| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > gsumws1 | Structured version Visualization version GIF version | ||
| Description: A singleton composite recovers the initial symbol. (Contributed by Stefan O'Rear, 16-Aug-2015.) |
| Ref | Expression |
|---|---|
| gsumwcl.b | ⊢ 𝐵 = (Base‘𝐺) |
| Ref | Expression |
|---|---|
| gsumws1 | ⊢ (𝑆 ∈ 𝐵 → (𝐺 Σg 〈“𝑆”〉) = 𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | s1val 14570 | . . 3 ⊢ (𝑆 ∈ 𝐵 → 〈“𝑆”〉 = {〈0, 𝑆〉}) | |
| 2 | 1 | oveq2d 7406 | . 2 ⊢ (𝑆 ∈ 𝐵 → (𝐺 Σg 〈“𝑆”〉) = (𝐺 Σg {〈0, 𝑆〉})) |
| 3 | gsumwcl.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
| 4 | eqid 2730 | . . 3 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
| 5 | elfvdm 6898 | . . . 4 ⊢ (𝑆 ∈ (Base‘𝐺) → 𝐺 ∈ dom Base) | |
| 6 | 5, 3 | eleq2s 2847 | . . 3 ⊢ (𝑆 ∈ 𝐵 → 𝐺 ∈ dom Base) |
| 7 | 0nn0 12464 | . . . . 5 ⊢ 0 ∈ ℕ0 | |
| 8 | nn0uz 12842 | . . . . 5 ⊢ ℕ0 = (ℤ≥‘0) | |
| 9 | 7, 8 | eleqtri 2827 | . . . 4 ⊢ 0 ∈ (ℤ≥‘0) |
| 10 | 9 | a1i 11 | . . 3 ⊢ (𝑆 ∈ 𝐵 → 0 ∈ (ℤ≥‘0)) |
| 11 | 0z 12547 | . . . . . . 7 ⊢ 0 ∈ ℤ | |
| 12 | f1osng 6844 | . . . . . . 7 ⊢ ((0 ∈ ℤ ∧ 𝑆 ∈ 𝐵) → {〈0, 𝑆〉}:{0}–1-1-onto→{𝑆}) | |
| 13 | 11, 12 | mpan 690 | . . . . . 6 ⊢ (𝑆 ∈ 𝐵 → {〈0, 𝑆〉}:{0}–1-1-onto→{𝑆}) |
| 14 | f1of 6803 | . . . . . 6 ⊢ ({〈0, 𝑆〉}:{0}–1-1-onto→{𝑆} → {〈0, 𝑆〉}:{0}⟶{𝑆}) | |
| 15 | 13, 14 | syl 17 | . . . . 5 ⊢ (𝑆 ∈ 𝐵 → {〈0, 𝑆〉}:{0}⟶{𝑆}) |
| 16 | snssi 4775 | . . . . 5 ⊢ (𝑆 ∈ 𝐵 → {𝑆} ⊆ 𝐵) | |
| 17 | 15, 16 | fssd 6708 | . . . 4 ⊢ (𝑆 ∈ 𝐵 → {〈0, 𝑆〉}:{0}⟶𝐵) |
| 18 | fz0sn 13595 | . . . . 5 ⊢ (0...0) = {0} | |
| 19 | 18 | feq2i 6683 | . . . 4 ⊢ ({〈0, 𝑆〉}:(0...0)⟶𝐵 ↔ {〈0, 𝑆〉}:{0}⟶𝐵) |
| 20 | 17, 19 | sylibr 234 | . . 3 ⊢ (𝑆 ∈ 𝐵 → {〈0, 𝑆〉}:(0...0)⟶𝐵) |
| 21 | 3, 4, 6, 10, 20 | gsumval2 18620 | . 2 ⊢ (𝑆 ∈ 𝐵 → (𝐺 Σg {〈0, 𝑆〉}) = (seq0((+g‘𝐺), {〈0, 𝑆〉})‘0)) |
| 22 | fvsng 7157 | . . . 4 ⊢ ((0 ∈ ℤ ∧ 𝑆 ∈ 𝐵) → ({〈0, 𝑆〉}‘0) = 𝑆) | |
| 23 | 11, 22 | mpan 690 | . . 3 ⊢ (𝑆 ∈ 𝐵 → ({〈0, 𝑆〉}‘0) = 𝑆) |
| 24 | 11, 23 | seq1i 13987 | . 2 ⊢ (𝑆 ∈ 𝐵 → (seq0((+g‘𝐺), {〈0, 𝑆〉})‘0) = 𝑆) |
| 25 | 2, 21, 24 | 3eqtrd 2769 | 1 ⊢ (𝑆 ∈ 𝐵 → (𝐺 Σg 〈“𝑆”〉) = 𝑆) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 {csn 4592 〈cop 4598 dom cdm 5641 ⟶wf 6510 –1-1-onto→wf1o 6513 ‘cfv 6514 (class class class)co 7390 0cc0 11075 ℕ0cn0 12449 ℤcz 12536 ℤ≥cuz 12800 ...cfz 13475 seqcseq 13973 〈“cs1 14567 Basecbs 17186 +gcplusg 17227 Σg cgsu 17410 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-nn 12194 df-n0 12450 df-z 12537 df-uz 12801 df-fz 13476 df-seq 13974 df-s1 14568 df-0g 17411 df-gsum 17412 |
| This theorem is referenced by: gsumws2 18776 gsumccatsn 18777 gsumwspan 18780 frmdgsum 18796 frmdup2 18799 gsumwrev 19305 psgnunilem5 19431 psgnpmtr 19447 frgpup2 19713 cyc3genpmlem 33115 elrgspnlem3 33202 1arithufdlem1 33522 1arithufdlem3 33524 1arithufdlem4 33525 mrsubcv 35504 gsumws3 44192 gsumws4 44193 |
| Copyright terms: Public domain | W3C validator |