![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > uspgr1ewop | Structured version Visualization version GIF version |
Description: A simple pseudograph with (at least) two vertices and one edge represented by a singleton word. (Contributed by AV, 9-Jan-2021.) |
Ref | Expression |
---|---|
uspgr1ewop | ⊢ ((𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → 〈𝑉, 〈“{𝐴, 𝐵}”〉〉 ∈ USPGraph) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prex 5141 | . . . 4 ⊢ {𝐴, 𝐵} ∈ V | |
2 | s1val 13688 | . . . 4 ⊢ ({𝐴, 𝐵} ∈ V → 〈“{𝐴, 𝐵}”〉 = {〈0, {𝐴, 𝐵}〉}) | |
3 | 1, 2 | mp1i 13 | . . 3 ⊢ ((𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → 〈“{𝐴, 𝐵}”〉 = {〈0, {𝐴, 𝐵}〉}) |
4 | 3 | opeq2d 4643 | . 2 ⊢ ((𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → 〈𝑉, 〈“{𝐴, 𝐵}”〉〉 = 〈𝑉, {〈0, {𝐴, 𝐵}〉}〉) |
5 | simp1 1127 | . . 3 ⊢ ((𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → 𝑉 ∈ 𝑊) | |
6 | c0ex 10370 | . . . 4 ⊢ 0 ∈ V | |
7 | 6 | a1i 11 | . . 3 ⊢ ((𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → 0 ∈ V) |
8 | 3simpc 1143 | . . 3 ⊢ ((𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉)) | |
9 | uspgr1eop 26594 | . . 3 ⊢ (((𝑉 ∈ 𝑊 ∧ 0 ∈ V) ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉)) → 〈𝑉, {〈0, {𝐴, 𝐵}〉}〉 ∈ USPGraph) | |
10 | 5, 7, 8, 9 | syl21anc 828 | . 2 ⊢ ((𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → 〈𝑉, {〈0, {𝐴, 𝐵}〉}〉 ∈ USPGraph) |
11 | 4, 10 | eqeltrd 2858 | 1 ⊢ ((𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → 〈𝑉, 〈“{𝐴, 𝐵}”〉〉 ∈ USPGraph) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 ∧ w3a 1071 = wceq 1601 ∈ wcel 2106 Vcvv 3397 {csn 4397 {cpr 4399 〈cop 4403 0cc0 10272 〈“cs1 13685 USPGraphcuspgr 26497 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2054 ax-8 2108 ax-9 2115 ax-10 2134 ax-11 2149 ax-12 2162 ax-13 2333 ax-ext 2753 ax-rep 5006 ax-sep 5017 ax-nul 5025 ax-pow 5077 ax-pr 5138 ax-un 7226 ax-cnex 10328 ax-resscn 10329 ax-1cn 10330 ax-icn 10331 ax-addcl 10332 ax-addrcl 10333 ax-mulcl 10334 ax-mulrcl 10335 ax-mulcom 10336 ax-addass 10337 ax-mulass 10338 ax-distr 10339 ax-i2m1 10340 ax-1ne0 10341 ax-1rid 10342 ax-rnegex 10343 ax-rrecex 10344 ax-cnre 10345 ax-pre-lttri 10346 ax-pre-lttrn 10347 ax-pre-ltadd 10348 ax-pre-mulgt0 10349 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3or 1072 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2550 df-eu 2586 df-clab 2763 df-cleq 2769 df-clel 2773 df-nfc 2920 df-ne 2969 df-nel 3075 df-ral 3094 df-rex 3095 df-reu 3096 df-rmo 3097 df-rab 3098 df-v 3399 df-sbc 3652 df-csb 3751 df-dif 3794 df-un 3796 df-in 3798 df-ss 3805 df-pss 3807 df-nul 4141 df-if 4307 df-pw 4380 df-sn 4398 df-pr 4400 df-tp 4402 df-op 4404 df-uni 4672 df-int 4711 df-iun 4755 df-br 4887 df-opab 4949 df-mpt 4966 df-tr 4988 df-id 5261 df-eprel 5266 df-po 5274 df-so 5275 df-fr 5314 df-we 5316 df-xp 5361 df-rel 5362 df-cnv 5363 df-co 5364 df-dm 5365 df-rn 5366 df-res 5367 df-ima 5368 df-pred 5933 df-ord 5979 df-on 5980 df-lim 5981 df-suc 5982 df-iota 6099 df-fun 6137 df-fn 6138 df-f 6139 df-f1 6140 df-fo 6141 df-f1o 6142 df-fv 6143 df-riota 6883 df-ov 6925 df-oprab 6926 df-mpt2 6927 df-om 7344 df-1st 7445 df-2nd 7446 df-wrecs 7689 df-recs 7751 df-rdg 7789 df-1o 7843 df-oadd 7847 df-er 8026 df-en 8242 df-dom 8243 df-sdom 8244 df-fin 8245 df-card 9098 df-cda 9325 df-pnf 10413 df-mnf 10414 df-xr 10415 df-ltxr 10416 df-le 10417 df-sub 10608 df-neg 10609 df-nn 11375 df-2 11438 df-n0 11643 df-xnn0 11715 df-z 11729 df-uz 11993 df-fz 12644 df-hash 13436 df-s1 13686 df-vtx 26346 df-iedg 26347 df-uspgr 26499 |
This theorem is referenced by: uspgr2v1e2w 26598 |
Copyright terms: Public domain | W3C validator |