Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > gsumws1 | Structured version Visualization version GIF version |
Description: A singleton composite recovers the initial symbol. (Contributed by Stefan O'Rear, 16-Aug-2015.) |
Ref | Expression |
---|---|
gsumwcl.b | ⊢ 𝐵 = (Base‘𝐺) |
Ref | Expression |
---|---|
gsumws1 | ⊢ (𝑆 ∈ 𝐵 → (𝐺 Σg 〈“𝑆”〉) = 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | s1val 14231 | . . 3 ⊢ (𝑆 ∈ 𝐵 → 〈“𝑆”〉 = {〈0, 𝑆〉}) | |
2 | 1 | oveq2d 7271 | . 2 ⊢ (𝑆 ∈ 𝐵 → (𝐺 Σg 〈“𝑆”〉) = (𝐺 Σg {〈0, 𝑆〉})) |
3 | gsumwcl.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
4 | eqid 2738 | . . 3 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
5 | elfvdm 6788 | . . . 4 ⊢ (𝑆 ∈ (Base‘𝐺) → 𝐺 ∈ dom Base) | |
6 | 5, 3 | eleq2s 2857 | . . 3 ⊢ (𝑆 ∈ 𝐵 → 𝐺 ∈ dom Base) |
7 | 0nn0 12178 | . . . . 5 ⊢ 0 ∈ ℕ0 | |
8 | nn0uz 12549 | . . . . 5 ⊢ ℕ0 = (ℤ≥‘0) | |
9 | 7, 8 | eleqtri 2837 | . . . 4 ⊢ 0 ∈ (ℤ≥‘0) |
10 | 9 | a1i 11 | . . 3 ⊢ (𝑆 ∈ 𝐵 → 0 ∈ (ℤ≥‘0)) |
11 | 0z 12260 | . . . . . . 7 ⊢ 0 ∈ ℤ | |
12 | f1osng 6740 | . . . . . . 7 ⊢ ((0 ∈ ℤ ∧ 𝑆 ∈ 𝐵) → {〈0, 𝑆〉}:{0}–1-1-onto→{𝑆}) | |
13 | 11, 12 | mpan 686 | . . . . . 6 ⊢ (𝑆 ∈ 𝐵 → {〈0, 𝑆〉}:{0}–1-1-onto→{𝑆}) |
14 | f1of 6700 | . . . . . 6 ⊢ ({〈0, 𝑆〉}:{0}–1-1-onto→{𝑆} → {〈0, 𝑆〉}:{0}⟶{𝑆}) | |
15 | 13, 14 | syl 17 | . . . . 5 ⊢ (𝑆 ∈ 𝐵 → {〈0, 𝑆〉}:{0}⟶{𝑆}) |
16 | snssi 4738 | . . . . 5 ⊢ (𝑆 ∈ 𝐵 → {𝑆} ⊆ 𝐵) | |
17 | 15, 16 | fssd 6602 | . . . 4 ⊢ (𝑆 ∈ 𝐵 → {〈0, 𝑆〉}:{0}⟶𝐵) |
18 | fz0sn 13285 | . . . . 5 ⊢ (0...0) = {0} | |
19 | 18 | feq2i 6576 | . . . 4 ⊢ ({〈0, 𝑆〉}:(0...0)⟶𝐵 ↔ {〈0, 𝑆〉}:{0}⟶𝐵) |
20 | 17, 19 | sylibr 233 | . . 3 ⊢ (𝑆 ∈ 𝐵 → {〈0, 𝑆〉}:(0...0)⟶𝐵) |
21 | 3, 4, 6, 10, 20 | gsumval2 18285 | . 2 ⊢ (𝑆 ∈ 𝐵 → (𝐺 Σg {〈0, 𝑆〉}) = (seq0((+g‘𝐺), {〈0, 𝑆〉})‘0)) |
22 | fvsng 7034 | . . . 4 ⊢ ((0 ∈ ℤ ∧ 𝑆 ∈ 𝐵) → ({〈0, 𝑆〉}‘0) = 𝑆) | |
23 | 11, 22 | mpan 686 | . . 3 ⊢ (𝑆 ∈ 𝐵 → ({〈0, 𝑆〉}‘0) = 𝑆) |
24 | 11, 23 | seq1i 13663 | . 2 ⊢ (𝑆 ∈ 𝐵 → (seq0((+g‘𝐺), {〈0, 𝑆〉})‘0) = 𝑆) |
25 | 2, 21, 24 | 3eqtrd 2782 | 1 ⊢ (𝑆 ∈ 𝐵 → (𝐺 Σg 〈“𝑆”〉) = 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 {csn 4558 〈cop 4564 dom cdm 5580 ⟶wf 6414 –1-1-onto→wf1o 6417 ‘cfv 6418 (class class class)co 7255 0cc0 10802 ℕ0cn0 12163 ℤcz 12249 ℤ≥cuz 12511 ...cfz 13168 seqcseq 13649 〈“cs1 14228 Basecbs 16840 +gcplusg 16888 Σg cgsu 17068 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-n0 12164 df-z 12250 df-uz 12512 df-fz 13169 df-seq 13650 df-s1 14229 df-0g 17069 df-gsum 17070 |
This theorem is referenced by: gsumws2 18396 gsumccatsn 18397 gsumwspan 18400 frmdgsum 18416 frmdup2 18419 gsumwrev 18888 psgnunilem5 19017 psgnpmtr 19033 frgpup2 19297 cyc3genpmlem 31320 mrsubcv 33372 gsumws3 41696 gsumws4 41697 |
Copyright terms: Public domain | W3C validator |