Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > ofcs1 | Structured version Visualization version GIF version |
Description: Letterwise operations on a single letter word. (Contributed by Thierry Arnoux, 7-Oct-2018.) |
Ref | Expression |
---|---|
ofcs1 | ⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑇) → (〈“𝐴”〉 ∘f/c 𝑅𝐵) = 〈“(𝐴𝑅𝐵)”〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snex 5363 | . . . 4 ⊢ {0} ∈ V | |
2 | 1 | a1i 11 | . . 3 ⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑇) → {0} ∈ V) |
3 | simpr 486 | . . 3 ⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑇) → 𝐵 ∈ 𝑇) | |
4 | simpll 765 | . . 3 ⊢ (((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑇) ∧ 𝑖 ∈ {0}) → 𝐴 ∈ 𝑆) | |
5 | s1val 14348 | . . . . 5 ⊢ (𝐴 ∈ 𝑆 → 〈“𝐴”〉 = {〈0, 𝐴〉}) | |
6 | 0nn0 12294 | . . . . . 6 ⊢ 0 ∈ ℕ0 | |
7 | fmptsn 7071 | . . . . . 6 ⊢ ((0 ∈ ℕ0 ∧ 𝐴 ∈ 𝑆) → {〈0, 𝐴〉} = (𝑖 ∈ {0} ↦ 𝐴)) | |
8 | 6, 7 | mpan 688 | . . . . 5 ⊢ (𝐴 ∈ 𝑆 → {〈0, 𝐴〉} = (𝑖 ∈ {0} ↦ 𝐴)) |
9 | 5, 8 | eqtrd 2776 | . . . 4 ⊢ (𝐴 ∈ 𝑆 → 〈“𝐴”〉 = (𝑖 ∈ {0} ↦ 𝐴)) |
10 | 9 | adantr 482 | . . 3 ⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑇) → 〈“𝐴”〉 = (𝑖 ∈ {0} ↦ 𝐴)) |
11 | 2, 3, 4, 10 | ofcfval2 32117 | . 2 ⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑇) → (〈“𝐴”〉 ∘f/c 𝑅𝐵) = (𝑖 ∈ {0} ↦ (𝐴𝑅𝐵))) |
12 | ovex 7340 | . . . 4 ⊢ (𝐴𝑅𝐵) ∈ V | |
13 | s1val 14348 | . . . 4 ⊢ ((𝐴𝑅𝐵) ∈ V → 〈“(𝐴𝑅𝐵)”〉 = {〈0, (𝐴𝑅𝐵)〉}) | |
14 | 12, 13 | ax-mp 5 | . . 3 ⊢ 〈“(𝐴𝑅𝐵)”〉 = {〈0, (𝐴𝑅𝐵)〉} |
15 | fmptsn 7071 | . . . 4 ⊢ ((0 ∈ ℕ0 ∧ (𝐴𝑅𝐵) ∈ V) → {〈0, (𝐴𝑅𝐵)〉} = (𝑖 ∈ {0} ↦ (𝐴𝑅𝐵))) | |
16 | 6, 12, 15 | mp2an 690 | . . 3 ⊢ {〈0, (𝐴𝑅𝐵)〉} = (𝑖 ∈ {0} ↦ (𝐴𝑅𝐵)) |
17 | 14, 16 | eqtri 2764 | . 2 ⊢ 〈“(𝐴𝑅𝐵)”〉 = (𝑖 ∈ {0} ↦ (𝐴𝑅𝐵)) |
18 | 11, 17 | eqtr4di 2794 | 1 ⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑇) → (〈“𝐴”〉 ∘f/c 𝑅𝐵) = 〈“(𝐴𝑅𝐵)”〉) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1539 ∈ wcel 2104 Vcvv 3437 {csn 4565 〈cop 4571 ↦ cmpt 5164 (class class class)co 7307 0cc0 10917 ℕ0cn0 12279 〈“cs1 14345 ∘f/c cofc 32108 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-rep 5218 ax-sep 5232 ax-nul 5239 ax-pr 5361 ax-1cn 10975 ax-icn 10976 ax-addcl 10977 ax-mulcl 10979 ax-i2m1 10985 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-reu 3286 df-rab 3287 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-iun 4933 df-br 5082 df-opab 5144 df-mpt 5165 df-id 5500 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-ov 7310 df-oprab 7311 df-mpo 7312 df-n0 12280 df-s1 14346 df-ofc 32109 |
This theorem is referenced by: ofcs2 32569 |
Copyright terms: Public domain | W3C validator |