Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > s1co | Structured version Visualization version GIF version |
Description: Mapping of a singleton word. (Contributed by Mario Carneiro, 27-Sep-2015.) (Revised by Mario Carneiro, 26-Feb-2016.) |
Ref | Expression |
---|---|
s1co | ⊢ ((𝑆 ∈ 𝐴 ∧ 𝐹:𝐴⟶𝐵) → (𝐹 ∘ 〈“𝑆”〉) = 〈“(𝐹‘𝑆)”〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | s1val 14231 | . . . . 5 ⊢ (𝑆 ∈ 𝐴 → 〈“𝑆”〉 = {〈0, 𝑆〉}) | |
2 | 0cn 10898 | . . . . . 6 ⊢ 0 ∈ ℂ | |
3 | xpsng 6993 | . . . . . 6 ⊢ ((0 ∈ ℂ ∧ 𝑆 ∈ 𝐴) → ({0} × {𝑆}) = {〈0, 𝑆〉}) | |
4 | 2, 3 | mpan 686 | . . . . 5 ⊢ (𝑆 ∈ 𝐴 → ({0} × {𝑆}) = {〈0, 𝑆〉}) |
5 | 1, 4 | eqtr4d 2781 | . . . 4 ⊢ (𝑆 ∈ 𝐴 → 〈“𝑆”〉 = ({0} × {𝑆})) |
6 | 5 | adantr 480 | . . 3 ⊢ ((𝑆 ∈ 𝐴 ∧ 𝐹:𝐴⟶𝐵) → 〈“𝑆”〉 = ({0} × {𝑆})) |
7 | 6 | coeq2d 5760 | . 2 ⊢ ((𝑆 ∈ 𝐴 ∧ 𝐹:𝐴⟶𝐵) → (𝐹 ∘ 〈“𝑆”〉) = (𝐹 ∘ ({0} × {𝑆}))) |
8 | fvex 6769 | . . . . 5 ⊢ (𝐹‘𝑆) ∈ V | |
9 | s1val 14231 | . . . . 5 ⊢ ((𝐹‘𝑆) ∈ V → 〈“(𝐹‘𝑆)”〉 = {〈0, (𝐹‘𝑆)〉}) | |
10 | 8, 9 | ax-mp 5 | . . . 4 ⊢ 〈“(𝐹‘𝑆)”〉 = {〈0, (𝐹‘𝑆)〉} |
11 | c0ex 10900 | . . . . 5 ⊢ 0 ∈ V | |
12 | 11, 8 | xpsn 6995 | . . . 4 ⊢ ({0} × {(𝐹‘𝑆)}) = {〈0, (𝐹‘𝑆)〉} |
13 | 10, 12 | eqtr4i 2769 | . . 3 ⊢ 〈“(𝐹‘𝑆)”〉 = ({0} × {(𝐹‘𝑆)}) |
14 | ffn 6584 | . . . 4 ⊢ (𝐹:𝐴⟶𝐵 → 𝐹 Fn 𝐴) | |
15 | id 22 | . . . 4 ⊢ (𝑆 ∈ 𝐴 → 𝑆 ∈ 𝐴) | |
16 | fcoconst 6988 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑆 ∈ 𝐴) → (𝐹 ∘ ({0} × {𝑆})) = ({0} × {(𝐹‘𝑆)})) | |
17 | 14, 15, 16 | syl2anr 596 | . . 3 ⊢ ((𝑆 ∈ 𝐴 ∧ 𝐹:𝐴⟶𝐵) → (𝐹 ∘ ({0} × {𝑆})) = ({0} × {(𝐹‘𝑆)})) |
18 | 13, 17 | eqtr4id 2798 | . 2 ⊢ ((𝑆 ∈ 𝐴 ∧ 𝐹:𝐴⟶𝐵) → 〈“(𝐹‘𝑆)”〉 = (𝐹 ∘ ({0} × {𝑆}))) |
19 | 7, 18 | eqtr4d 2781 | 1 ⊢ ((𝑆 ∈ 𝐴 ∧ 𝐹:𝐴⟶𝐵) → (𝐹 ∘ 〈“𝑆”〉) = 〈“(𝐹‘𝑆)”〉) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 Vcvv 3422 {csn 4558 〈cop 4564 × cxp 5578 ∘ ccom 5584 Fn wfn 6413 ⟶wf 6414 ‘cfv 6418 ℂcc 10800 0cc0 10802 〈“cs1 14228 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-mulcl 10864 ax-i2m1 10870 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-s1 14229 |
This theorem is referenced by: cats1co 14497 s2co 14561 frmdgsum 18416 frmdup2 18419 efginvrel2 19248 vrgpinv 19290 frgpup2 19297 mrsubcv 33372 |
Copyright terms: Public domain | W3C validator |