| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > gsumws1 | Structured version Visualization version GIF version | ||
| Description: A singleton composite recovers the initial symbol. (Contributed by Stefan O'Rear, 16-Aug-2015.) |
| Ref | Expression |
|---|---|
| gsumwcl.b | ⊢ 𝐵 = (Base‘𝐺) |
| Ref | Expression |
|---|---|
| gsumws1 | ⊢ (𝑆 ∈ 𝐵 → (𝐺 Σg 〈“𝑆”〉) = 𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | s1val 14563 | . . 3 ⊢ (𝑆 ∈ 𝐵 → 〈“𝑆”〉 = {〈0, 𝑆〉}) | |
| 2 | 1 | oveq2d 7403 | . 2 ⊢ (𝑆 ∈ 𝐵 → (𝐺 Σg 〈“𝑆”〉) = (𝐺 Σg {〈0, 𝑆〉})) |
| 3 | gsumwcl.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
| 4 | eqid 2729 | . . 3 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
| 5 | elfvdm 6895 | . . . 4 ⊢ (𝑆 ∈ (Base‘𝐺) → 𝐺 ∈ dom Base) | |
| 6 | 5, 3 | eleq2s 2846 | . . 3 ⊢ (𝑆 ∈ 𝐵 → 𝐺 ∈ dom Base) |
| 7 | 0nn0 12457 | . . . . 5 ⊢ 0 ∈ ℕ0 | |
| 8 | nn0uz 12835 | . . . . 5 ⊢ ℕ0 = (ℤ≥‘0) | |
| 9 | 7, 8 | eleqtri 2826 | . . . 4 ⊢ 0 ∈ (ℤ≥‘0) |
| 10 | 9 | a1i 11 | . . 3 ⊢ (𝑆 ∈ 𝐵 → 0 ∈ (ℤ≥‘0)) |
| 11 | 0z 12540 | . . . . . . 7 ⊢ 0 ∈ ℤ | |
| 12 | f1osng 6841 | . . . . . . 7 ⊢ ((0 ∈ ℤ ∧ 𝑆 ∈ 𝐵) → {〈0, 𝑆〉}:{0}–1-1-onto→{𝑆}) | |
| 13 | 11, 12 | mpan 690 | . . . . . 6 ⊢ (𝑆 ∈ 𝐵 → {〈0, 𝑆〉}:{0}–1-1-onto→{𝑆}) |
| 14 | f1of 6800 | . . . . . 6 ⊢ ({〈0, 𝑆〉}:{0}–1-1-onto→{𝑆} → {〈0, 𝑆〉}:{0}⟶{𝑆}) | |
| 15 | 13, 14 | syl 17 | . . . . 5 ⊢ (𝑆 ∈ 𝐵 → {〈0, 𝑆〉}:{0}⟶{𝑆}) |
| 16 | snssi 4772 | . . . . 5 ⊢ (𝑆 ∈ 𝐵 → {𝑆} ⊆ 𝐵) | |
| 17 | 15, 16 | fssd 6705 | . . . 4 ⊢ (𝑆 ∈ 𝐵 → {〈0, 𝑆〉}:{0}⟶𝐵) |
| 18 | fz0sn 13588 | . . . . 5 ⊢ (0...0) = {0} | |
| 19 | 18 | feq2i 6680 | . . . 4 ⊢ ({〈0, 𝑆〉}:(0...0)⟶𝐵 ↔ {〈0, 𝑆〉}:{0}⟶𝐵) |
| 20 | 17, 19 | sylibr 234 | . . 3 ⊢ (𝑆 ∈ 𝐵 → {〈0, 𝑆〉}:(0...0)⟶𝐵) |
| 21 | 3, 4, 6, 10, 20 | gsumval2 18613 | . 2 ⊢ (𝑆 ∈ 𝐵 → (𝐺 Σg {〈0, 𝑆〉}) = (seq0((+g‘𝐺), {〈0, 𝑆〉})‘0)) |
| 22 | fvsng 7154 | . . . 4 ⊢ ((0 ∈ ℤ ∧ 𝑆 ∈ 𝐵) → ({〈0, 𝑆〉}‘0) = 𝑆) | |
| 23 | 11, 22 | mpan 690 | . . 3 ⊢ (𝑆 ∈ 𝐵 → ({〈0, 𝑆〉}‘0) = 𝑆) |
| 24 | 11, 23 | seq1i 13980 | . 2 ⊢ (𝑆 ∈ 𝐵 → (seq0((+g‘𝐺), {〈0, 𝑆〉})‘0) = 𝑆) |
| 25 | 2, 21, 24 | 3eqtrd 2768 | 1 ⊢ (𝑆 ∈ 𝐵 → (𝐺 Σg 〈“𝑆”〉) = 𝑆) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 {csn 4589 〈cop 4595 dom cdm 5638 ⟶wf 6507 –1-1-onto→wf1o 6510 ‘cfv 6511 (class class class)co 7387 0cc0 11068 ℕ0cn0 12442 ℤcz 12529 ℤ≥cuz 12793 ...cfz 13468 seqcseq 13966 〈“cs1 14560 Basecbs 17179 +gcplusg 17220 Σg cgsu 17403 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-n0 12443 df-z 12530 df-uz 12794 df-fz 13469 df-seq 13967 df-s1 14561 df-0g 17404 df-gsum 17405 |
| This theorem is referenced by: gsumws2 18769 gsumccatsn 18770 gsumwspan 18773 frmdgsum 18789 frmdup2 18792 gsumwrev 19298 psgnunilem5 19424 psgnpmtr 19440 frgpup2 19706 cyc3genpmlem 33108 elrgspnlem3 33195 1arithufdlem1 33515 1arithufdlem3 33517 1arithufdlem4 33518 mrsubcv 35497 gsumws3 44185 gsumws4 44186 |
| Copyright terms: Public domain | W3C validator |