ((𝑆 ∈ 𝐴 ∧ 𝐹:𝐴⟶𝐵) → (𝐹 ∘ 〈“𝑆”〉) = 〈“(𝐹‘𝑆)”〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | s1val 14570 | . . . . 5 ⊢ (𝑆 ∈ 𝐴 → 〈“𝑆”〉 = {〈0, 𝑆〉}) | |
| 2 | 0cn 11173 | . . . . . 6 ⊢ 0 ∈ ℂ | |
| 3 | xpsng 7114 | . . . . . 6 ⊢ ((0 ∈ ℂ ∧ 𝑆 ∈ 𝐴) → ({0} × {𝑆}) = {〈0, 𝑆〉}) | |
| 4 | 2, 3 | mpan 690 | . . . . 5 ⊢ (𝑆 ∈ 𝐴 → ({0} × {𝑆}) = {〈0, 𝑆〉}) |
| 5 | 1, 4 | eqtr4d 2768 | . . . 4 ⊢ (𝑆 ∈ 𝐴 → 〈“𝑆”〉 = ({0} × {𝑆})) |
| 6 | 5 | adantr 480 | . . 3 ⊢ ((𝑆 ∈ 𝐴 ∧ 𝐹:𝐴⟶𝐵) → 〈“𝑆”〉 = ({0} × {𝑆})) |
| 7 | 6 | coeq2d 5829 | . 2 ⊢ ((𝑆 ∈ 𝐴 ∧ 𝐹:𝐴⟶𝐵) → (𝐹 ∘ 〈“𝑆”〉) = (𝐹 ∘ ({0} × {𝑆}))) |
| 8 | fvex 6874 | . . . . 5 ⊢ (𝐹‘𝑆) ∈ V | |
| 9 | s1val 14570 | . . . . 5 ⊢ ((𝐹‘𝑆) ∈ V → 〈“(𝐹‘𝑆)”〉 = {〈0, (𝐹‘𝑆)〉}) | |
| 10 | 8, 9 | ax-mp 5 | . . . 4 ⊢ 〈“(𝐹‘𝑆)”〉 = {〈0, (𝐹‘𝑆)〉} |
| 11 | c0ex 11175 | . . . . 5 ⊢ 0 ∈ V | |
| 12 | 11, 8 | xpsn 7116 | . . . 4 ⊢ ({0} × {(𝐹‘𝑆)}) = {〈0, (𝐹‘𝑆)〉} |
| 13 | 10, 12 | eqtr4i 2756 | . . 3 ⊢ 〈“(𝐹‘𝑆)”〉 = ({0} × {(𝐹‘𝑆)}) |
| 14 | ffn 6691 | . . . 4 ⊢ (𝐹:𝐴⟶𝐵 → 𝐹 Fn 𝐴) | |
| 15 | id 22 | . . . 4 ⊢ (𝑆 ∈ 𝐴 → 𝑆 ∈ 𝐴) | |
| 16 | fcoconst 7109 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑆 ∈ 𝐴) → (𝐹 ∘ ({0} × {𝑆})) = ({0} × {(𝐹‘𝑆)})) | |
| 17 | 14, 15, 16 | syl2anr 597 | . . 3 ⊢ ((𝑆 ∈ 𝐴 ∧ 𝐹:𝐴⟶𝐵) → (𝐹 ∘ ({0} × {𝑆})) = ({0} × {(𝐹‘𝑆)})) |
| 18 | 13, 17 | eqtr4id 2784 | . 2 ⊢ ((𝑆 ∈ 𝐴 ∧ 𝐹:𝐴⟶𝐵) → 〈“(𝐹‘𝑆)”〉 = (𝐹 ∘ ({0} × {𝑆}))) |
| 19 | 7, 18 | eqtr4d 2768 | 1 ⊢ ((𝑆 ∈ 𝐴 ∧ 𝐹:𝐴⟶𝐵) → (𝐹 ∘ 〈“𝑆”〉) = 〈“(𝐹‘𝑆)”〉) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3450 {csn 4592 〈cop 4598 × cxp 5639 ∘ ccom 5645 Fn wfn 6509 ⟶wf 6510 ‘cfv 6514 ℂcc 11073 0cc0 11075 〈“cs1 14567 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-mulcl 11137 ax-i2m1 11143 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-s1 14568 |
| This theorem is referenced by: cats1co 14829 s2co 14893 frmdgsum 18796 frmdup2 18799 efginvrel2 19664 vrgpinv 19706 frgpup2 19713 ccatws1f1olast 32881 mrsubcv 35504 |
| Copyright terms: Public domain | W3C validator |