| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > s1co | Structured version Visualization version GIF version | ||
| Description: Mapping of a singleton word. (Contributed by Mario Carneiro, 27-Sep-2015.) (Revised by Mario Carneiro, 26-Feb-2016.) |
| Ref | Expression |
|---|---|
| s1co | ⊢ ((𝑆 ∈ 𝐴 ∧ 𝐹:𝐴⟶𝐵) → (𝐹 ∘ 〈“𝑆”〉) = 〈“(𝐹‘𝑆)”〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | s1val 14503 | . . . . 5 ⊢ (𝑆 ∈ 𝐴 → 〈“𝑆”〉 = {〈0, 𝑆〉}) | |
| 2 | 0cn 11101 | . . . . . 6 ⊢ 0 ∈ ℂ | |
| 3 | xpsng 7072 | . . . . . 6 ⊢ ((0 ∈ ℂ ∧ 𝑆 ∈ 𝐴) → ({0} × {𝑆}) = {〈0, 𝑆〉}) | |
| 4 | 2, 3 | mpan 690 | . . . . 5 ⊢ (𝑆 ∈ 𝐴 → ({0} × {𝑆}) = {〈0, 𝑆〉}) |
| 5 | 1, 4 | eqtr4d 2769 | . . . 4 ⊢ (𝑆 ∈ 𝐴 → 〈“𝑆”〉 = ({0} × {𝑆})) |
| 6 | 5 | adantr 480 | . . 3 ⊢ ((𝑆 ∈ 𝐴 ∧ 𝐹:𝐴⟶𝐵) → 〈“𝑆”〉 = ({0} × {𝑆})) |
| 7 | 6 | coeq2d 5802 | . 2 ⊢ ((𝑆 ∈ 𝐴 ∧ 𝐹:𝐴⟶𝐵) → (𝐹 ∘ 〈“𝑆”〉) = (𝐹 ∘ ({0} × {𝑆}))) |
| 8 | fvex 6835 | . . . . 5 ⊢ (𝐹‘𝑆) ∈ V | |
| 9 | s1val 14503 | . . . . 5 ⊢ ((𝐹‘𝑆) ∈ V → 〈“(𝐹‘𝑆)”〉 = {〈0, (𝐹‘𝑆)〉}) | |
| 10 | 8, 9 | ax-mp 5 | . . . 4 ⊢ 〈“(𝐹‘𝑆)”〉 = {〈0, (𝐹‘𝑆)〉} |
| 11 | c0ex 11103 | . . . . 5 ⊢ 0 ∈ V | |
| 12 | 11, 8 | xpsn 7074 | . . . 4 ⊢ ({0} × {(𝐹‘𝑆)}) = {〈0, (𝐹‘𝑆)〉} |
| 13 | 10, 12 | eqtr4i 2757 | . . 3 ⊢ 〈“(𝐹‘𝑆)”〉 = ({0} × {(𝐹‘𝑆)}) |
| 14 | ffn 6651 | . . . 4 ⊢ (𝐹:𝐴⟶𝐵 → 𝐹 Fn 𝐴) | |
| 15 | id 22 | . . . 4 ⊢ (𝑆 ∈ 𝐴 → 𝑆 ∈ 𝐴) | |
| 16 | fcoconst 7067 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑆 ∈ 𝐴) → (𝐹 ∘ ({0} × {𝑆})) = ({0} × {(𝐹‘𝑆)})) | |
| 17 | 14, 15, 16 | syl2anr 597 | . . 3 ⊢ ((𝑆 ∈ 𝐴 ∧ 𝐹:𝐴⟶𝐵) → (𝐹 ∘ ({0} × {𝑆})) = ({0} × {(𝐹‘𝑆)})) |
| 18 | 13, 17 | eqtr4id 2785 | . 2 ⊢ ((𝑆 ∈ 𝐴 ∧ 𝐹:𝐴⟶𝐵) → 〈“(𝐹‘𝑆)”〉 = (𝐹 ∘ ({0} × {𝑆}))) |
| 19 | 7, 18 | eqtr4d 2769 | 1 ⊢ ((𝑆 ∈ 𝐴 ∧ 𝐹:𝐴⟶𝐵) → (𝐹 ∘ 〈“𝑆”〉) = 〈“(𝐹‘𝑆)”〉) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 Vcvv 3436 {csn 4576 〈cop 4582 × cxp 5614 ∘ ccom 5620 Fn wfn 6476 ⟶wf 6477 ‘cfv 6481 ℂcc 11001 0cc0 11003 〈“cs1 14500 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 ax-1cn 11061 ax-icn 11062 ax-addcl 11063 ax-mulcl 11065 ax-i2m1 11071 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-s1 14501 |
| This theorem is referenced by: cats1co 14760 s2co 14824 frmdgsum 18767 frmdup2 18770 efginvrel2 19637 vrgpinv 19679 frgpup2 19686 ccatws1f1olast 32928 mrsubcv 35542 |
| Copyright terms: Public domain | W3C validator |