| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > gsumws1 | Structured version Visualization version GIF version | ||
| Description: A singleton composite recovers the initial symbol. (Contributed by Stefan O'Rear, 16-Aug-2015.) |
| Ref | Expression |
|---|---|
| gsumwcl.b | ⊢ 𝐵 = (Base‘𝐺) |
| Ref | Expression |
|---|---|
| gsumws1 | ⊢ (𝑆 ∈ 𝐵 → (𝐺 Σg 〈“𝑆”〉) = 𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | s1val 14506 | . . 3 ⊢ (𝑆 ∈ 𝐵 → 〈“𝑆”〉 = {〈0, 𝑆〉}) | |
| 2 | 1 | oveq2d 7362 | . 2 ⊢ (𝑆 ∈ 𝐵 → (𝐺 Σg 〈“𝑆”〉) = (𝐺 Σg {〈0, 𝑆〉})) |
| 3 | gsumwcl.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
| 4 | eqid 2731 | . . 3 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
| 5 | elfvdm 6856 | . . . 4 ⊢ (𝑆 ∈ (Base‘𝐺) → 𝐺 ∈ dom Base) | |
| 6 | 5, 3 | eleq2s 2849 | . . 3 ⊢ (𝑆 ∈ 𝐵 → 𝐺 ∈ dom Base) |
| 7 | 0nn0 12396 | . . . . 5 ⊢ 0 ∈ ℕ0 | |
| 8 | nn0uz 12774 | . . . . 5 ⊢ ℕ0 = (ℤ≥‘0) | |
| 9 | 7, 8 | eleqtri 2829 | . . . 4 ⊢ 0 ∈ (ℤ≥‘0) |
| 10 | 9 | a1i 11 | . . 3 ⊢ (𝑆 ∈ 𝐵 → 0 ∈ (ℤ≥‘0)) |
| 11 | 0z 12479 | . . . . . . 7 ⊢ 0 ∈ ℤ | |
| 12 | f1osng 6804 | . . . . . . 7 ⊢ ((0 ∈ ℤ ∧ 𝑆 ∈ 𝐵) → {〈0, 𝑆〉}:{0}–1-1-onto→{𝑆}) | |
| 13 | 11, 12 | mpan 690 | . . . . . 6 ⊢ (𝑆 ∈ 𝐵 → {〈0, 𝑆〉}:{0}–1-1-onto→{𝑆}) |
| 14 | f1of 6763 | . . . . . 6 ⊢ ({〈0, 𝑆〉}:{0}–1-1-onto→{𝑆} → {〈0, 𝑆〉}:{0}⟶{𝑆}) | |
| 15 | 13, 14 | syl 17 | . . . . 5 ⊢ (𝑆 ∈ 𝐵 → {〈0, 𝑆〉}:{0}⟶{𝑆}) |
| 16 | snssi 4757 | . . . . 5 ⊢ (𝑆 ∈ 𝐵 → {𝑆} ⊆ 𝐵) | |
| 17 | 15, 16 | fssd 6668 | . . . 4 ⊢ (𝑆 ∈ 𝐵 → {〈0, 𝑆〉}:{0}⟶𝐵) |
| 18 | fz0sn 13527 | . . . . 5 ⊢ (0...0) = {0} | |
| 19 | 18 | feq2i 6643 | . . . 4 ⊢ ({〈0, 𝑆〉}:(0...0)⟶𝐵 ↔ {〈0, 𝑆〉}:{0}⟶𝐵) |
| 20 | 17, 19 | sylibr 234 | . . 3 ⊢ (𝑆 ∈ 𝐵 → {〈0, 𝑆〉}:(0...0)⟶𝐵) |
| 21 | 3, 4, 6, 10, 20 | gsumval2 18594 | . 2 ⊢ (𝑆 ∈ 𝐵 → (𝐺 Σg {〈0, 𝑆〉}) = (seq0((+g‘𝐺), {〈0, 𝑆〉})‘0)) |
| 22 | fvsng 7114 | . . . 4 ⊢ ((0 ∈ ℤ ∧ 𝑆 ∈ 𝐵) → ({〈0, 𝑆〉}‘0) = 𝑆) | |
| 23 | 11, 22 | mpan 690 | . . 3 ⊢ (𝑆 ∈ 𝐵 → ({〈0, 𝑆〉}‘0) = 𝑆) |
| 24 | 11, 23 | seq1i 13922 | . 2 ⊢ (𝑆 ∈ 𝐵 → (seq0((+g‘𝐺), {〈0, 𝑆〉})‘0) = 𝑆) |
| 25 | 2, 21, 24 | 3eqtrd 2770 | 1 ⊢ (𝑆 ∈ 𝐵 → (𝐺 Σg 〈“𝑆”〉) = 𝑆) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 {csn 4573 〈cop 4579 dom cdm 5614 ⟶wf 6477 –1-1-onto→wf1o 6480 ‘cfv 6481 (class class class)co 7346 0cc0 11006 ℕ0cn0 12381 ℤcz 12468 ℤ≥cuz 12732 ...cfz 13407 seqcseq 13908 〈“cs1 14503 Basecbs 17120 +gcplusg 17161 Σg cgsu 17344 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-n0 12382 df-z 12469 df-uz 12733 df-fz 13408 df-seq 13909 df-s1 14504 df-0g 17345 df-gsum 17346 |
| This theorem is referenced by: gsumws2 18750 gsumccatsn 18751 gsumwspan 18754 frmdgsum 18770 frmdup2 18773 gsumwrev 19278 psgnunilem5 19406 psgnpmtr 19422 frgpup2 19688 cyc3genpmlem 33120 elrgspnlem3 33211 1arithufdlem1 33509 1arithufdlem3 33511 1arithufdlem4 33512 mrsubcv 35554 gsumws3 44237 gsumws4 44238 |
| Copyright terms: Public domain | W3C validator |