![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > gsumws1 | Structured version Visualization version GIF version |
Description: A singleton composite recovers the initial symbol. (Contributed by Stefan O'Rear, 16-Aug-2015.) |
Ref | Expression |
---|---|
gsumwcl.b | ⊢ 𝐵 = (Base‘𝐺) |
Ref | Expression |
---|---|
gsumws1 | ⊢ (𝑆 ∈ 𝐵 → (𝐺 Σg ⟨“𝑆”⟩) = 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | s1val 14548 | . . 3 ⊢ (𝑆 ∈ 𝐵 → ⟨“𝑆”⟩ = {⟨0, 𝑆⟩}) | |
2 | 1 | oveq2d 7425 | . 2 ⊢ (𝑆 ∈ 𝐵 → (𝐺 Σg ⟨“𝑆”⟩) = (𝐺 Σg {⟨0, 𝑆⟩})) |
3 | gsumwcl.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
4 | eqid 2733 | . . 3 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
5 | elfvdm 6929 | . . . 4 ⊢ (𝑆 ∈ (Base‘𝐺) → 𝐺 ∈ dom Base) | |
6 | 5, 3 | eleq2s 2852 | . . 3 ⊢ (𝑆 ∈ 𝐵 → 𝐺 ∈ dom Base) |
7 | 0nn0 12487 | . . . . 5 ⊢ 0 ∈ ℕ0 | |
8 | nn0uz 12864 | . . . . 5 ⊢ ℕ0 = (ℤ≥‘0) | |
9 | 7, 8 | eleqtri 2832 | . . . 4 ⊢ 0 ∈ (ℤ≥‘0) |
10 | 9 | a1i 11 | . . 3 ⊢ (𝑆 ∈ 𝐵 → 0 ∈ (ℤ≥‘0)) |
11 | 0z 12569 | . . . . . . 7 ⊢ 0 ∈ ℤ | |
12 | f1osng 6875 | . . . . . . 7 ⊢ ((0 ∈ ℤ ∧ 𝑆 ∈ 𝐵) → {⟨0, 𝑆⟩}:{0}–1-1-onto→{𝑆}) | |
13 | 11, 12 | mpan 689 | . . . . . 6 ⊢ (𝑆 ∈ 𝐵 → {⟨0, 𝑆⟩}:{0}–1-1-onto→{𝑆}) |
14 | f1of 6834 | . . . . . 6 ⊢ ({⟨0, 𝑆⟩}:{0}–1-1-onto→{𝑆} → {⟨0, 𝑆⟩}:{0}⟶{𝑆}) | |
15 | 13, 14 | syl 17 | . . . . 5 ⊢ (𝑆 ∈ 𝐵 → {⟨0, 𝑆⟩}:{0}⟶{𝑆}) |
16 | snssi 4812 | . . . . 5 ⊢ (𝑆 ∈ 𝐵 → {𝑆} ⊆ 𝐵) | |
17 | 15, 16 | fssd 6736 | . . . 4 ⊢ (𝑆 ∈ 𝐵 → {⟨0, 𝑆⟩}:{0}⟶𝐵) |
18 | fz0sn 13601 | . . . . 5 ⊢ (0...0) = {0} | |
19 | 18 | feq2i 6710 | . . . 4 ⊢ ({⟨0, 𝑆⟩}:(0...0)⟶𝐵 ↔ {⟨0, 𝑆⟩}:{0}⟶𝐵) |
20 | 17, 19 | sylibr 233 | . . 3 ⊢ (𝑆 ∈ 𝐵 → {⟨0, 𝑆⟩}:(0...0)⟶𝐵) |
21 | 3, 4, 6, 10, 20 | gsumval2 18605 | . 2 ⊢ (𝑆 ∈ 𝐵 → (𝐺 Σg {⟨0, 𝑆⟩}) = (seq0((+g‘𝐺), {⟨0, 𝑆⟩})‘0)) |
22 | fvsng 7178 | . . . 4 ⊢ ((0 ∈ ℤ ∧ 𝑆 ∈ 𝐵) → ({⟨0, 𝑆⟩}‘0) = 𝑆) | |
23 | 11, 22 | mpan 689 | . . 3 ⊢ (𝑆 ∈ 𝐵 → ({⟨0, 𝑆⟩}‘0) = 𝑆) |
24 | 11, 23 | seq1i 13980 | . 2 ⊢ (𝑆 ∈ 𝐵 → (seq0((+g‘𝐺), {⟨0, 𝑆⟩})‘0) = 𝑆) |
25 | 2, 21, 24 | 3eqtrd 2777 | 1 ⊢ (𝑆 ∈ 𝐵 → (𝐺 Σg ⟨“𝑆”⟩) = 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1542 ∈ wcel 2107 {csn 4629 ⟨cop 4635 dom cdm 5677 ⟶wf 6540 –1-1-onto→wf1o 6543 ‘cfv 6544 (class class class)co 7409 0cc0 11110 ℕ0cn0 12472 ℤcz 12558 ℤ≥cuz 12822 ...cfz 13484 seqcseq 13966 ⟨“cs1 14545 Basecbs 17144 +gcplusg 17197 Σg cgsu 17386 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 ax-cnex 11166 ax-resscn 11167 ax-1cn 11168 ax-icn 11169 ax-addcl 11170 ax-addrcl 11171 ax-mulcl 11172 ax-mulrcl 11173 ax-mulcom 11174 ax-addass 11175 ax-mulass 11176 ax-distr 11177 ax-i2m1 11178 ax-1ne0 11179 ax-1rid 11180 ax-rnegex 11181 ax-rrecex 11182 ax-cnre 11183 ax-pre-lttri 11184 ax-pre-lttrn 11185 ax-pre-ltadd 11186 ax-pre-mulgt0 11187 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3377 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7365 df-ov 7412 df-oprab 7413 df-mpo 7414 df-om 7856 df-1st 7975 df-2nd 7976 df-frecs 8266 df-wrecs 8297 df-recs 8371 df-rdg 8410 df-er 8703 df-en 8940 df-dom 8941 df-sdom 8942 df-pnf 11250 df-mnf 11251 df-xr 11252 df-ltxr 11253 df-le 11254 df-sub 11446 df-neg 11447 df-nn 12213 df-n0 12473 df-z 12559 df-uz 12823 df-fz 13485 df-seq 13967 df-s1 14546 df-0g 17387 df-gsum 17388 |
This theorem is referenced by: gsumws2 18723 gsumccatsn 18724 gsumwspan 18727 frmdgsum 18743 frmdup2 18746 gsumwrev 19233 psgnunilem5 19362 psgnpmtr 19378 frgpup2 19644 cyc3genpmlem 32310 mrsubcv 34501 gsumws3 42948 gsumws4 42949 |
Copyright terms: Public domain | W3C validator |