MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsumws1 Structured version   Visualization version   GIF version

Theorem gsumws1 18797
Description: A singleton composite recovers the initial symbol. (Contributed by Stefan O'Rear, 16-Aug-2015.)
Hypothesis
Ref Expression
gsumwcl.b 𝐵 = (Base‘𝐺)
Assertion
Ref Expression
gsumws1 (𝑆𝐵 → (𝐺 Σg ⟨“𝑆”⟩) = 𝑆)

Proof of Theorem gsumws1
StepHypRef Expression
1 s1val 14588 . . 3 (𝑆𝐵 → ⟨“𝑆”⟩ = {⟨0, 𝑆⟩})
21oveq2d 7442 . 2 (𝑆𝐵 → (𝐺 Σg ⟨“𝑆”⟩) = (𝐺 Σg {⟨0, 𝑆⟩}))
3 gsumwcl.b . . 3 𝐵 = (Base‘𝐺)
4 eqid 2728 . . 3 (+g𝐺) = (+g𝐺)
5 elfvdm 6939 . . . 4 (𝑆 ∈ (Base‘𝐺) → 𝐺 ∈ dom Base)
65, 3eleq2s 2847 . . 3 (𝑆𝐵𝐺 ∈ dom Base)
7 0nn0 12525 . . . . 5 0 ∈ ℕ0
8 nn0uz 12902 . . . . 5 0 = (ℤ‘0)
97, 8eleqtri 2827 . . . 4 0 ∈ (ℤ‘0)
109a1i 11 . . 3 (𝑆𝐵 → 0 ∈ (ℤ‘0))
11 0z 12607 . . . . . . 7 0 ∈ ℤ
12 f1osng 6885 . . . . . . 7 ((0 ∈ ℤ ∧ 𝑆𝐵) → {⟨0, 𝑆⟩}:{0}–1-1-onto→{𝑆})
1311, 12mpan 688 . . . . . 6 (𝑆𝐵 → {⟨0, 𝑆⟩}:{0}–1-1-onto→{𝑆})
14 f1of 6844 . . . . . 6 ({⟨0, 𝑆⟩}:{0}–1-1-onto→{𝑆} → {⟨0, 𝑆⟩}:{0}⟶{𝑆})
1513, 14syl 17 . . . . 5 (𝑆𝐵 → {⟨0, 𝑆⟩}:{0}⟶{𝑆})
16 snssi 4816 . . . . 5 (𝑆𝐵 → {𝑆} ⊆ 𝐵)
1715, 16fssd 6745 . . . 4 (𝑆𝐵 → {⟨0, 𝑆⟩}:{0}⟶𝐵)
18 fz0sn 13641 . . . . 5 (0...0) = {0}
1918feq2i 6719 . . . 4 ({⟨0, 𝑆⟩}:(0...0)⟶𝐵 ↔ {⟨0, 𝑆⟩}:{0}⟶𝐵)
2017, 19sylibr 233 . . 3 (𝑆𝐵 → {⟨0, 𝑆⟩}:(0...0)⟶𝐵)
213, 4, 6, 10, 20gsumval2 18653 . 2 (𝑆𝐵 → (𝐺 Σg {⟨0, 𝑆⟩}) = (seq0((+g𝐺), {⟨0, 𝑆⟩})‘0))
22 fvsng 7195 . . . 4 ((0 ∈ ℤ ∧ 𝑆𝐵) → ({⟨0, 𝑆⟩}‘0) = 𝑆)
2311, 22mpan 688 . . 3 (𝑆𝐵 → ({⟨0, 𝑆⟩}‘0) = 𝑆)
2411, 23seq1i 14020 . 2 (𝑆𝐵 → (seq0((+g𝐺), {⟨0, 𝑆⟩})‘0) = 𝑆)
252, 21, 243eqtrd 2772 1 (𝑆𝐵 → (𝐺 Σg ⟨“𝑆”⟩) = 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1533  wcel 2098  {csn 4632  cop 4638  dom cdm 5682  wf 6549  1-1-ontowf1o 6552  cfv 6553  (class class class)co 7426  0cc0 11146  0cn0 12510  cz 12596  cuz 12860  ...cfz 13524  seqcseq 14006  ⟨“cs1 14585  Basecbs 17187  +gcplusg 17240   Σg cgsu 17429
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-sep 5303  ax-nul 5310  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-cnex 11202  ax-resscn 11203  ax-1cn 11204  ax-icn 11205  ax-addcl 11206  ax-addrcl 11207  ax-mulcl 11208  ax-mulrcl 11209  ax-mulcom 11210  ax-addass 11211  ax-mulass 11212  ax-distr 11213  ax-i2m1 11214  ax-1ne0 11215  ax-1rid 11216  ax-rnegex 11217  ax-rrecex 11218  ax-cnre 11219  ax-pre-lttri 11220  ax-pre-lttrn 11221  ax-pre-ltadd 11222  ax-pre-mulgt0 11223
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3374  df-reu 3375  df-rab 3431  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4327  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-iun 5002  df-br 5153  df-opab 5215  df-mpt 5236  df-tr 5270  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6310  df-ord 6377  df-on 6378  df-lim 6379  df-suc 6380  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-f1 6558  df-fo 6559  df-f1o 6560  df-fv 6561  df-riota 7382  df-ov 7429  df-oprab 7430  df-mpo 7431  df-om 7877  df-1st 7999  df-2nd 8000  df-frecs 8293  df-wrecs 8324  df-recs 8398  df-rdg 8437  df-er 8731  df-en 8971  df-dom 8972  df-sdom 8973  df-pnf 11288  df-mnf 11289  df-xr 11290  df-ltxr 11291  df-le 11292  df-sub 11484  df-neg 11485  df-nn 12251  df-n0 12511  df-z 12597  df-uz 12861  df-fz 13525  df-seq 14007  df-s1 14586  df-0g 17430  df-gsum 17431
This theorem is referenced by:  gsumws2  18801  gsumccatsn  18802  gsumwspan  18805  frmdgsum  18821  frmdup2  18824  gsumwrev  19327  psgnunilem5  19456  psgnpmtr  19472  frgpup2  19738  cyc3genpmlem  32893  mrsubcv  35153  gsumws3  43657  gsumws4  43658
  Copyright terms: Public domain W3C validator