![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > gsumws1 | Structured version Visualization version GIF version |
Description: A singleton composite recovers the initial symbol. (Contributed by Stefan O'Rear, 16-Aug-2015.) |
Ref | Expression |
---|---|
gsumwcl.b | ⊢ 𝐵 = (Base‘𝐺) |
Ref | Expression |
---|---|
gsumws1 | ⊢ (𝑆 ∈ 𝐵 → (𝐺 Σg ⟨“𝑆”⟩) = 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | s1val 14492 | . . 3 ⊢ (𝑆 ∈ 𝐵 → ⟨“𝑆”⟩ = {⟨0, 𝑆⟩}) | |
2 | 1 | oveq2d 7374 | . 2 ⊢ (𝑆 ∈ 𝐵 → (𝐺 Σg ⟨“𝑆”⟩) = (𝐺 Σg {⟨0, 𝑆⟩})) |
3 | gsumwcl.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
4 | eqid 2733 | . . 3 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
5 | elfvdm 6880 | . . . 4 ⊢ (𝑆 ∈ (Base‘𝐺) → 𝐺 ∈ dom Base) | |
6 | 5, 3 | eleq2s 2852 | . . 3 ⊢ (𝑆 ∈ 𝐵 → 𝐺 ∈ dom Base) |
7 | 0nn0 12433 | . . . . 5 ⊢ 0 ∈ ℕ0 | |
8 | nn0uz 12810 | . . . . 5 ⊢ ℕ0 = (ℤ≥‘0) | |
9 | 7, 8 | eleqtri 2832 | . . . 4 ⊢ 0 ∈ (ℤ≥‘0) |
10 | 9 | a1i 11 | . . 3 ⊢ (𝑆 ∈ 𝐵 → 0 ∈ (ℤ≥‘0)) |
11 | 0z 12515 | . . . . . . 7 ⊢ 0 ∈ ℤ | |
12 | f1osng 6826 | . . . . . . 7 ⊢ ((0 ∈ ℤ ∧ 𝑆 ∈ 𝐵) → {⟨0, 𝑆⟩}:{0}–1-1-onto→{𝑆}) | |
13 | 11, 12 | mpan 689 | . . . . . 6 ⊢ (𝑆 ∈ 𝐵 → {⟨0, 𝑆⟩}:{0}–1-1-onto→{𝑆}) |
14 | f1of 6785 | . . . . . 6 ⊢ ({⟨0, 𝑆⟩}:{0}–1-1-onto→{𝑆} → {⟨0, 𝑆⟩}:{0}⟶{𝑆}) | |
15 | 13, 14 | syl 17 | . . . . 5 ⊢ (𝑆 ∈ 𝐵 → {⟨0, 𝑆⟩}:{0}⟶{𝑆}) |
16 | snssi 4769 | . . . . 5 ⊢ (𝑆 ∈ 𝐵 → {𝑆} ⊆ 𝐵) | |
17 | 15, 16 | fssd 6687 | . . . 4 ⊢ (𝑆 ∈ 𝐵 → {⟨0, 𝑆⟩}:{0}⟶𝐵) |
18 | fz0sn 13547 | . . . . 5 ⊢ (0...0) = {0} | |
19 | 18 | feq2i 6661 | . . . 4 ⊢ ({⟨0, 𝑆⟩}:(0...0)⟶𝐵 ↔ {⟨0, 𝑆⟩}:{0}⟶𝐵) |
20 | 17, 19 | sylibr 233 | . . 3 ⊢ (𝑆 ∈ 𝐵 → {⟨0, 𝑆⟩}:(0...0)⟶𝐵) |
21 | 3, 4, 6, 10, 20 | gsumval2 18546 | . 2 ⊢ (𝑆 ∈ 𝐵 → (𝐺 Σg {⟨0, 𝑆⟩}) = (seq0((+g‘𝐺), {⟨0, 𝑆⟩})‘0)) |
22 | fvsng 7127 | . . . 4 ⊢ ((0 ∈ ℤ ∧ 𝑆 ∈ 𝐵) → ({⟨0, 𝑆⟩}‘0) = 𝑆) | |
23 | 11, 22 | mpan 689 | . . 3 ⊢ (𝑆 ∈ 𝐵 → ({⟨0, 𝑆⟩}‘0) = 𝑆) |
24 | 11, 23 | seq1i 13926 | . 2 ⊢ (𝑆 ∈ 𝐵 → (seq0((+g‘𝐺), {⟨0, 𝑆⟩})‘0) = 𝑆) |
25 | 2, 21, 24 | 3eqtrd 2777 | 1 ⊢ (𝑆 ∈ 𝐵 → (𝐺 Σg ⟨“𝑆”⟩) = 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1542 ∈ wcel 2107 {csn 4587 ⟨cop 4593 dom cdm 5634 ⟶wf 6493 –1-1-onto→wf1o 6496 ‘cfv 6497 (class class class)co 7358 0cc0 11056 ℕ0cn0 12418 ℤcz 12504 ℤ≥cuz 12768 ...cfz 13430 seqcseq 13912 ⟨“cs1 14489 Basecbs 17088 +gcplusg 17138 Σg cgsu 17327 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5257 ax-nul 5264 ax-pow 5321 ax-pr 5385 ax-un 7673 ax-cnex 11112 ax-resscn 11113 ax-1cn 11114 ax-icn 11115 ax-addcl 11116 ax-addrcl 11117 ax-mulcl 11118 ax-mulrcl 11119 ax-mulcom 11120 ax-addass 11121 ax-mulass 11122 ax-distr 11123 ax-i2m1 11124 ax-1ne0 11125 ax-1rid 11126 ax-rnegex 11127 ax-rrecex 11128 ax-cnre 11129 ax-pre-lttri 11130 ax-pre-lttrn 11131 ax-pre-ltadd 11132 ax-pre-mulgt0 11133 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3352 df-reu 3353 df-rab 3407 df-v 3446 df-sbc 3741 df-csb 3857 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3930 df-nul 4284 df-if 4488 df-pw 4563 df-sn 4588 df-pr 4590 df-op 4594 df-uni 4867 df-iun 4957 df-br 5107 df-opab 5169 df-mpt 5190 df-tr 5224 df-id 5532 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5589 df-we 5591 df-xp 5640 df-rel 5641 df-cnv 5642 df-co 5643 df-dm 5644 df-rn 5645 df-res 5646 df-ima 5647 df-pred 6254 df-ord 6321 df-on 6322 df-lim 6323 df-suc 6324 df-iota 6449 df-fun 6499 df-fn 6500 df-f 6501 df-f1 6502 df-fo 6503 df-f1o 6504 df-fv 6505 df-riota 7314 df-ov 7361 df-oprab 7362 df-mpo 7363 df-om 7804 df-1st 7922 df-2nd 7923 df-frecs 8213 df-wrecs 8244 df-recs 8318 df-rdg 8357 df-er 8651 df-en 8887 df-dom 8888 df-sdom 8889 df-pnf 11196 df-mnf 11197 df-xr 11198 df-ltxr 11199 df-le 11200 df-sub 11392 df-neg 11393 df-nn 12159 df-n0 12419 df-z 12505 df-uz 12769 df-fz 13431 df-seq 13913 df-s1 14490 df-0g 17328 df-gsum 17329 |
This theorem is referenced by: gsumws2 18657 gsumccatsn 18658 gsumwspan 18661 frmdgsum 18677 frmdup2 18680 gsumwrev 19152 psgnunilem5 19281 psgnpmtr 19297 frgpup2 19563 cyc3genpmlem 32049 mrsubcv 34161 gsumws3 42557 gsumws4 42558 |
Copyright terms: Public domain | W3C validator |