Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ofcs1 Structured version   Visualization version   GIF version

Theorem ofcs1 33493
Description: Letterwise operations on a single letter word. (Contributed by Thierry Arnoux, 7-Oct-2018.)
Assertion
Ref Expression
ofcs1 ((𝐴𝑆𝐵𝑇) → (⟨“𝐴”⟩ ∘f/c 𝑅𝐵) = ⟨“(𝐴𝑅𝐵)”⟩)

Proof of Theorem ofcs1
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 snex 5430 . . . 4 {0} ∈ V
21a1i 11 . . 3 ((𝐴𝑆𝐵𝑇) → {0} ∈ V)
3 simpr 486 . . 3 ((𝐴𝑆𝐵𝑇) → 𝐵𝑇)
4 simpll 766 . . 3 (((𝐴𝑆𝐵𝑇) ∧ 𝑖 ∈ {0}) → 𝐴𝑆)
5 s1val 14544 . . . . 5 (𝐴𝑆 → ⟨“𝐴”⟩ = {⟨0, 𝐴⟩})
6 0nn0 12483 . . . . . 6 0 ∈ ℕ0
7 fmptsn 7160 . . . . . 6 ((0 ∈ ℕ0𝐴𝑆) → {⟨0, 𝐴⟩} = (𝑖 ∈ {0} ↦ 𝐴))
86, 7mpan 689 . . . . 5 (𝐴𝑆 → {⟨0, 𝐴⟩} = (𝑖 ∈ {0} ↦ 𝐴))
95, 8eqtrd 2773 . . . 4 (𝐴𝑆 → ⟨“𝐴”⟩ = (𝑖 ∈ {0} ↦ 𝐴))
109adantr 482 . . 3 ((𝐴𝑆𝐵𝑇) → ⟨“𝐴”⟩ = (𝑖 ∈ {0} ↦ 𝐴))
112, 3, 4, 10ofcfval2 33040 . 2 ((𝐴𝑆𝐵𝑇) → (⟨“𝐴”⟩ ∘f/c 𝑅𝐵) = (𝑖 ∈ {0} ↦ (𝐴𝑅𝐵)))
12 ovex 7437 . . . 4 (𝐴𝑅𝐵) ∈ V
13 s1val 14544 . . . 4 ((𝐴𝑅𝐵) ∈ V → ⟨“(𝐴𝑅𝐵)”⟩ = {⟨0, (𝐴𝑅𝐵)⟩})
1412, 13ax-mp 5 . . 3 ⟨“(𝐴𝑅𝐵)”⟩ = {⟨0, (𝐴𝑅𝐵)⟩}
15 fmptsn 7160 . . . 4 ((0 ∈ ℕ0 ∧ (𝐴𝑅𝐵) ∈ V) → {⟨0, (𝐴𝑅𝐵)⟩} = (𝑖 ∈ {0} ↦ (𝐴𝑅𝐵)))
166, 12, 15mp2an 691 . . 3 {⟨0, (𝐴𝑅𝐵)⟩} = (𝑖 ∈ {0} ↦ (𝐴𝑅𝐵))
1714, 16eqtri 2761 . 2 ⟨“(𝐴𝑅𝐵)”⟩ = (𝑖 ∈ {0} ↦ (𝐴𝑅𝐵))
1811, 17eqtr4di 2791 1 ((𝐴𝑆𝐵𝑇) → (⟨“𝐴”⟩ ∘f/c 𝑅𝐵) = ⟨“(𝐴𝑅𝐵)”⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397   = wceq 1542  wcel 2107  Vcvv 3475  {csn 4627  cop 4633  cmpt 5230  (class class class)co 7404  0cc0 11106  0cn0 12468  ⟨“cs1 14541  f/c cofc 33031
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pr 5426  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-mulcl 11168  ax-i2m1 11174
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-ov 7407  df-oprab 7408  df-mpo 7409  df-n0 12469  df-s1 14542  df-ofc 33032
This theorem is referenced by:  ofcs2  33494
  Copyright terms: Public domain W3C validator