![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ofcs1 | Structured version Visualization version GIF version |
Description: Letterwise operations on a single letter word. (Contributed by Thierry Arnoux, 7-Oct-2018.) |
Ref | Expression |
---|---|
ofcs1 | ⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑇) → (⟨“𝐴”⟩ ∘f/c 𝑅𝐵) = ⟨“(𝐴𝑅𝐵)”⟩) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snex 5422 | . . . 4 ⊢ {0} ∈ V | |
2 | 1 | a1i 11 | . . 3 ⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑇) → {0} ∈ V) |
3 | simpr 484 | . . 3 ⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑇) → 𝐵 ∈ 𝑇) | |
4 | simpll 764 | . . 3 ⊢ (((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑇) ∧ 𝑖 ∈ {0}) → 𝐴 ∈ 𝑆) | |
5 | s1val 14550 | . . . . 5 ⊢ (𝐴 ∈ 𝑆 → ⟨“𝐴”⟩ = {⟨0, 𝐴⟩}) | |
6 | 0nn0 12486 | . . . . . 6 ⊢ 0 ∈ ℕ0 | |
7 | fmptsn 7158 | . . . . . 6 ⊢ ((0 ∈ ℕ0 ∧ 𝐴 ∈ 𝑆) → {⟨0, 𝐴⟩} = (𝑖 ∈ {0} ↦ 𝐴)) | |
8 | 6, 7 | mpan 687 | . . . . 5 ⊢ (𝐴 ∈ 𝑆 → {⟨0, 𝐴⟩} = (𝑖 ∈ {0} ↦ 𝐴)) |
9 | 5, 8 | eqtrd 2764 | . . . 4 ⊢ (𝐴 ∈ 𝑆 → ⟨“𝐴”⟩ = (𝑖 ∈ {0} ↦ 𝐴)) |
10 | 9 | adantr 480 | . . 3 ⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑇) → ⟨“𝐴”⟩ = (𝑖 ∈ {0} ↦ 𝐴)) |
11 | 2, 3, 4, 10 | ofcfval2 33622 | . 2 ⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑇) → (⟨“𝐴”⟩ ∘f/c 𝑅𝐵) = (𝑖 ∈ {0} ↦ (𝐴𝑅𝐵))) |
12 | ovex 7435 | . . . 4 ⊢ (𝐴𝑅𝐵) ∈ V | |
13 | s1val 14550 | . . . 4 ⊢ ((𝐴𝑅𝐵) ∈ V → ⟨“(𝐴𝑅𝐵)”⟩ = {⟨0, (𝐴𝑅𝐵)⟩}) | |
14 | 12, 13 | ax-mp 5 | . . 3 ⊢ ⟨“(𝐴𝑅𝐵)”⟩ = {⟨0, (𝐴𝑅𝐵)⟩} |
15 | fmptsn 7158 | . . . 4 ⊢ ((0 ∈ ℕ0 ∧ (𝐴𝑅𝐵) ∈ V) → {⟨0, (𝐴𝑅𝐵)⟩} = (𝑖 ∈ {0} ↦ (𝐴𝑅𝐵))) | |
16 | 6, 12, 15 | mp2an 689 | . . 3 ⊢ {⟨0, (𝐴𝑅𝐵)⟩} = (𝑖 ∈ {0} ↦ (𝐴𝑅𝐵)) |
17 | 14, 16 | eqtri 2752 | . 2 ⊢ ⟨“(𝐴𝑅𝐵)”⟩ = (𝑖 ∈ {0} ↦ (𝐴𝑅𝐵)) |
18 | 11, 17 | eqtr4di 2782 | 1 ⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑇) → (⟨“𝐴”⟩ ∘f/c 𝑅𝐵) = ⟨“(𝐴𝑅𝐵)”⟩) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1533 ∈ wcel 2098 Vcvv 3466 {csn 4621 ⟨cop 4627 ↦ cmpt 5222 (class class class)co 7402 0cc0 11107 ℕ0cn0 12471 ⟨“cs1 14547 ∘f/c cofc 33613 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-rep 5276 ax-sep 5290 ax-nul 5297 ax-pr 5418 ax-1cn 11165 ax-icn 11166 ax-addcl 11167 ax-mulcl 11169 ax-i2m1 11175 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-ral 3054 df-rex 3063 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3771 df-csb 3887 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-nul 4316 df-if 4522 df-sn 4622 df-pr 4624 df-op 4628 df-uni 4901 df-iun 4990 df-br 5140 df-opab 5202 df-mpt 5223 df-id 5565 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-iota 6486 df-fun 6536 df-fn 6537 df-f 6538 df-f1 6539 df-fo 6540 df-f1o 6541 df-fv 6542 df-ov 7405 df-oprab 7406 df-mpo 7407 df-n0 12472 df-s1 14548 df-ofc 33614 |
This theorem is referenced by: ofcs2 34076 |
Copyright terms: Public domain | W3C validator |