Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ofcs1 Structured version   Visualization version   GIF version

Theorem ofcs1 34505
Description: Letterwise operations on a single letter word. (Contributed by Thierry Arnoux, 7-Oct-2018.)
Assertion
Ref Expression
ofcs1 ((𝐴𝑆𝐵𝑇) → (⟨“𝐴”⟩ ∘f/c 𝑅𝐵) = ⟨“(𝐴𝑅𝐵)”⟩)

Proof of Theorem ofcs1
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 snex 5404 . . . 4 {0} ∈ V
21a1i 11 . . 3 ((𝐴𝑆𝐵𝑇) → {0} ∈ V)
3 simpr 484 . . 3 ((𝐴𝑆𝐵𝑇) → 𝐵𝑇)
4 simpll 766 . . 3 (((𝐴𝑆𝐵𝑇) ∧ 𝑖 ∈ {0}) → 𝐴𝑆)
5 s1val 14605 . . . . 5 (𝐴𝑆 → ⟨“𝐴”⟩ = {⟨0, 𝐴⟩})
6 0nn0 12509 . . . . . 6 0 ∈ ℕ0
7 fmptsn 7156 . . . . . 6 ((0 ∈ ℕ0𝐴𝑆) → {⟨0, 𝐴⟩} = (𝑖 ∈ {0} ↦ 𝐴))
86, 7mpan 690 . . . . 5 (𝐴𝑆 → {⟨0, 𝐴⟩} = (𝑖 ∈ {0} ↦ 𝐴))
95, 8eqtrd 2769 . . . 4 (𝐴𝑆 → ⟨“𝐴”⟩ = (𝑖 ∈ {0} ↦ 𝐴))
109adantr 480 . . 3 ((𝐴𝑆𝐵𝑇) → ⟨“𝐴”⟩ = (𝑖 ∈ {0} ↦ 𝐴))
112, 3, 4, 10ofcfval2 34064 . 2 ((𝐴𝑆𝐵𝑇) → (⟨“𝐴”⟩ ∘f/c 𝑅𝐵) = (𝑖 ∈ {0} ↦ (𝐴𝑅𝐵)))
12 ovex 7433 . . . 4 (𝐴𝑅𝐵) ∈ V
13 s1val 14605 . . . 4 ((𝐴𝑅𝐵) ∈ V → ⟨“(𝐴𝑅𝐵)”⟩ = {⟨0, (𝐴𝑅𝐵)⟩})
1412, 13ax-mp 5 . . 3 ⟨“(𝐴𝑅𝐵)”⟩ = {⟨0, (𝐴𝑅𝐵)⟩}
15 fmptsn 7156 . . . 4 ((0 ∈ ℕ0 ∧ (𝐴𝑅𝐵) ∈ V) → {⟨0, (𝐴𝑅𝐵)⟩} = (𝑖 ∈ {0} ↦ (𝐴𝑅𝐵)))
166, 12, 15mp2an 692 . . 3 {⟨0, (𝐴𝑅𝐵)⟩} = (𝑖 ∈ {0} ↦ (𝐴𝑅𝐵))
1714, 16eqtri 2757 . 2 ⟨“(𝐴𝑅𝐵)”⟩ = (𝑖 ∈ {0} ↦ (𝐴𝑅𝐵))
1811, 17eqtr4di 2787 1 ((𝐴𝑆𝐵𝑇) → (⟨“𝐴”⟩ ∘f/c 𝑅𝐵) = ⟨“(𝐴𝑅𝐵)”⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2107  Vcvv 3457  {csn 4599  cop 4605  cmpt 5199  (class class class)co 7400  0cc0 11122  0cn0 12494  ⟨“cs1 14602  f/c cofc 34055
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5247  ax-sep 5264  ax-nul 5274  ax-pr 5400  ax-1cn 11180  ax-icn 11181  ax-addcl 11182  ax-mulcl 11184  ax-i2m1 11190
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-reu 3358  df-rab 3414  df-v 3459  df-sbc 3764  df-csb 3873  df-dif 3927  df-un 3929  df-in 3931  df-ss 3941  df-nul 4307  df-if 4499  df-sn 4600  df-pr 4602  df-op 4606  df-uni 4882  df-iun 4967  df-br 5118  df-opab 5180  df-mpt 5200  df-id 5546  df-xp 5658  df-rel 5659  df-cnv 5660  df-co 5661  df-dm 5662  df-rn 5663  df-res 5664  df-ima 5665  df-iota 6481  df-fun 6530  df-fn 6531  df-f 6532  df-f1 6533  df-fo 6534  df-f1o 6535  df-fv 6536  df-ov 7403  df-oprab 7404  df-mpo 7405  df-n0 12495  df-s1 14603  df-ofc 34056
This theorem is referenced by:  ofcs2  34506
  Copyright terms: Public domain W3C validator