MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  s1co Structured version   Visualization version   GIF version

Theorem s1co 14799
Description: Mapping of a singleton word. (Contributed by Mario Carneiro, 27-Sep-2015.) (Revised by Mario Carneiro, 26-Feb-2016.)
Assertion
Ref Expression
s1co ((𝑆𝐴𝐹:𝐴𝐵) → (𝐹 ∘ ⟨“𝑆”⟩) = ⟨“(𝐹𝑆)”⟩)

Proof of Theorem s1co
StepHypRef Expression
1 s1val 14563 . . . . 5 (𝑆𝐴 → ⟨“𝑆”⟩ = {⟨0, 𝑆⟩})
2 0cn 11166 . . . . . 6 0 ∈ ℂ
3 xpsng 7111 . . . . . 6 ((0 ∈ ℂ ∧ 𝑆𝐴) → ({0} × {𝑆}) = {⟨0, 𝑆⟩})
42, 3mpan 690 . . . . 5 (𝑆𝐴 → ({0} × {𝑆}) = {⟨0, 𝑆⟩})
51, 4eqtr4d 2767 . . . 4 (𝑆𝐴 → ⟨“𝑆”⟩ = ({0} × {𝑆}))
65adantr 480 . . 3 ((𝑆𝐴𝐹:𝐴𝐵) → ⟨“𝑆”⟩ = ({0} × {𝑆}))
76coeq2d 5826 . 2 ((𝑆𝐴𝐹:𝐴𝐵) → (𝐹 ∘ ⟨“𝑆”⟩) = (𝐹 ∘ ({0} × {𝑆})))
8 fvex 6871 . . . . 5 (𝐹𝑆) ∈ V
9 s1val 14563 . . . . 5 ((𝐹𝑆) ∈ V → ⟨“(𝐹𝑆)”⟩ = {⟨0, (𝐹𝑆)⟩})
108, 9ax-mp 5 . . . 4 ⟨“(𝐹𝑆)”⟩ = {⟨0, (𝐹𝑆)⟩}
11 c0ex 11168 . . . . 5 0 ∈ V
1211, 8xpsn 7113 . . . 4 ({0} × {(𝐹𝑆)}) = {⟨0, (𝐹𝑆)⟩}
1310, 12eqtr4i 2755 . . 3 ⟨“(𝐹𝑆)”⟩ = ({0} × {(𝐹𝑆)})
14 ffn 6688 . . . 4 (𝐹:𝐴𝐵𝐹 Fn 𝐴)
15 id 22 . . . 4 (𝑆𝐴𝑆𝐴)
16 fcoconst 7106 . . . 4 ((𝐹 Fn 𝐴𝑆𝐴) → (𝐹 ∘ ({0} × {𝑆})) = ({0} × {(𝐹𝑆)}))
1714, 15, 16syl2anr 597 . . 3 ((𝑆𝐴𝐹:𝐴𝐵) → (𝐹 ∘ ({0} × {𝑆})) = ({0} × {(𝐹𝑆)}))
1813, 17eqtr4id 2783 . 2 ((𝑆𝐴𝐹:𝐴𝐵) → ⟨“(𝐹𝑆)”⟩ = (𝐹 ∘ ({0} × {𝑆})))
197, 18eqtr4d 2767 1 ((𝑆𝐴𝐹:𝐴𝐵) → (𝐹 ∘ ⟨“𝑆”⟩) = ⟨“(𝐹𝑆)”⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3447  {csn 4589  cop 4595   × cxp 5636  ccom 5642   Fn wfn 6506  wf 6507  cfv 6511  cc 11066  0cc0 11068  ⟨“cs1 14560
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-mulcl 11130  ax-i2m1 11136
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-s1 14561
This theorem is referenced by:  cats1co  14822  s2co  14886  frmdgsum  18789  frmdup2  18792  efginvrel2  19657  vrgpinv  19699  frgpup2  19706  ccatws1f1olast  32874  mrsubcv  35497
  Copyright terms: Public domain W3C validator