| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > s1co | Structured version Visualization version GIF version | ||
| Description: Mapping of a singleton word. (Contributed by Mario Carneiro, 27-Sep-2015.) (Revised by Mario Carneiro, 26-Feb-2016.) |
| Ref | Expression |
|---|---|
| s1co | ⊢ ((𝑆 ∈ 𝐴 ∧ 𝐹:𝐴⟶𝐵) → (𝐹 ∘ 〈“𝑆”〉) = 〈“(𝐹‘𝑆)”〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | s1val 14523 | . . . . 5 ⊢ (𝑆 ∈ 𝐴 → 〈“𝑆”〉 = {〈0, 𝑆〉}) | |
| 2 | 0cn 11126 | . . . . . 6 ⊢ 0 ∈ ℂ | |
| 3 | xpsng 7077 | . . . . . 6 ⊢ ((0 ∈ ℂ ∧ 𝑆 ∈ 𝐴) → ({0} × {𝑆}) = {〈0, 𝑆〉}) | |
| 4 | 2, 3 | mpan 690 | . . . . 5 ⊢ (𝑆 ∈ 𝐴 → ({0} × {𝑆}) = {〈0, 𝑆〉}) |
| 5 | 1, 4 | eqtr4d 2767 | . . . 4 ⊢ (𝑆 ∈ 𝐴 → 〈“𝑆”〉 = ({0} × {𝑆})) |
| 6 | 5 | adantr 480 | . . 3 ⊢ ((𝑆 ∈ 𝐴 ∧ 𝐹:𝐴⟶𝐵) → 〈“𝑆”〉 = ({0} × {𝑆})) |
| 7 | 6 | coeq2d 5809 | . 2 ⊢ ((𝑆 ∈ 𝐴 ∧ 𝐹:𝐴⟶𝐵) → (𝐹 ∘ 〈“𝑆”〉) = (𝐹 ∘ ({0} × {𝑆}))) |
| 8 | fvex 6839 | . . . . 5 ⊢ (𝐹‘𝑆) ∈ V | |
| 9 | s1val 14523 | . . . . 5 ⊢ ((𝐹‘𝑆) ∈ V → 〈“(𝐹‘𝑆)”〉 = {〈0, (𝐹‘𝑆)〉}) | |
| 10 | 8, 9 | ax-mp 5 | . . . 4 ⊢ 〈“(𝐹‘𝑆)”〉 = {〈0, (𝐹‘𝑆)〉} |
| 11 | c0ex 11128 | . . . . 5 ⊢ 0 ∈ V | |
| 12 | 11, 8 | xpsn 7079 | . . . 4 ⊢ ({0} × {(𝐹‘𝑆)}) = {〈0, (𝐹‘𝑆)〉} |
| 13 | 10, 12 | eqtr4i 2755 | . . 3 ⊢ 〈“(𝐹‘𝑆)”〉 = ({0} × {(𝐹‘𝑆)}) |
| 14 | ffn 6656 | . . . 4 ⊢ (𝐹:𝐴⟶𝐵 → 𝐹 Fn 𝐴) | |
| 15 | id 22 | . . . 4 ⊢ (𝑆 ∈ 𝐴 → 𝑆 ∈ 𝐴) | |
| 16 | fcoconst 7072 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑆 ∈ 𝐴) → (𝐹 ∘ ({0} × {𝑆})) = ({0} × {(𝐹‘𝑆)})) | |
| 17 | 14, 15, 16 | syl2anr 597 | . . 3 ⊢ ((𝑆 ∈ 𝐴 ∧ 𝐹:𝐴⟶𝐵) → (𝐹 ∘ ({0} × {𝑆})) = ({0} × {(𝐹‘𝑆)})) |
| 18 | 13, 17 | eqtr4id 2783 | . 2 ⊢ ((𝑆 ∈ 𝐴 ∧ 𝐹:𝐴⟶𝐵) → 〈“(𝐹‘𝑆)”〉 = (𝐹 ∘ ({0} × {𝑆}))) |
| 19 | 7, 18 | eqtr4d 2767 | 1 ⊢ ((𝑆 ∈ 𝐴 ∧ 𝐹:𝐴⟶𝐵) → (𝐹 ∘ 〈“𝑆”〉) = 〈“(𝐹‘𝑆)”〉) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3438 {csn 4579 〈cop 4585 × cxp 5621 ∘ ccom 5627 Fn wfn 6481 ⟶wf 6482 ‘cfv 6486 ℂcc 11026 0cc0 11028 〈“cs1 14520 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-mulcl 11090 ax-i2m1 11096 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-s1 14521 |
| This theorem is referenced by: cats1co 14781 s2co 14845 frmdgsum 18754 frmdup2 18757 efginvrel2 19624 vrgpinv 19666 frgpup2 19673 ccatws1f1olast 32907 mrsubcv 35482 |
| Copyright terms: Public domain | W3C validator |